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The fibrous proteins in living cells are exposed to mechanical forces interacting

with other subcellular structures. X-ray fiber diffraction is often used to assess

deformation and movement of these proteins, but the analysis has been limited

to the theory for fibrous molecular systems that exhibit helical symmetry.

However, this approach cannot adequately interpret X-ray data from fibrous

protein assemblies where the local strain varies along the fiber length owing to

interactions of its molecular constituents with their binding partners. To resolve

this problem a theoretical formulism has been developed for predicting the

diffraction from individual helical molecular structures nonuniformly strained

along their lengths. This represents a critical first step towards modeling complex

dynamical systems consisting of multiple helical structures using spatially

explicit, multi-scale Monte Carlo simulations where predictions are compared

with experimental data in a ‘forward’ process to iteratively generate ever more

realistic models. Here the effects of nonuniform strains and the helix length on

the resulting magnitude and phase of diffraction patterns are quantitatively

assessed. Examples of the predicted diffraction patterns of nonuniformly

deformed double-stranded DNA and actin filaments in contracting muscle are

presented to demonstrate the feasibly of this theoretical approach.

1. Introduction

Fibrous proteins are ubiquitous in biology, forming the basis of

connective tissues, muscle and amyloid systems among many

others (Orgel & Irving, 2014). Nucleic acids, especially DNA,

either naturally adopt or can be induced to form helical

structures as well (Mahendrasingam et al., 1986; Franklin &

Gosling, 1953). While such macromolecular assemblies are

generally intractable to conventional crystallographic

approaches, X-ray fiber diffraction can be the method of

choice to extract structural information from such molecular

assemblies that have been induced to form aligned sols or gels

by flow or magnetic fields (Chandrasekaran & Stubbs, 2012;

Stubbs, 1999) and also, in many cases, from in situ measure-

ments of protein assemblies in tissue or even living organisms

(Orgel & Irving, 2014; Barrea et al., 2014). All such systems are

characterized by helical symmetry of varying complexity

(Vainshtein, 1966; Fraser & MacRae, 1973). Fibrous molecular

arrangements with helical symmetry are also characteristic of

many synthetic polymer systems.

The modern understanding of helical diffraction theory was

first described by Cochran et al. (1952) and considerably

enhanced by Klug et al. (1958), and the effects of various kinds

of disorder have been treated by Vainshtein (1966) and by

Fraser & McCrae (1973). However, all these approaches

assume fixed values for the helical parameters. While these

may be appropriate for helical molecular assemblies that are

not under tension, in living cells many of the molecular
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assemblies in question may be deformed by interaction forces

with other proteins or fibers. Consequently, the resulting X-ray

diffraction patterns will contain information concerning these

nonuniformly deformed helices, but, using the theory based on

fixed values for the helical parameters, only average values can

be extracted from deformed structures. While these average

values for the inter-monomer spacings may accurately repre-

sent the behavior of the structure as a whole, they could be

misleading when trying to achieve a detailed understanding of

specific molecular interactions that are local in nature.

An example where local interactions lead to nonuniformly

stretched helical structures is the case of a striated muscle

during contraction. Muscle contracts by the interaction of the

motor domains of individual myosin molecules in myosin-

containing thick filaments with the binding sites on actin-

containing thin filaments, forming so-called crossbridges

(Squire & Knupp, 2005). Each motor domain, or myosin head,

is usually assumed to act as an independent force generator.

The strain on a given segment of an actin filament varies with

the number of myosin heads bound, their spatial position

along the length of the filament and the cumulative force, i.e.

the sum of crossbridge forces from the free end of the actin at

that particular segment. A detailed understanding of this

strain distribution will be necessary to formulate realistic

models of actomyosin interactions that can predict the beha-

vior of individual crossbridges when generating force. Huxley

et al. (1994) and Wakabayashi et al. (1994) calculated the

extensibility of actin filaments in contracting muscle fibers

from X-ray diffraction patterns using changes in the spacing of

the 2.73 nm meridional reflection (and higher orders), yielding

mean values of the strain on the filament. A single value for

the strain, i.e. uniform helix periodicities along the actin fila-

ment, would predict a symmetric narrow meridional X-ray

diffraction peak profile, whereas, according to our preliminary

studies (Takezawa et al., 2005; Prodanovic et al., 2015;

Prodanovic, Irving, McOwen & Mijailovich, 2014; Prodanovic,

Irving, Stojanovic & Mijailovich, 2014), X-ray diffraction

patterns from nonuniformly deformed actin filaments would

exhibit asymmetric profiles, similar to the observations.

Therefore, the peak shapes provide a potential opportunity to

extract information concerning strain distributions in actin

filaments that can, in turn, lead to more detailed (and realistic)

models of actomyosin interaction. In order to achieve this,

however, it is necessary to be able to predict the peak shapes

accurately from a starting model of the nonuniformly

distorted helical structure.

Fibrous protein systems are increasingly being approached

by atomistic-level modeling efforts that try to match trial

structures against X-ray diffraction data (e.g. Poole et al., 2006;

Samatey et al., 2001; Oda et al., 2009; Oshima et al., 2012). As

we have seen, the diffraction data include not just spacing and

intensity information but also peak shape information that will

reflect underlying deviations from perfect symmetry induced

by local molecular interactions. Any effort to extract more

information from the data requires the ability to calculate

X-ray patterns accurately from the trial structures and

assemblies of the trial structures. These trial structures can be

refined against the data in an iterative procedure. The meth-

odology we propose here for analyzing deformed helices

allows for the calculation of realistic intensity profiles and

spacing values for a nonuniform helical molecular structure in

reciprocal (diffraction) space. We develop theoretical

expressions that allow prediction of the diffraction from

nonuniformly deformed helices. These predictions are

compared with those of uniformly deformed or relaxed

helices, emphasizing the effect of the degree and distribution

of helix deformation, number of helices and helix length. We

examine the cases of a continuous helical wire and a discon-

tinuous helix represented by helically arranged subunits. We

show examples of how these cases may be applied to strained

structures of double-helical DNA and actin filaments in

muscle. The theoretical approach presented here allows the

prediction of the diffraction pattern from an individual

strained helical molecular structure. This diffraction pattern

can then be used in combination with multiscale modeling

approaches to predict the diffraction from assemblies of such

structures, taking into account various forms of disorder and

how assemblies of such structures may evolve with time in

response to local forces. A detailed presentation of the

application of this methodology to the strained actin filament

system in contracting muscle will appear elsewhere.

2. Methods

2.1. Diffraction from helical filamentous structures

Most cytoskeletal filaments, such as actin, myosin, tropo-

myosin, collagen, DNA, coiled coils and alpha helices, are

composed of helically arranged subunits. As a first approx-

imation, these helical structures can be represented as a

continuous uniform wire (Squire & Knupp, 2005). As the

hypoteneuse of a triangle wrapped around a cylinder, this wire
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Figure 1
The geometry of a continuous and a discontinuous helix. (a) In cylindrical
coordinates, r,  , z, a continuous helix or helical wire is characterized by
the radius of the cylinder r0 and the angle of the helix rise � or the helix
pitch P, i.e. the axial rise for one complete turn of the helix around the
cylinder axis. (b) A discontinuous helix is represented by a set of selected
points where helically arranged subunits are centered. The position of the
discrete points is defined by the axial distance between two neighboring
points p or by the increment in the helix angle � .



forms a helix inclined at an angle � = tan�1(P/2�r0) along the

cylinder (Fig. 1a). The axial rise of the helix is defined by the

radius of the cylinder, r0, and �. One complete turn of the helix

around the cylinder axis is called the helix pitch, P

(Vainshtein, 1966). The helically arranged subunits, such as

actin monomers, myosin molecules, individual nucleotides or

amino acids, are separated by the axial distance between the

subunits, p, commonly called the ‘subunit axial translation’ or

‘unit rise’ (Squire & Knupp, 2005), and by the incremental

turns, � . The number of subunits in one pitch defines the

angular shift between the units (Fig. 1b). However, typically

the number of subunits, p/P, is not a whole number, and thus

these so-called ‘nonintegral helices’ (Squire, 1981) may

require several helical pitches until a subunit can be found at

the exactly equivalent azimuthal position of some starting

subunit. The axial distance between this unit and the starting

subunit is defined as the true repeat distance C. Thus, any

helical structure can be defined as the number of subunits, ns,

in nt turns of the helix, denoted as an ns/nt helix, where C =

ntP = ns p (Squire, 1981, Vainshtein, 1966) and � = 2�nt /ns.

2.2. Fourier transform in cylindrical coordinates

In cylindrical coordinates, a continuous helix or a helical

wire is defined as r = r0,  = 2�z/P, z = z. The Fourier trans-

form in three dimensions in cylindrical coordinates has the

form

f̂f ðR;�;ZÞ ¼
1

ð2�Þ3=2

Z1
0

Z2�
0

Z1
�1

f ðr;  ; zÞ

� exp fi2�½rR cosð��  Þ þ zZ�gr dr d dz; ð1Þ

where f(r,  , z) is the object function, R, �, Z are the

cylindrical coordinates in reciprocal space, the exponent in the

exponential term is the scalar product of coordinates in real

and reciprocal space, and rdrd dz is the infinitesimal volume.

Substituting cos(� �  ) = sin(� �  + � /2) and sin(� �  +

�/2) = [1/(2i)][exp(i!) � exp(�i!)] = [1/(2i)](t � t�1), where

! = � �  + �/2 and t = exp(i!), the exponential term in

equation (1) can be re-expressed using the formula for

generating Bessel functions (Lebedev, 1972) as

exp
1

2
2�rR t �

1

t

� �� �
¼
X1

n¼�1

Jnð2�rRÞtn; ð2Þ

where Jn(2�rR) are Bessel functions of the first kind. Finally,

the exponential term in equation (1) can be written as

exp fi2�½rR cosð��  Þ þ zZ�g

¼
X1

n¼�1

Jnð2�rRÞ exp in ��  þ
�

2

� �h i
exp ði2�zZÞ: ð3Þ

Now we can write the expression for the Fourier transform in

cylindrical coordinates as

f̂f ðR;�;ZÞ ¼
X1

n¼�1

exp in �þ
�

2

� �h i Z1
0

gnðr;ZÞ Jnð2�rRÞ r dr;

ð4Þ

where gn(r, Z) is the ‘helical structure factor’ (Diaz et al.,

2010):

gnðr;ZÞ ¼
1

ð2�Þ3=2

Z2�
0

Z1
�1

f ðr;  ; zÞ exp ð�in Þ exp ði2�zZÞ d dz:

ð5Þ

2.3. Deformed continuous helix

The X-ray diffraction patterns from deformed helices, even

with a piecewise change of monomer spacings, cannot be

simply described via the conventional helical selection rules

(Vainshtein, 1966; Diaz et al., 2010; Squire, 1981). Thus we

formulate here a mathematical description of the Fourier

transform of nonuniformly deformed helices. In cylindrical

coordinates, the z coordinate is proportional to  , and thus at

z = P the angle  is equal to 2�. For constant P, the equation

of the helix is defined as r = r0,  = 2�z/P. However, for

nonuniformly deformed helices, P varies with z and the helix is

defined as d /dz = 2�/P(z). For simplicity of notation, we can

define the equation for a nonuniformly deformed helix as  =

2�z/P(z), where P(z) is an integral pitch function that

accounts for the difference between an axially deformed helix

and a helix with constant pitch at any z. Because the pitch P(z)

in deformed helices can vary continuously, or more realisti-

cally in a piecewise manner, we will define the relationship

between P(z) and P(z) for each specific case.

Let us consider first the Fourier transform for a continuous

helix of a nonuniformly deformed wire of radius r0 with

continuously varying pitch P(z). The helix object function f(r,

 , z), assuming that the density along the helix is unity, can be

represented as the product of two � functions:

f ðr;  ; zÞ ¼ � r� r0ð Þ �  �
2�z

P ðzÞ

� �
: ð6Þ

The helical structure factor [equation (5)] that takes into

account the object function of a helical wire [equation (6)] is

defined as

gnðr;ZÞ ¼
1

ð2�Þ3=2

Z2�
0

Z1
�1

� r� r0ð Þ �  �
2�z

P ðzÞ

� �

� exp ð�in Þ exp ði2�zZÞ d dz: ð7Þ

Here, has nonzero values only at 2�z=P ðzÞ, so the integrand

becomes an exponential function of z only. This simplifies the

shape function to

gnðr;ZÞ ¼
� r� r0ð Þ

ð2�Þ1=2

Z1
�1

exp i2� Z �
n

P ðzÞ

� �
z

� 	
dz; ð8Þ

after the trivial integration
R 2�

0 d ¼ 2�.
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Substituting equation (8) into equation (4), we define the

Fourier transform of a nonuniformly deformed helix. Because

�(r � r0) has a nonzero value only at the helix radius r0, the

integral over r in equation (4),
R1

0 �ðr� r0Þ Jnð2�rRÞ r dr, is

equal to its integrand at r0, i.e. r0 Jn(2�r0R). Finally, equation

(4) simplifies to

f̂f ðR;�;ZÞ ¼
r0

ð2�Þ1=2

X1
n¼�1

exp in �þ
�

2

� �h i
Jn 2�r0Rð Þ

�

Z1
�1

exp i2� Z �
n

P ðzÞ

� �
z

� 	
dz: ð9Þ

2.4. Continuous helix of finite length

Fibrous proteins have a finite length and the X-ray reflec-

tions are affected by the fiber ends, which means that

diffraction from shorter fibers will be more affected by end

effects. Thus, for a helical filament of length L, the integral

over z in equation (9) becomes

InðZÞ ¼
RL=2

�L=2

exp i2� Z � n=P ðzÞ½ �z

 �

dz: ð10Þ

In order to illustrate the differences between continuous

undeformed and nonuniformly deformed helices, we show

below (e.g. Figs. 5, 7 and 9) the patterns of a helix of constant

pitch, P0, compared with a helix of linearly changing axial

strain, "(�) = �"(� � �0)/L, i.e. a helix with a continuously

changing pitch, P(�), where �" is the strain at the helix

(undeformed) length L, and assuming that � = �0 is the fila-

ment helix free end, i.e. "(�0) = 0.

For helices of constant pitch, most investigators have used

the conventional helical selection rules (Vainshtein, 1966; Diaz

et al., 2010; Squire, 1981) and typically assumed helices with

long lengths, where end effects do not play a significant role.

However, for short lengths the end effects can be large, and

this effect is taken into account by simple integration of

equation (10). The integral In(Z) for P ðzÞ = P0 is

InðZÞ ¼
sin½�ðZ � n=P0ÞL�

�ðZ � n=P0Þ
: ð11Þ

In contrast, even in the simple case of a continuous helix

deformed by a linearly increasing strain, the formulation for a

deformed helix undergoing large strains is complex. We

assume that, during deformation, all points on the helix move

only axially, from an undeformed coordinate � to a deformed

helix at coordinate z, at fixed  . This formulation provides a

simple relationship between the deformed and undeformed

helices as  (z) =  0(�) = 2��/P0 at r = r0, where  (z) is the

nonuniformly deformed helix at coordinate z, and  0(�) is the

undeformed helix angle at undeformed coordinate �. The

relationship between the undeformed and deformed coordi-

nates, � and z, respectively, is defined as

zð�Þ ¼ � þ
R�
�0

"ð�Þ d�: ð12Þ

For a linear increase in strain along an undeformed helix of

length L, from "(�0) = 0 to "ðL þ �0Þ = �", the deformed

coordinate z(�) is

zð�Þ ¼ � þ
�"

2L
� � �0ð Þ

2: ð13Þ

If we now express � as a function of z, the deformed helix can

be defined as

 ðzÞ ¼ 0 z �ð Þ½ �

¼
2�

P0

L

�"
� 1�

�"

L
�0

� �
þ 1þ 2

�"

L
z� �0ð Þ

� �1=2
( )

ð14Þ

or

 ðzÞ ¼
2�

P ðzÞ
z; ð15Þ

where

P ðzÞ ¼
P0�"

L

z

� 1�
�"

L
�0

� �
þ 1þ 2

�"

L
z� �0ð Þ

� �1=2
( ) :

ð16Þ

We can also find the continuous change of pitch, P(z), from

@ =@z ¼ 2�=PðzÞ

PðzÞ ¼ P0 1þ 2
�"

L
z� �0ð Þ

� �1=2

: ð17Þ

Note that, when �"! 0, P ðzÞ ! P0, after finding the limit of

equation (16) using L’Hopital’s rule, and also from equation

(17) P(z)! P0.

The exact solution [equation (14)] may not be intuitive, but

by using the Taylor-series expansion of the square root func-

tion we can derive an approximate solution that defines  (z)

as a product of the solution of an undeformed helix and a

Taylor series of terms �"z/L, which define the departure from

this solution when the strain increases linearly along the helix

axis z, from " = 0 at z = 0 to " = �" at the undeformed helix

length L (see Appendix A). This solution also provides

expressions for P ðzÞ and P(z) in terms of Taylor series, which

can clearly show how nonlinear terms from a continuous

change in the strain affect P ðzÞ and P(z). From these

expressions, it is easy to see that, for small strains (�" < 2%),

the first few terms are sufficient to calculate the Fourier

transform and both P ðzÞ ! P0 and P(z)! P0 when �"! 0.

However, for large strains, for example �" = 20%, at least five

terms should be taken into account to describe the deformed

helix sufficiently accurately.

If we define the integral pitch function, P ðzÞ, for a

continuously changing strain along the helix, the integrand in

equation (10) becomes a complicated function and the integral

In(Z) cannot be obtained analytically. Thus, we integrated
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equation (10) numerically for all values of n and Z using the

trapezoidal rule and then calculated the Fourier transform

using equation (9).

For a continuous helix the phase is only shown with a

complex exponential term in equation (9). Since we are

calculating it from �L/2 to L/2, the integral [equation (10)]

has only real values [equation (11)], so the phase is only shown

in terms of the complex exponential, i.e. it arises exclusively

from the exp[in(� + �/2)] terms in the sum over all Bessel-

function-weighted real values of the product Jn(2�r0R)In(Z)

[see equation (9)]. However, in more complex cases such as

the discontinuous deformed helix, the integral boundaries in

equation (10) may not be symmetric because the origin of z

may not be set in the middle of the helix length. Thus, In(z)

also becomes a complex number and contributes to the phase,

in addition to the exponential term explained above.

2.5. Continuous helix with a piecewise change in pitch

In general, P(z) can be an arbitrary function of z, but in

most realistic cases it is better described as a piecewise func-

tion along a filament length with multiple segments, each with

a constant pitch, where P(z) changes value at the discrete axial

locations along the helical structure where bound molecules

transfer the force between, for example, actin and myosin

filaments (Fig. 2). In this case the helix is also defined as a
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Figure 2
The monomer spacing of an actin filament stretched during fully
developed isometric tension. (a) Electron micrograph (H. E. Huxley,
unpublished) showing interdigitated actin and myosin filaments in frog
(skeletal) sarcomere lattice. (b) Detail from part (a), showing the
positions of myosin heads attached to actin filaments (crossbridges),
denoted by red dashed lines. (c) The piecewise change in spacing between
neighboring actin monomers coincides with the locations of myosin
molecules bound to actin sites. Here, interactions are shown between only
one myosin filament with one actin filament [red dashed lines between
panels (b) and (c)], but in the hexagonal lattice shown in the band of part
(a), three myosin filaments will interact with each actin filament so the
piecewise changes in spacing will be about three times more frequent
than shown. Note that the spacing typically increases from the free end of
an actin filament towards the z axis, mimicking the increase in the tensile
force in actin filaments. On some rare occasions, however, the spacing
decreases reflect the effect of compressive forces in bound crossbridges.
(d) The displacements of actin monomers relative to the position of the
actin free end.

Figure 3
Stretched helical structures in terms of a radial projection. The
undeformed helix from Fig. 1(a) is represented in a radial projection as
a straight line inclined at an angle � (gray dashed lines) and, similarly, the
undeformed helical strands of subunits from Fig. 1(b) form a radial net of
points along the same straight line (Squire & Knupp, 2005). However, the
deformed helix with piecewise changes in the inter-subunit spacings
shows changes in slope in the radial projection, i.e. the change in spacings
modulates the angle � between the points where the spacing changes, but
maintains straight lines between the points where the slope does not
change. The change in slope also modulates the pitch, P. (a) A continuous
helix with spacing changes for the first 21 actin monomers from Fig. 2. The
changes in spacings are defined at z‘ and  ‘ or r0 ‘ in the radial
projection. The length of constant pitch segments is defined as L‘ = z‘ �
z‘�1, where the index ‘ denotes the current number of the segment with
the constant pitch P‘. The first point of the helix is set to be at z0 = 0 and
 0 = 0. The index of the coordinate of each segment end point, i.e. the
coordinate where the slope changes, is set to coincide with the current
segment number ‘. Three consecutive segments with constant pitches are
illustrated by light-red, green and cyan lines, and the points along these
line segments indicating one complete pitch with red crosses, green
horizontal ticks and light-blue crosses, respectively. (b) The subunits,
depicted as gray spheres, follow the segment slopes from part (a). The
index of each subunit is denoted as m. The subunit number at position z‘
is denoted m‘ and the subunit spacing within the segment as p‘. Note that
the length of the segment ‘ is shorter than one pitch, i.e. L‘ = 2p‘ < P‘.
The number of spacings in the segment ‘ is denoted M‘.



piecewise function, having a change of slope of the helix at z‘,

and P(z) can be represented as series of P‘ values at each

segment L‘ = z‘ � z‘�1 (Fig. 3a). Note that for a finite

(deformed) filament length, L =
P

‘ L‘. Setting the coordi-

nates z0 = 0 and  (z0) = 0, the first segment (‘ = 1) of the helix

is defined in standard form as  (z) = 2�z/P1 for z0 � z � z1.

The second segment (‘ = 2) needs to satisfy continuity of  (z)

at z1 where the pitch changes from P1 to P2 and  (z) =

2�[(1/P1� 1/P2)z1 + z/P2] for z1 � z � z2. Repeating the same

method ‘� 1 times leads to the following recurrence relation

for each segment ‘:

 ðzÞ ¼ 2�
X
‘

1

P‘�1

�
1

P‘

� �
z‘�1 þ

z

P‘

" #
ð18Þ

for z‘�1 � z � z‘. Here,  has nonzero values only at

2�½
P

‘ð1=P‘�1 � 1=P‘Þz‘�1 þ z=P‘�, so the integrand in

equation (8) becomes an exponential function of z only. This

simplifies the shape function for each segment ‘ to

g‘nðr;ZÞ ¼
� r� r0ð Þ

ð2�Þ1=2

Zz‘
z‘�1

exp i2�n
X
‘

1

P‘
�

1

P‘�1

� �
z‘�1

" #

� exp i2� Z �
n

P‘

� �
z

� �
dz: ð19Þ

Note here that, for each segment P ðzÞ ¼ P‘, the integration

reduces to a periodic solution after putting in front of the

integral the continuity factor for a piecewise deformed helix.

Now the integral shown in equation (10) can be replaced

with a sum of integrals from g‘nðr;ZÞ [equation (19)] between

z‘�1 and z‘ over all segments ‘:

Inðr;ZÞ ¼
X
‘

exp i2�n
X
‘

1

P‘
�

1

P‘�1

� �
z‘�1

" #

�

Zz‘
z‘�1

exp i2� Z �
n

P‘

� �� �
z dz: ð20Þ

Integrating equation (20) and substituting into equation (9),

the Fourier transform of a piecewise deformed helix becomes

f̂f ðR;�;ZÞ ¼
r0

ð2�Þ1=2

X1
n¼�1

exp in �þ
�

2

� �h i
Jn 2�r0Rð Þ

�
X
‘

F
CH
‘

i exp i2� Z � n=P‘
� 


z‘�1

� �
2� Z � n=P‘
� 


� 1� exp i2� Z �
n

P‘

� �
L‘

� �� 	
; ð21Þ

where

F
CH
‘ ¼ exp i2�n

X
‘

z‘
1

P‘
�

1

P‘�1

� �� �( )
ð22Þ

is a factor that assures continuity between the azimuthal

angles  and axial positions z between neighboring segments

with different pitches. The superscript CH denotes a contin-

uous helix. Because f̂f ðR;�;ZÞ is a complex number it can be

represented as a magnitude and a phase. Thus, for the

complete reconstruction of a real-space object from an X-ray

diffraction pattern it is necessary to know both the magnitude

and the phase. Conversely, for known coordinates of the

deformed actin filament at the axial positions of bound

crossbridges, we can uniquely predict the magnitude and

phase of the X-ray diffraction pattern.

2.6. Diffraction from a nonuniformly deformed discontin-
uous helix

The helical arrangement of subunits in filaments also

requires that each atom in the subunit follows the same helical

path. For simplicity we use equivalent subunits, representing

groups of atoms by the equivalent center of mass and the

subunit diameter, rather than individual atoms. The repeating

subunits form a string of points on a continuous helix passing

through the center of mass of the subunits (Figs. 1b and 3b).

Thus, for each subunit in, for example, an actin filament, each

monomer will contain this subunit at a helical radius r0, axially

separated from the next in a string by a distance p, forming a

so-called discontinuous helix, DH, of pitch P (Vainshtein,

1966; Diaz et al., 2010; Squire, 1981). Mathematically, this

string of points on an undeformed (or uniformly deformed)

helix can be defined as the product of a continuous helix with a

set of equidistant planes perpendicular to the helix axis

(Fig. 4). Since the Fourier transform of a product is a convo-

lution of the Fourier transforms

GDH ¼ GK �GH; ð23Þ
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Figure 4
Generation of the discontinuous helix and its diffraction pattern. (a) A
discontinuous helix (i.e. a helical array of subunits) can be thought of as a
product of a helical wire, �h, with a set of horizontal planes, �k, spaced p
apart, where p is the subunit axial translation. (b) The Fourier transform
of the discontinuous helix, GDH, is represented as the convolution of the
Fourier transforms of objects �h and �k, denoted GH and GK, respectively.
Graphically, this convolution is represented as a series of overlapping GH

patterns, each originating at the meridional reflection positions, separated
by 1/p, described by GK (Vainshtein, 1966; Squire, 1981).



where GK is a regular series of N � functions, spaced by 1/p

along the z axis, GH defines its repeat at a spatial position

according to the helical arrangement of that subunit, and GDH

is the sum of N individual GH functions, each centered around

a � function in GK along the meridian of the pattern (Fig. 4). If

all subunits are uniformly deformed or not deformed at all, the

subunit spacings are the same, p, and the complex integration

along the z axis can be simplified by applying the conventional

helical ‘selection rule’ usually used in describing helix

diffraction.

A discontinuous helix may be deformed in a piecewise

manner along the filament, changing P(z) only at axial posi-

tions where bound molecules exert forces and deform the

filament. Within one segment, P(z) is constant and the above

approach is equally applicable. However, different segments

of the piecewise deformed helix will reflect the change of pitch

via the change in spacing, p, in each segment. Thus, the

piecewise deformed helix can be represented as a series of P‘
values at each segment L‘ = z‘ � z‘�1 and subunit spacing p‘
within the segment L‘ (Fig. 3b). The number of spacings

within L‘ is denoted as M‘ = m‘ � m‘�1. Let us now consider

that all subunits are at a constant radius r = r0 in both the

undeformed and the deformed configuration, and that at z = 0,

 =  0 = 0. Setting the origin of z in the middle of the helix in

the undeformed configuration, the coordinates of the first

monomer are z1 = �L=2, r = r0 and  1 =  0 � (�L/P0), where

P0 is the helix pitch in the undeformed configuration.

The discrete axial coordinates for the first segment (‘ = 1)

are

zm;1 ¼ z1 þ ðm� 1Þ p1; ð24Þ

and for the other segments (‘ > 1) they are

zm;‘ ¼ z1 þ
X‘�1

‘¼1

M‘ p‘
� 


þ m� 1þ
X‘�1

‘¼1

M‘

 !
p‘; ð25Þ

where m is the index of the current subunit, the second term is

the coordinate zm;‘�1 of the end of the last monomer of the

segment ‘� 1 and the third term is the increase �zm;‘, from

zm;‘�1 to the coordinate of the current monomer zm;‘. This

apparently complex description may actually be defined in a

computational algorithm as a simple increment in z from the

previous monomer to the current monomer coordinate.

Following the definition of  (z) shown in equation (18), we

define the angle of the last monomer in segment ‘ of a

deformed helix as

 m;‘ ¼ ’1 þ 2�
z‘
P‘
þ
X‘�1

ii¼2

zii

1

Pii

�
1

Piiþ1

� �" #
: ð26Þ

Summing over all subunits, instead of integrating over z as in

equation (9), the Fourier transform of a nonuniformly

deformed discontinuous helix is defined as

f̂f ðR;�;ZÞ ¼
r0

ð2�Þ1=2

X1
n¼�1

exp in �þ
�

2
�  1

� �h i
Jn 2�r0Rð Þ

�

 
p1

XM1þ1

m¼1

exp i2� Z �
n

P1

� �
z1;m

� �

þ
X‘max

‘¼2

(
p‘F

DcH
‘

X1þ
P‘

‘¼1
M‘

m¼2þ
P‘�1

‘¼1
M‘

exp i2� Z �
n

Pl

� �
zm;‘

� �)!
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Here, the expression

F
DcH
‘ ¼ exp i2�n

X‘
ii¼2

1

Pii

�
1

Pii�1

� �X‘�1

jj¼1

Mjj pjj

" #
; ð28Þ

takes into account the continuity of the nonuniformly

deformed helix and the superscript DcH denotes a factor that

accounts for the piecewise strain changes in a discontinuous

helix. The first sum in FDcH
‘ accounts for the nonlinear change

in  for the boundary monomers between segment ‘� 1 and

segment ‘, and the second sum represents the coordinate of

the boundary, z‘�1.

3. Results and discussion

3.1. Effect of helix length on the magnitude and phase of the
X-ray diffraction pattern

The predicted X-ray pattern of a three-dimensional object,

in our case a helical wire, is also represented by a three-

dimensional object in reciprocal space. In real space, a helical

wire in cylindrical coordinates is defined as a linear relation-

ship between the angle  and the axial position z at a constant

radius r0, but for nonuniformly deformed helices this rela-

tionship becomes nonlinear and depends inversely on the

pitch distortion, P(z). The solution in reciprocal space is

represented by a complex-valued function of the azimuthal

angle � in terms of the magnitude and phase in the RZ planes.

In order to illustrate the predicted effects on observed

diffraction patterns, all results shown below are in terms of

diffracted intensity along with the predicted phases. The

intensity is proportional to

f̂f R;�;Zð Þ

��� ���2 ¼ f̂f R;�;Zð Þ f̂f
�

R;�;Zð Þ; ð29Þ

i.e. the Fourier transform multiplied by its complex conjugate.

In Appendix B we show that it is possible to derive an

analytical expression for calculating the cylindrically averaged

diffraction intensity that provides large savings in computation

time. The intensities are not corrected for the Lorentz factor

since this is sample and geometry dependent (Fraser &

MacRae, 1973).

The predicted X-ray diffraction patterns from a helix of

finite length are calculated from equation (9), where the value

of the integral In(Z) is calculated using equation (11) for the

case of constant pitch, P0, or by numerical integration of

equation (10) for the case of a linearly increasing strain along

the length of the helical wire. Fig. 5 shows the effect of the

helix length on the intensity and phase of the calculated
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Fourier transform. At short lengths, the diffracted intensity

depends strongly on �, but as the helix becomes longer the

difference between the intensity at � = 0 and the average

value becomes smaller (Figs. 5a–5f). As expected, the widths

of the layer lines in the axial direction become narrower and

better defined with increasing helix length. However, with

increasing length the intensity distribution and phase become

more complex and show a finer structure between the layer

lines. Stretching of the helices leads to systematic shifts in the

peak positions, due to changes in the effective pitch of the

helix, and attenuation of layer lines with increasing distance

from the equator. The locations of the higher-order peaks are

very well described on the phase graphs because the phase

represents the repeats equally, regardless of the peak magni-

tude. These higher-order peaks become hard to see in Fig. 5

(left- and right-hand columns of images), but they can be

reasonably well observed in intensity profiles taken parallel to

the meridian (see Figs. 6 and 7). Nonuniform deformation

changes the length of the pitch along the length of the helix

and, therefore, the distance between the centers of the peaks.

As a consequence, the intensities of the peaks are reduced and

the widths of the peaks increased. Because the small differ-

ences in pitch become amplified in reciprocal space, the

higher-order peaks, i.e. the peaks further away from the

equator, decrease markedly in intensity and become increas-

ingly broad in the meridional direction. The longer the helix,

the more the profiles of � = 0 and those averaged over all �

values become the same (insets in Fig. 7). This result suggests

that the broader meridional reflections further away from the

equator signify the degree of nonuniformity of the helix

deformation (see insets in Fig. 7).
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Figure 6
The positions of the meridional and equatorial planes on the image of the
calculated intensity of a helical wire six full pitches long at � = 0, from
which the intensity profiles shown in Fig. 7 are extracted. The positions of
the meridional planes M0 and M1 are at R = 0 and 0.0463 Å�1,
respectively, and the equatorial plane is at Z = 0. The profiles from Fig. 5
are shown in Fig. 7.

Figure 5
The effect of length changes of helical wire structures on the calculated Fourier transforms of stretched and relaxed helices. Intensities at � = 0 are shown
in the left-hand panels, unless otherwise specified, while the phases at the specified � are shown in the middle and the intensities averaged over all � are
on the right-hand side. In each panel, the left half is the relaxed pattern (undistorted helices) and the right half is the stretched pattern (distorted helices).
The following helical parameters are used: six Bessel functions used to calculate the total transform on any given layer line, subunit distance 27.3 Å,
length of one pitch 59.15 Å, radial position of a subunit (helix radius) 25 Å, 13 subunits in six turns. In all cases, the strain, �", increases linearly from 0 to
20% for different helix lengths: (a) a half pitch, � = �/2; (b) one pitch; (c) two full pitches; (d) three full pitches; and (e) six full pitches. The change of
strain, �", increases linearly from zero to a maximum strain of 20% over the length of the helical wire, L, thus causing the amount of stretch per pitch to
decrease with increasing L. Different pitches are chosen to best visually show the differences between the stretched and relaxed helices. Note that the
higher-order layer lines show a larger distortion of the predicted X-ray reflections (including a reduction in intensity of the layer lines) and they are more
prominent for longer helices. In the phase images, white indicates a phase of � radians and black a phase of �� radians.



For a very short helix, for example one that is only half of

the helix pitch, the peaks are fused and their intensity depends

strongly on the azimuthal angle in reciprocal space, � (see

Fig. 8). The variation of the calculated magnitudes of the

Fourier transforms in the R and Z planes with the angle �
decreases progressively with an increase in the number of

pitches (shown as intensity in Fig. 8) and, therefore, the

difference between the transform magnitude at a single � and

an image averaged over all � values is also reduced (Figs. 5

and 7). Note that, for a half-pitch helix, at � = 0 the magnitude

of the X-ray reflections does not show the expected helix cross

shape, but it does at � = �/2. This large difference is caused by

the length of the helix being <P, so that the reflections are

highly asymmetric depending on �. For helices with a finite

number of pitches this dependence on � is much smaller

(Figs. 8c and 8d).

3.2. Continuous and discontinuous double helix of DNA
A double-helical wire with the periodicity and equivalent

radius of double-stranded DNA also shows a strong depen-

dence on length but much less dependence on � (Fig. 9, for

� = 0 on the left, and averaged over all � on the right). The

intensity loss of the second and fifth layer lines, typical for the

DNA double helix, becomes visible with a helix of two or

more pitches in length. At shorter lengths of the helix this

effect is masked by the large axial width of the layer lines. Also

at short lengths, the dependence on � is still strong but

diminishes quickly with an increase in the number of

completed pitches. The phase has a much more complex

pattern, especially at shorter lengths (Figs. 9a and 9b, middle

panels), when compared with the same images of a single helix

shown in Fig. 5, reflecting the interference between the two

helices. Stretching the helical wire by increasing the local

strain linearly from one end of the helix to the other (right-

hand side of each image) results in strong axial smearing of the
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Figure 8
The effect of � on predicted intensity and phase for a short (0.5P) and a
moderately long helical wire (6P). The images for � in the range from 0
to �/2 are shown, i.e. for � = 0, �/6, �/3 and �/2, and they illustrate the
effect of � at short and long helix lengths. From these images, diffraction
from a full turn of the helix can be reconstructed using symmetry and
antisymmetry conditions (see the movie presentation in the supporting
information). The diffracted intensity and phase of undeformed (relaxed)
continuous helices are shown for a short helix, L = 0.5P [parts (a) and
(b)], and for a long helix, L = 6P [parts (c) and (d)], respectively. The
differences in both intensity and phase are strongly evident for the short
helix (0.5P) but minor for the major diffraction peaks from longer helices
(e.g. 6P).

Figure 7
Comparison of equatorial and meridional profiles of predicted X-ray
intensities, extracted from Figs. 5(a)–5(e), at � = 0 (solid lines), unless
otherwise specified, and intensities averaged over all � (dotted lines).
The profiles for relaxed meridional M0 and M1 and equatorial E0

reflections (see Fig. 6) are shown as red and blue lines, respectively. The
profiles of nonuniformly deformed helices are shown as dark-red and
dark-blue lines, respectively. The lengths of helical wire and the degrees
of stretch are the same as in Figs. 5(a)–5(e). At short helix lengths, the
intensities in both the equatorial and meridional profiles differ
significantly between those extracted from the X-ray pattern at a single
� value and those from the averaged magnitude over all �. However, at
longer lengths the profiles show only minor differences, observable only
in the higher-order peaks (see insets). The insets show the higher-order
meridional profiles centered on the third-order Bessel function peaks. At
longer helix lengths, the difference in width and shape between the
relaxed and nonuniformly deformed helices becomes more distinct.



peaks at higher-order layer lines, this effect being more

prominent for longer helices.

A discontinuous double helix of DNA, six pitches long

(Fig. 10), has a similar pattern to that shown in Fig. 9(e).

However, this pattern is more complex because it also shows

the periodicities of the repeating subunits. With the non-

uniformly stretched DNA helix, because of the linearly

increasing inter-monomer spacing from one end to the other, a

strong shift of the layer lines towards the center of the pattern

and smearing of the layer-line peaks (Fig. 10b) are observed.

The higher-order layer lines (Fig. 10c) show much larger shifts

and distortion. This is clearly demonstrated in Fig. 10(d),

where the profiles of the meridional peaks show the magni-

tude of the shift and the shape of the intensity profile. The

higher the order of the meridional peak, the larger are the

shift and the peak-shape distortion.

3.3. Diffraction from deformed actin filaments under strain
in contracting muscle

The nonuniform deformation of discontinuous helices is

typically piecewise, reflecting the forces generated by other

molecules attached to the helix. An example of where this is

the case is an actin filament deformed by the forces generated

by attached myosins (Fig. 2). In order to visualize the effects of
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Figure 9
The effect of helix length on diffraction from double-helical wire
structures with the periodicity and helix diameter of DNA. As in Fig. 5,
diffracted intensities at � = 0 are shown in the left-hand panel, the phases
in the middle (also at � = 0) and the intensities averaged over all � in the
right-hand panel. In each panel, the left half is the pattern from relaxed
helices and the right half that from stretched helices. In all cases, the
strain, �", increases linearly from 0 to 20% for different double-helix
lengths: (a) a half pitch, (b) one pitch, (c) two full pitches, (d) three full
pitches and (e) six full pitches. The decreasing amount of stretch per pitch
with increasing length of the helical wire is chosen to show best the
differences between stretched and relaxed helices. As shown in Fig. 5 for
a single helix, the higher-order layer lines show a larger distortion of the
X-ray diffraction patterns and they are more prominent for longer
helices. The helix dimensions are as follows: helix length 	204 Å,
containing only 61 units with ten subunits per turn, subunit distance and
length of one pitch 3.4 and 34 Å, respectively, radial position of a subunit
(helix radius) 7 Å, equivalent subunit radius 1.6 Å. Six Bessel functions
were used to calculate the intensity on any given layer line.

Figure 10
Relaxed and deformed DNA discontinuous double helix. The inter-
monomer spacing increases linearly (piecewise) from 0% strain at L = 0
to 9.8% at L = 174.93 Å. Relaxed versus stretched X-ray diffraction
patterns are shown for (a) � = 0 and (b) averaged over all values of �. (c)
Zoomed-out X-ray pattern from part (a), showing higher-order (second
and third) meridional reflections. (d) Comparison of the meridional local
profiles in the vicinity of the zeroth- to third-order reflections; black lines
denote the relaxed helix and red lines the stretched.
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Figure 11
X-ray patterns of a hypothetical deformed discontinuous actin helix with
the exaggerated step increase in strain from Fig. 3 and the helix
containing only 29 monomers. Comparisons between (left) a relaxed and
(right) a nonuniformly stretched discontinuous helix. (a) A three-
dimensional plot of intensities of averaged X-ray diffraction for all �.
Grayscale plots of (b) intensities and (c) phase at � = 0. The helix
dimensions are as follows: helix length 	790 Å, containing only 29 units
with 13 subunits in six turns, subunit distance and length of one pitch 27.3
and 59.15 Å, respectively, radial position of a subunit (helix radius) 25 Å,
equivalent subunit radius 1.5540 Å. Twenty-nine Bessel functions were
used to calculate the intensity on any given layer line. The red dotted line
references the equatorial line.

Figure 12
Predicted X-ray patterns for an actin filament about 1 mm long deformed
by crossbridge forces in the sarcomere lattice (Fig. 2a) and with piecewise
changes in the intermonomer spacing (Fig. 2c). The X-ray diffraction
patterns are shown for a relaxed and a nonuniformly stretched
discontinuous helix with an intermonomer spacing predicted from
MUSICO simulations of fully contracted frog muscle [Figs. 2(b) and
2(c) show only a part containing 111 units, but the patterns are calculated
for the whole actin filament containing 364 monomers, forming a
discontinuous helix with 13 monomers in six turns]. (a) The top half of the
pattern from the equatorial line (red dotted line) to the third order of
actin meridional reflections. (b) Details of the peak shifts between a
relaxed and a stretched helix for the first, second and third meridional
reflections. (c) The shifts in the profiles. The actin filament length is
	1 mm and the other helix dimensions are the same as in Fig. 11.



these deformations easily, we show such a helix with relatively

short length (Fig. 11) undergoing large, physically unrealistic,

piecewise strains (see Fig. 3). The three-dimensional plot

(Fig. 11a) shows the intensity of the peaks and their spatial

position and shape. Figs. 11(b) and 11(c) show the intensity

and phase of the same X-ray pattern in grayscale. The three-

dimensional plot best illustrates the differences in the peaks

between the relaxed and stretched helices and the overall

distribution of the pattern hills and valleys, whereas the two-

dimensional images better show the shifts in the spacing of the

layer lines between relaxed and stretched helices. The three-

dimensional mesh shows absolute intensity, whereas the two-

dimensional plot shows the intensity scaled in order to

distinguish the meridional peaks better.

The calculated intensities from a realistically deformed

actin filament in a contracted muscle sarcomere show much

smaller, but still significant, differences between the relaxed

and contracted patterns (Figs. 12a and 12b). The actin meri-

dional spacings (	27 Å) of the nonuniformly deformed actin

filament were calculated using the computational platform

MUSICO (Smith et al., 2008; Smith & Mijailovich, 2008;

Mijailovich et al., 2008, 2009) and displayed at position-bound

myosins along the filament [for example as in Fig. 2(b)]. This

multiscale Monte Carlo model of the sarcomere includes

known structural and biochemical properties of the myo-

filaments (Smith et al., 2008; Smith & Mijailovich, 2008;

Mijailovich et al., 2008, 2009; Donaldson et al., 1993; Proda-

novic, Irving, McOwen & Mijailovich, 2014; Prodanovic,

Irving, Stojanovic & Mijailovich, 2014; Prodanovic et al., 2015)

and represents realistic deformations of an actin filament in

bull frog sartorius muscle at fully developed isometric tension

(Huxley et al., 1994). Because the actin filament is 364

monomers long, the widths of the meridional reflections and

layer lines are narrow and multiple secondary intensity peaks

are observed (Fig. 12c). The differences in intensity between

those from relaxed and stretched actin filaments are minor in

the overall pattern (Fig. 12a) and significant differences are

visible only in enlarged views of specific parts of the pattern

image, for example in the neighborhood of the first-, second-

and third-order meridional actin reflections, as shown in

Fig. 12(b). The differences can be seen more clearly in the

intensity profiles shown in Fig. 12(c). All three peaks (first,

second and third meridional reflections) are shifted towards

the equator and the amount of the shift is similar to that

observed by Huxley et al. (1994) and Wakabayashi et al.

(1994). The amount of spacing shift is larger with the higher-

order actin meridional reflections, as expected, but the peak

shapes become increasingly distorted owing to the helix

deformations.

3.4. Future directions and applications of the theoretical
approach

The theoretical model presented here represents the

subunits of a discontinuous helix as points. We used this

simplification in order to demonstrate the basic features of

X-ray diffraction patterns of individual nonuniformly

deformed helices. This approach was sufficient to show the

main features of the newly developed theoretical model – the

intent of the present study. However, for the interpretation of

X-ray diffraction of real helical structures in living cells, there

will be many deformed helices present and the X-ray

diffraction pattern will represent the sum of X-ray reflections

from many filaments or helical structures heterogeneously

deformed. For a realistic interpretation of X-ray diffraction

patterns, one also needs to consider the effects of X-ray beam

size in the detector plane and of various types of disorder, and

other effects of experimental geometry. There is a substantial

body of literature describing these topics. Analytical expres-

sions for dealing with various kinds of lattice disorder are

given by Vainshtein (1966) and Millane and Stroud (Millane &

Stroud, 1991, 1995, 1996; Stroud & Millane, 1995, 1996a,b).

Furthermore, corrections for various aspects of experimental

geometry have been described by Fraser and co-workers

(Fraser & MacRae, 1973; Fraser et al., 1976), as well as by

Chandrasekaran & Stubbs (2012).

P ðzÞ in our formalism represents a single nonuniformly

distorted discontinuous helical structure. This could be, for

example, a single molecule or an assembly of helically

arranged subunits. With advances in computing power it is

now possible to contemplate modeling a filamentous structure

as the sum of multiple distorted helices, where one helical path

passes through each constituent atom. Such an ‘all-atom

model’ can take into account the different radii, r
ia
0 , for each

atom ia, and the change in orientation of the subunits in

deformed helices. This approach can be used, for example, to

study contracting muscle cells, by modeling myosin binding in

an explicit three-dimensional sarcomere lattice, where the

model simulations provide information concerning deforma-

tion or spacing changes in each actin or myosin filament

induced by the cumulative effect of crossbridge forces along

the filaments. This stochastic binding process will provide a

large variation in monomer spacing along the filaments and

between them. The calculated X-ray diffraction patterns

represent the sum of the X-ray reflections from many fila-

ments or helical structures heterogeneously deformed. These

X-ray diffraction patterns, after inclusion of other experi-

mental correction factors, should predict the observed X-ray

patterns and match predictions measured simultaneously at

two length scales, i.e. at the intermolecular level and for the

whole cell. However, for this massive computational task, the

calculation of X-ray patterns including the all-atom helical

structure of each filament may not always be practical. Thus

the use of an equivalent mass sphere (‘dummy atom’) per

monomer at the equivalent helix radius can be a reasonable

simplification (Squire & Knupp, 2005). Such coarse-grained

approaches will be necessary in order to predict the diffraction

from a dynamic and heterogeneous system such as contracting

muscle during mechanical transients.

4. Conclusions

X-ray diffraction from helical molecular assemblies can be

used, in principle, to measure the forces and deformation of
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filamentous assemblies in living cells. However, in order to

extract this information tools are required to predict the

diffraction from strained helical models that can be used as

part of multiscale modeling efforts to understand interactions

between helical assemblies in situ. Here, we have developed a

theory to predict the diffraction from individual nonuniformly

deformed helices in order to provide a first and essential step

towards providing such a tool. By examining the phase and

calculated diffracted intensities from the structure factors

separately, we could demonstrate the effects of helix length on

diffraction from uniformly and nonuniformly deformed

helices and how the intensity may vary with azimuthal angle

with short helices. We have shown how nonuniform defor-

mation of the helices increases the axial widths and reduces

the intensities of meridional reflections and layer lines, using

as examples the cases of a single-helix system (actin) and the

double helix of DNA. Finally, we have shown how this theory

allows realistic calculation of the diffraction from a deformed

actin helix in contracting muscle cells. Thus, this approach

provides a theoretical basis for assessing not only the mean

value of axial spacings in deformed helices but also the degree

of nonuniformity of these spacings (strains) along helices

deformed by interactions with their binding partners.

However, the formalism presented here predicts the diffrac-

tion only from a single helical structure. Prediction of

diffraction from real heterogeneous systems will require

multiscale modeling approaches involving many such indivi-

dual helical structures assembled into spatially explicit arrays.

In the case of the muscle system, we expect that this approach

will help in establishing a strong relationship between multiple

scale measurements and multiscale predictions of mechano-

chemistry in living cells.

APPENDIX A
Approximate formulation of the deformed helix by
linearly increasing the strain along the helix length

The exact solution [equation (14)] may not be intuitive, but

using the Taylor-series expansion of the square root function

we can obtain an approximate solution for �0 = 0 as
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; ð30Þ

and the approximate integral pitch function becomes
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Note that P ðzÞ 6¼ P(z). An approximate value of P(z)

calculated from equation (17) for �0 = 0 is

PðzÞ ¼P0 1þ 2 �"z=Lð Þ½ �
1=2
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�
: ð32Þ

Note that taking only the first two terms in each of  (z),

P ðzÞ and P(z) is only valid for small strains. For large strains

more terms should be included; for example, �" = 20%

requires all five terms in equation (30) in order to obtain the

change in the approximate  (z) from the undeformed value

within 0.1% of the exact solution [equation (14)]. From

equations (31) and (32) it is evident that both P ðzÞ ! P0 and

PðzÞ ! P0 when �"! 0. For �0 6¼ 0, similar expressions can

be derived, but the expressions of higher-order terms in

equations (30)–(32) depend on z � �0 instead of on z, and the

overall expressions are algebraically more complex.

APPENDIX B
Analytical expression for cylindrically averaged
diffraction intensity

The Fourier transforms of helical structures are represented

by three-dimensional objects in reciprocal space [from equa-

tions (9) and (10)]:

f̂f ðR;�;ZÞ ¼
r0

ð2�Þ1=2

X1
n¼�1

exp in �þ
�

2
�  1

� �h i
� Jn 2�r0Rð Þ InðZÞ: ð33Þ

Setting the origin of z in the middle of the helix in the

undeformed configuration in the z direction requires inclusion

of the angle  1 that defines the angle of the first monomer or

end of the helix. Depending on the definition, in most cases for

a continuous helix the angle of the first monomer is set as  1 =

0. By grouping together the terms independent of � into

Gn(R, Z) = [r0/(2�)1/2]Jn(2�r0R)In(Z), equation (33) simplifies

to

f̂f ðR;�;ZÞ ¼
X1

n¼�1

exp in �þ
�

2
�  1

� �h i
GnðR;ZÞ: ð34Þ

The Fourier transform f̂f ðR;�;ZÞ is a complex number and

can be represented as magnitude and phase or by real and

imaginary parts, where, in general, exp[in(� +�/2 �  1)] and

Gn(R, Z) are both complex numbers.

Since the observed X-ray diffraction patterns are recorded

as the cylindrically averaged diffracted intensity, it is compu-

tationally beneficial to derive an analytical expression for

equation (33) averaged over �. Because the intensity is

proportional to jf̂f ðR;�;ZÞj2 = f̂f ðR;�;ZÞ f̂f
�

ðR;�;ZÞ, the

Fourier transform [equation (34)] should be multiplied by its

complex conjugate. After separating equation (34) into real

and imaginary parts and multiplying by its complex conjugate,

the intensity can be defined as
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f̂f ðR;�;ZÞ f̂f
�

ðR;�;ZÞ

¼
P1

n¼�1

Re Gnð Þ cos in�#
� 


� Im Gnð Þ sin in�#
� 
� �� 	2

þ
P1

n¼�1

Re Gnð Þ sin in�#
� 


� Im Gnð Þ cos in�#
� 
� �� 	2

; ð35Þ

where �# = � + �/2 �  1 is set for simplicity of notation. To

calculate the cylindrically averaged diffraction intensity we

need to integrate equation (35) over � from 0 to 2�. Because

the intensity is defined by squares of sums over all layer lines n

of both real and imaginary parts of equation (35), the integral

will consist of the sum of integrals of many combinations of

the products [Re(Gn)]2 cos2(n�#), [Re(Gn)]2sin2(n�#),

[Im(Gn)]2 cos2(n�#) and [Im(Gn)]2 sin2(n�#) [from equation

(35)], which will have finite values of definite integrals from 0

to 2�. The integrals of the mixed terms of layer lines n 6¼m, i.e.

of the products cos(n�#)cos(m�#), sin(n�#)sin(m�#) and

sin(n�#)cos(m�#) for combinations of the products

Re(Gn)Re(Gm), Im(Gn)Im(Gm) and Re(Gn)Im(Gm), as

well as for n = m of the integral of the product

[Re(Gn)] [Im(Gm)]sin(n�#)cos(n�#), are all equal to zero.

The analytical expression for the cylindrically averaged

diffraction intensity can then be easily derived for a finite

number of layer lines as the sum of the products of the co-

efficients Gn(R, Z) and the nonzero values of the corre-

sponding integrals over all layer lines. Thus, the cylindrical

average after integration simplifies to

1

2�

Z2�
0

f̂f ðR;�;ZÞ f̂f
�

ðR;�;ZÞ d�

¼
X1

n¼�1

Re Gnð Þ
� �2

þ Im Gnð Þ
� �2

n o
: ð36Þ
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