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Abstract

Obesity is causally linked with the development of cardiovascular disorders. Accumulating 

evidence indicates that cardiovascular disease is the “collateral damage” of obesity-driven adipose 

tissue dysfunction that promotes a chronic inflammatory state within the organism. Adipose 

tissues secrete bioactive substances, referred to as adipokines, which largely function as 

modulators of inflammation. The microenvironment of adipose tissue will affect the adipokine 

secretome, having actions on remote tissues. Obesity typically leads to the upregulation of pro-

inflammatory adipokines and the downregulation of anti-inflammatory adipokines, thereby 

contributing to the pathogenesis of cardiovascular diseases. In this review, we focus on the 

microenvironment of adipose tissue and how it influences cardiovascular disorders, including 

atherosclerosis and ischemic heart diseases, through the systemic actions of adipokines.
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INTRODUCTION

The prevalence of obesity, defined as a body mass index ≥ 30kg/m2, is now recognized 

worldwide as a major health problem, reaching epidemic proportions probably as a 

consequence of changes in food composition and exacerbated by sedentary lifestyles in 

Western societies
1–3

. Large epidemiological studies have conclusively demonstrated that 

obesity is associated with increased mortality mostly due to augmented risk of 

cardiovascular (CV) death
4
. Moreover, the increasing prevalence of obesity is changing the 

etiology of cardiovascular diseases (CVD), which in many individuals can be viewed as the 

consequence of dysfunctional changes within the adipose tissues. Obesity induces a complex 

remodeling of adipose tissue, which expands to accommodate the excessive caloric intake 

and markedly changes its structure and cellular composition. It is widely accepted that this 
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obesity-associated remodeling generates a systemic pro-inflammatory state, which is 

mediated by an imbalanced production of adipocyte-derived cytokines (adipokines) that 

directly and indirectly affect the CV system. In this Review article, we summarize the 

pathophysiological mechanisms underlying adipose tissue remodeling and dysfunction in 

obese individuals, and how this affects the production of adipokines and ultimately 

contributes to CVD.

Adiposopathy, regional adiposity and CV risk

While adipose tissue quantity (volume) is undoubtedly linked to CV risk, recent human data 

indicate that differences in fat tissue “quality”, which can be examined directly by 

immunohistochemistry or non-invasively by computed tomography (CT) radiodensity 

attenuation imaging, are closely linked to insulin resistance, cardiometabolic risk and all-

cause mortality, independent of total fat volume
5–8

. These data demonstrate that 

abnormalities at the adipose tissue level may be key factors that regulate systemic 

metabolism and drive cardiometabolic disease (CMD), independent of body mass index. 

These qualitative abnormalities in fat, which have been recently termed ‘adiposopathy’ or 

“sick fat”
9
, are a growing area of research interest and may in part explain the clinical 

observation of metabolically healthy obesity. While animal models of obesity tend to 

generate fairly uniform phenotypes, the degree of adipose tissue dysfunction in obese 

humans exhibits significant heterogeneity with lower degrees of adiposopathy being 

associated with more favorable systemic metabolic profiles and vascular function
8, 10–13

. 

This inter-individual variability in adipose tissue ‘quality’ may be related, in part, to 

differences in lifestyle, as physical activity has effects on adipose tissue physiology and 

CMD risk
14, 15

.

Differences in adipose tissue ‘quality’ are also closely linked with the observation that 

distinct fat depots have different impacts on the propensity to develop CMD. Numerous 

clinical studies using adiposity measures such as waist circumference and waist-to-hip ratio 

as markers of central obesity as well as cross-sectional abdominal imaging, have established 

clear links between overall fat burden and systemic CMD, with generally stronger 

associations for visceral adiposity
7, 8, 16–26

. It is now recognized that expansion of visceral 

fat is strongly associated with increased cardiometabolic risk
8, 16, 17, 26–29

, whereas 

expansion of subcutaneous fat has a minor contribution or, in some cases, even decreases the 

risk of metabolic dysfunction
16, 17, 30, 31

. Thus, it has been hypothesized that visceral fat 

exhibits lower ‘quality” than subcutaneous depots, exhibiting specific properties that are 

linked to a higher cardiometabolic risk. Subcutaneous fat comprises approximately 80% of 

total body fat mass, while abdominal visceral adipose tissue accounts for 5–20%
32

. Despite 

visceral fat not being the predominate white adipose tissue (WAT) depot, inflammatory 

markers including IL-6, CRP, and TNF-α tend to circulate at higher concentrations in 

subjects with abdominal compared with peripheral obesity
33–36

, and visceral fat has been 

shown to be a significant source of circulating FFA and IL-6 levels
37, 38

. Although arterial 

disease tends to worsen with increasing overall weight burden in adults and children
18, 39

, 

CT or MRI studies of fat compartments identify visceral fat volume to be more highly 

associated with systemic endothelial dysfunction compared to subcutaneous fat
20, 21

. In 

addition, gene expression analyses of human specimens suggest a more atherogenic gene 
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expression profile in visceral fat, characterized by greater expression of pro-inflammatory, 

oxidative stress-related and anti-angiogenic genes
40–46

. Visceral and subcutaneous adipose 

depots arise from different origins during development
47, 48

, and this may in part explain the 

propensity for visceral fat to develop differing metabolic, inflammatory, angiogenic, and 

lipolytic properties that contribute to CMD compared to subcutaneous.

In addition to the subcutaneous and visceral fat depots, adipocytes are associated with many 

organs and tissues including heart, kidney and bone marrow and the degree of adiposity can 

vary with obesity and aging (Figure 1). Recently, the possibility of functionally significant 

brown adipose tissue (BAT) depots in adults has become of interest. BAT is primarily 

located beneath the clavicle, and it has a thermogenic function and it oxidizes rather than 

stores fat. Historically, BAT received little attention because it was thought to exist only in 

human infants, rodents, etc. to maintain body temperature. However, it is now recognized 

that some adults contain appreciable levels of BAT, and that its oxidative function declines 

with obesity and advanced age
49, 50

. Intriguingly, rodent studies have suggested that BAT 

may contribute significantly to overall systemic metabolic control due to its potentially high 

oxidative capacity
51

. Compared to WAT, BAT contains abundant mitochondria that are 

uncoupled, due to the expression of UCP1, and highly vascularized to accommodate the 

greater demand for oxygen. Interestingly, the phenotype of perivascular adipose tissue 

(PVAT), that surrounds the major blood vessels, appears to be intermediate between that of 

WAT and BAT, and its degree of “browning” varies in different vascular beds
52–55

. These 

morphological differences between PVAT depots suggest that it may contribute to the 

phenotypic variability between distinct vascular regions and their different susceptibility to 

atherosclerosis and other vascular disorders. In this regard, it is conceivable that differences 

in adipokine section by these various adipose tissue depots can selectively affect organ 

function via paracrine mechanisms.

CHANGES IN THE MICROENVIRONMENT OF THE ADIPOSE TISSUE 

ASSOCIATED WITH OBESITY

Adiposopathy in obese individuals is ultimately the consequence of a dysfunctional 

remodeling of the adipose tissue. Therefore, understanding both quantitative and qualitative 

aspects of this adipose tissue remodeling is of utmost importance to comprehend how 

obesity contributes to CVD.

Adipose tissue expansion

The mechanisms by which adipose depots expand in response to an excessive caloric intake 

represent a crucial determinant of the risk of metabolic dysfunction and CVD. This 

expansion is mediated by an increase in adipocyte numbers (hyperplasia) and/or an 

enlargement of adipocyte size (hypertrophy). It has been classically accepted that 

hyperplasia allows a “healthy” expansion of the adipose tissue, since it is mediated by the 

formation of functional adipocytes from progenitor cells (adipogenesis). In contrast, 

adipocyte hypertrophy typically leads to lipid-laden, dysfunctional adipocytes that undergo 

cell death and contribute to adipose tissue inflammation, dysfunction and associated 

pathologies. As discussed above, different adipose tissue depots contribute differentially to 
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disease processes, and this may be connected to a dysfunctional expansion of the different 

fat depots. It has been proposed that subcutaneous fat in many human individuals exhibits 

limited expandability due to a deficient adipogenic capacity, which leads to subcutaneous 

adipocyte enlargement (hypertrophic obesity) and ultimately promotes the storage of fat in 

visceral and other ectopic depots
56

. In this regard, it is noteworthy that several genetic 

modifications have been shown to improve insulin sensitivity in obese mice by inducing 

subcutaneous adipose tissue expansion without increasing adipocyte size
57, 58

, highlighting 

the therapeutic potential of strategies aimed at promoting adipogenic/hyperplastic growth of 

subcutaneous fat as a mean of preventing the metabolic and CV complications of obesity.

Recent studies with a mouse strain that allows adipocyte tracing in vivo (AdipoChaser mice) 

have provided detailed insight into the mechanism and dynamics of adipose tissue expansion 

in obese mice
59

. These studies showed that visceral adipose tissue expansion in diet-induced 

obese mice is initially mediated by adipocyte hypertrophy, which is followed by a massive 

increase in adipogenesis after prolonged high-fat diet (i.e., 2 months). In contrast, 

subcutaneous adipose tissue expansion was shown to be mostly mediated by adipocyte 

hypertrophy, with minimal de novo adipogenesis regardless of the time of HFD exposure. 

Hence, at least in this depot, mouse models may mimic the conditions of human 

hypertrophic obesity. However, while these studies represent excellent examples of the 

application of mouse genetics to cardiometabolic research, they must be interpreted with 

caution given the many differences between the different mouse and human adipose tissue 

depots. For example, while in humans the prototypical visceral depot is omental fat, this 

depot is essentially absent in mice. Conversely, perigonadal fat is the most typical visceral 

depot in mice, but it does not have a truly equivalent depot in humans, and does not drain 

blood into the portal circulation, in contrast to human visceral depots. Thus, the extent to 

which the dynamics of fat depot expansion in mice mimics the processes involved in human 

obesity are unclear.

Immune cell infiltration

Regardless of the mechanisms of adipose tissue expansion, in most cases chronic excessive 

caloric intake eventually leads to adipocyte dysfunction, and this is paralleled by quantitative 

and qualitative changes in the cellular composition of adipose tissue. Immune cells are of 

particular relevance in this regard. Chronic, low-grade inflammation is a major hallmark of 

the obese adipose tissue, and it is now known that, at least in mice, almost every immune 

cell type can be found in the adipose tissue under one experimental condition or another. 

Total numbers of T cells, B cells, macrophages, neutrophils, and mast cells are increased in 

visceral adipose tissue of obese individuals and/or dietary obese mice. In contrast, the 

number of eosinophils and specific subsets of T cells – T helper type 2 (Th2) cells, 

regulatory T (Treg) cells – remain static or are decreased in the obese adipose tissue
60

.

Macrophages are the most abundant immune cell in the adipose tissue of obese individuals, 

and their recruitment and proliferation upon high calorie feeding is generally associated with 

adipose tissue inflammation and insulin resistance
61–63

. In addition, the phenotype of 

adipose tissue macrophages (ATMs) is markedly different in obese and lean mice. 

Macrophages resident in the adipose tissue of lean organisms tend to express genes 
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associated with a M2-like or “alternatively activated” phenotype (e.g. the mannose receptor 

CD206), whereas ATMs in obese organisms typically express genes associated with a M1-

like or “classically activated” phenotype (e.g. CD11c)
64

. The M1/M2 concept is an artificial 

binary classification of the inflammatory status of macrophage, and it should be noted that in 
vivo macrophages exist along the M1/M2 spectrum and frequently have mixed phenotypes. 

This is particularly evident in ATMs, which frequently exhibit a complex phenotype due to 

the simultaneous exposure to a variety of stimuli
65–67

. In spite of this, the M1/M2-like 

dichotomy is a useful starting point to understand the biology of ATMs. Stimulation with T 

helper 1 (Th1)-type cytokines, including interferon-γ induces an M1 phenotype in 

macrophages, that leads to increased production of pro-inflammatory cytokines, such as 

TNF-α, and higher levels of reactive oxygen and nitrogen intermediates. This class of 

macrophages is typically associated with inflammation and tissue destruction. On the other 

hand, stimulation with Th2-type cytokines (e.g. IL-4, IL-13) leads to M2 macrophages, 

which preferentially express anti-inflammatory cytokines, such as IL-10, and are typically 

associated with wound healing, angiogenesis and the resolution of inflammation. It is 

believed that M1-like macrophages promote insulin resistance, whereas M2-like 

macrophages protect against obesity-induced adipose tissue inflammation and insulin 

resistance
68

. Supporting this notion, ablation of CD11c-positive, M1-like cells normalizes 

insulin sensitivity in obese mice
69

. Consistently, an increased content of CD11c-positive 

macrophages has been associated with insulin resistance in obese human individuals
70

. The 

mechanisms accountable for ATM phenotypic shifting in obesity are still unclear, but are 

probably linked to changes in both immune cells in the adipose tissue
71–74

 and myeloid 

progenitors in the bone marrow
75, 76

. The M2 phenotype of resident macrophages within the 

lean adipose tissue is believed to be maintained by the local production of Th2-type 

cytokines by eosinophils
71

, and other immune cells abundant in the lean adipose tissue, such 

as CD4+ Foxp3+ Treg cells and TH2-polarized T cells, that preserve adipose tissue function 

and insulin sensitivity
73, 77

. Under conditions of obesity, the accumulation of CD8+ effector 

T cells and CD4+ Th1 cells in the adipose tissue leads to a predominance of Th1 signals that 

promote the recruitment and M1-like activation of macrophages, contributing to adipose 

tissue inflammation
72, 73

. Pro-inflammatory cytokine production by effector T cells and Th1 

cells is promoted by B cells recruited to the obese adipose tissue, which also contribute to 

M1 macrophage activation apparently through the production of pathogenic 

immunoglobulins
74

. Additional lymphocyte subsets such as Th17 or NKT cells may also 

play important roles in modulating macrophage phenotype and adipose tissue inflammation 

(reviewed in 
78

).

In addition to quantitative and phenotypic changes, obesity also changes the location of 

macrophages within the adipose tissue. While ATMs are typically dispersed in lean 

individuals, in metabolically dysfunctional organisms they tend to accumulate in “crown-

like” structures (CLS), defined as clusters of lipid-scavenging macrophages that surround 

free lipid droplets of dead adipocytes both in animal models and obese patients
79, 80

 (Figure 

2). Importantly, this condition appears to contribute to adipose tissue dysfunction, since the 

number of CLS correlates with adipose tissue inflammation and insulin resistance in 

metabolic syndrome patients
11, 79

. Consistently, obese subjects lacking CLS exhibit better 
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metabolic function, diminished inflammatory gene expression in adipose tissue, and reduced 

CV risk than body mass-matched individuals with CLS
11

.

In addition to macrophages, other myeloid cells, such as neutrophils and mast cells, 

contribute to adipose tissue dysfunction in obesity. Neutrophils accumulate rapidly in the 

adipose tissue after HFD feeding
81–83

, and they appear to promote macrophage recruitment 

and adipose tissue inflammation via neutrophil elastase secretion
82, 83

. Similarly, mast cells 

have been reported to accumulate in obese adipose tissue, and studies in mast-cell deficient 

mice suggest a role for this cell-type in obesity-associated metabolic dysfunction
84

.

Impaired vascular structure and function

Several studies in humans and animal models have shown that obesity induces capillary 

rarefaction in adipose tissue, and this has been associated with metabolic 

dysfunction
40, 85–88

. Thus, it is widely accepted that obesity leads to reduced adipose tissue 

capillarization, which may limit nutrient delivery and contribute to adipocyte dysfunction 

and insulin resistance. Recent studies with genetically-engineered mice have provided 

evidence of a causal role of adipose tissue vascularization in obesity-associated metabolic 

dysfunction. Experiments with mice overexpressing vascular endothelial growth factor A 

(VEGF-A) in adipocytes show that increased VEGF-mediated angiogenesis in adipose tissue 

can attenuate some of the metabolic effects of diet-induced obesity, such as insulin 

resistance and hepatic steatosis
89–91

. Conversely, adipocyte-restricted deletion of VEGF-A 

results in diminished adipose tissue vascularization, which leads to increased adipose tissue 

inflammation and systemic metabolic dysfunction
51, 91

, further supporting the noxious 

effects of reduced adipose tissue vascularity in obesity.

However, a major limitation of the above mentioned studies is that the current mouse genetic 

reagents generally do not permit depot-specific ablation or overexpression of candidate 

angiogenic regulators in adipose tissue. In this regard, a recent study compared the 

consequences of VEGF ablation (and obesity) on capillarization and hypoxia in WAT and 

BAT
51

. Whereas, VEGF-deficiency led to similar declines in capillarization in WAT and 

BAT, the effects on WAT dysfunction, assessed by measures of hypoxia, inflammation and 

mitochondrial status were marginal compared to the impact of VEGF ablation on these 

parameters in BAT. In contrast, VEGF deficiency in BAT led to robust mitochondrial 

dysfunction and loss, leading the tissue to take on a “whitened” phenotype due to the 

accumulation of lipid droplets. Notably, adenovirus-mediated delivery of VEGF to BAT 

could reverse the systemic metabolic effects of VEGF ablation. VEGF-mediated rescue of 

the vascular deficit in BAT can also improve metabolic parameters in models of diet-induced 

obesity
51, 92

. The differential effect of reduced capillarization in white versus BAT is 

consistent with the greater respiratory capacity of BAT, thereby increasing its tendency to 

undergo hypoxic stress in response to obesity or genetic VEGF ablation. While these data 

highlight the importance of angiogenesis in BAT with consequences on systemic metabolic 

function in the murine system, the question of whether the status of BAT can affect CVD 

processes should be evaluated by future studies. Furthermore, whereas it is well established 

that BAT activity contributes significantly to overall systemic metabolism in rodents
93

, it is 
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not clear whether brown fat can serve a similar function in adult humans or whether it is a 

vestigial tissue.

Clinical studies have focused mainly on WAT and suggest that expanding fat may “outgrow” 

its blood supply possibly owing to deficient angiogenesis that triggers a cycle of ischemia, 

hypoxia, necrosis and inflammation within the adipose milieu
86, 87, 94, 95

. Capillary dropout 

and deficient vascularization develop in obese humans, particularly in visceral fat, and are 

associated with inflammation and whole body metabolic dysfunction
40, 86, 87, 95–97

. In 

contrast, subcutaneous fat exhibits higher capillary density and angiogenic capacity 

compared to the visceral depot
40, 90, 98–100

. Microarrays studies show significant differences 

in gene transcripts associated with angiogenesis between visceral and subcutaneous fat in 

obese humans
40

. Pro-angiogenic ANGPTL-4 is down-regulated in visceral fat and may play 

an important role
96

. Additionally, an anti-angiogenic splice variant of VEGF, VEGF-A165b, 

is expressed at higher levels in human visceral fat compared to subcutaneous fat and is 

linked to impaired tissue angiogenesis
98

. Blood levels of VEGF-A165b are elevated in obese 

compared to lean subjects and decrease after bariatric surgery weight loss. This observation 

has potential clinical implications as systemic upregulation of anti-angiogenic agents and 

other mediators in obesity raises the possibility of their contribution to vascular disease and 

ischemia beyond the adipose environment. In this regard, a possible role of VEGF-A165b in 

mechanisms of peripheral arterial disease in animal models and humans was recently 

described
101

. It is thus becoming increasingly clear that qualitative features of adipose 

tissue, including its vascularity, could play an important role in the pathogenesis of obesity-

induced cardiometabolic complications. However, whether modulation of adipose tissue 

angiogenesis in either white or brown fat could alter clinical consequences of human obesity 

remains an open question.

In addition to capillary rarefaction, obesity also leads to endothelial cell activation in the 

adipose tissue, which further contributes to the recruitment of immune cells. Endothelial 

cells within the adipose tissue of obese mice express higher levels of adhesion molecules 

such as P-selectin, E-selectin, and intercellular adhesion molecule 1 (ICAM-1). Moreover, 

administration of anti-ICAM-1 antibody to obese mice prevents macrophage infiltration into 

adipose tissue
102

. Collectively, these data illustrate the importance of a pathological 

interplay that can exist between adipose and vascular tissues. In fact, there is evidence from 

human studies that inflammatory cytokines over-expressed in fat impair vasoregulatory and 

anti-atherogenic properties leading to vasomotor dysfunction of the local microvasculature
41 

as well as systemic vessels
11, 12, 41

. Clinical studies utilizing videomicroscopy and culture 

myograph techniques to study physiological properties of microvessels within human fat 

have demonstrated profound abnormalities in endothelial vasomotor dysfunction of obese 

individuals, particularly in visceral fat
41, 42, 103–110

. In experiments that examined paired 

subcutaneous and visceral adipose tissue biopsy samples from obese subjects during planned 

bariatric surgery, endothelium-dependent, acetylcholine-mediated vasodilation was severely 

impaired in visceral compared to subcutaneous arterioles
41

. The degree of vasomotor 

impairment is profound and consistent across varying systemic metabolic phenotypes and 

endothelial agonists such as bradykinin, shear stress and insulin
107

. Vessels from obese fat 

even exhibit paradoxical vasoconstriction, consistent with severe endothelial dysfunction
107

. 

In these vessels, responses to sodium nitroprusside and papaverine (endothelial-independent 
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vasodilators) are generally preserved, indicating functional impairment specifically at the 

level of the vascular endothelium early in the disease state. Complementary studies 

demonstrate impairment in eNOS phosphorylation at the activating site serine 1177 in 

vascular endothelial cells isolated from fat suggesting abnormalities in NO bioactivity as a 

significant contributing mechanism
42

. Adipose microvascular dysfunction appears specific 

to the obese state as arterioles isolated from visceral tissue of lean subjects exhibit preserved 

vasomotor function
109, 110

 while extreme microenvironmental perturbations are observed in 

visceral obesity.

There are likely multiple mechanisms that negatively regulate vascular function in visceral 

fat. Cytokine-driven inflammation likely plays a key role, as the adipose secretome and 

transcriptome is markedly pro-inflammatory in visceral depots. Experimental studies in mice 

demonstrate that transplantation of inflamed visceral fat accelerates atherosclerosis in Apo-E 

knockout mice
111

. Adipose expression of inflammatory mediators correlates inversely with 

acetylcholine-mediated vasodilation of human microvessels
41, 42

. Endothelial cells isolated 

from visceral fat display enhanced expression of inflammatory mediators such as CCL-5, 

IL-6, TNF-α and TLR-4
41

. More direct evidence that inflammatory mechanisms are 

involved is provided by clinical studies that demonstrate vascular inflammation by histology 

and the reversal of microvascular dysfunction following treatment with IL-6 and TNF-α 

antagonists
106, 110

. However, other pathogenic processes that involve oxidative stress, 

mitochondrial dysfunction and endoplasmic-reticulum stress are likely to contribute to 

vascular diathesis. Recent data demonstrate evidence of impaired NO-dependent 

vasodilation, mitochondrial hyperpolarization, and increased mitochondrial superoxide 

production in the adipose tissue of type-2 diabetic subjects
108

. Moreover, increased 

expression of cyclooxygenase (COX)-mediated vasoconstrictor prostanoids might also 

contribute to endothelial dysfunction, supporting a role of the eicosanoid/cyclooxygenase 

pathway in obesity-linked disease
42

. Since the vasodilator responses and eNOS 

phosphorylation status in the adipose microvasculature have been shown to correlate with 

CV risk factors and systemic brachial arterial responses, further investigation into the 

vascular microenvironment of adipose tissue will likely provide translational clues relevant 

to systemic vascular disease mechanisms
103, 105, 112

.

Adipose tissue fibrosis

Within the adipose tissue of lean organisms, adipocytes are surrounded by extracellular 

matrix (ECM) that provides mechanical support and participates in cell signaling. With the 

development of obesity, there is a general increase in the synthesis of several ECM 

components, in particular collagen VI, which leads to adipose tissue fibrosis and is 

associated with impaired metabolic function in mice
113

. In obese human individuals adipose 

tissue fibrosis is increased in both subcutaneous and visceral depots
114–116

. Obesity-induced 

adipose tissue fibrosis is due, at least in part, to hypoxia-induced upregulation of hypoxia-

inducible factor 1α (HIF1α)
117, 118

. Interestingly, HIF1α activation does not contribute to an 

angiogenic response in this context, but instead promotes adipose tissue fibrosis. 

Mechanistically, the features that lead to these divergent tissue-specific actions of HIF1α are 

not understood. Recent studies are uncovering additional mechanisms that modulate adipose 

tissue fibrosis in obesity. Endotrophin, a cleavage product of the α3 subunit of collagen VI 

Fuster et al. Page 8

Circ Res. Author manuscript; available in PMC 2017 May 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that is secreted by adipocytes, has been shown to promote adipose tissue fibrosis and 

systemic metabolic dysfunction in obese mice
119

. In addition, PDGFRα signaling has been 

reported to oppose adipogenic differentiation of adipose tissue progenitors and to favor the 

generation of profibrotic cells that contribute to WAT fibrosis
120

. Whether profibrotic 

changes in adipose tissue contribute to the increased CV risk associated with obesity 

remains to be established. Thus, uncovering the causes and consequences of adipose tissue 

fibrosis is an area that deserves further attention.

ADIPOKINES AND CARDIOVASCULAR DISEASE

In addition to energy storage, adipose tissue is now recognized as an important factor in the 

regulation of many systemic, pathological processes through the secretion of multiple 

bioactive proteins referred to as adipokines. Although from a strict point of view these terms 

should be restricted to adipocyte-derived secreted proteins with immunomodulating actions, 

they are now widely used with a broader meaning to include any protein secreted by the 

adipose tissue – either by adipocyte or non-adipocyte cells- that is able to act as a modulator 

of immune, metabolic and/or CV functions. It is now widely accepted that dysfunctional 

adipose tissue remodeling leads to an unbalanced production of adipokines that contributes 

to the systemic pro-inflammatory state associated with obesity and has important adverse 

actions on the CV system
121, 122

, particularly in the obese state where adipose tissue mass 

can range from 30% to more than 50% of total body mass. In addition to their direct effects 

on pathophysiological processes in the CV system, adipokines can affect CV risk indirectly 

by modulating metabolism in liver, skeletal muscle and heart (Figure 3). Adipokines can 

also promote insulin resistance in microvessels within the adipose tissue and in other 

vessels, contributing to endothelial dysfunction and thereby increasing CV risk. However, 

these indirect actions of adipokines will not be discussed in detail here.

Since the identification of adipsin in 1987
123

, the list of adipokines has expanded vastly. 

Notably, the majority of adipokines are proinflammatory. Examples include leptin, TNFα, 

IL-6 and resistin. In contrast, relatively few adipokines are anti-inflammatory. Examples 

include adiponectin, omentin-1, CTRP9, and Sfrp5. Most adipokines have been identified in 

visceral and/or subcutaneous adipose tissue, which seem to produce different profiles of 

secreted proteins
46, 124–126

, which may play a role in the above-discussed different 

contribution of these fat depots to cardiometabolic risk. However, in addition to these depots, 

the body exhibits other smaller fat depots in association with multiple organs, including 

heart, kidneys, bone marrow, lungs and blood vessels (Figure 1). In addition to conventional 

fat depots, ectopic lipid deposition in liver, skeletal muscle and heart occurs in metabolically 

dysfunctional organisms. Although the production of adipokines by spatially distinct fat 

depots has been less investigated in general, it must be noted that it could have important 

implications in CV and metabolic diseases since adipokines secreted by these depots may 

act in a localized manner to stimulate neighboring organs. Indeed, a mounting body of 

evidence coming from human and animal studies suggests that obesity modulates the 

phenotype of PVAT
52, 53

 and that these changes directly influence vascular function and the 

development of vascular pathologies
127–134

. These studies open the question of whether 

increased CV risk associated with an adipokine imbalance is due to a paracrine mechanism, 

i.e. the local release of pro-inflammatory factors from epicardial adipose tissue and PVAT, or 
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an endocrine mechanism secondary to changes in serum adipokines levels. While both 

mechanisms probably contribute to obesity-associated CVD, mouse studies based on PVAT 

transplantation suggest that the anatomical location of PVAT is critical in some 

pathophysiological settings
127

. However, it remains to be established whether different 

PVAT depots, that display a varying degree of brown fat characteristics, exhibit distinct 

profiles of adipokine secretion. Furthermore, while the known adipokines are secreted by 

WAT depots, the role of BAT as a secretory organ remains largely unexplored.

CARDIOVASCULAR ACTIONS OF SELECT ADIPOKINES

Leptin

The adipokine leptin is an adipose tissue-specific secreted hormone encoded by the ob gene, 

which was identified in genetically obese ob/ob mice through positional cloning
135

. Leptin 

is highly expressed by adipocytes, and circulating leptin levels increase in parallel to adipose 

tissue mass
135

. Other tissues, such as the heart, have also been reported to express and 

secrete leptin to some extent
136

. Leptin exerts important metabolic actions by suppressing 

appetite and increasing energy expenditure
135

. Accordingly, leptin-deficient mice exhibit 

increased appetite and associated obesity and insulin resistance, which are reversed upon 

leptin administration
137, 138

. However, obese humans and rodents have elevated levels of 

leptin (hyperleptinemia) without the expected anorexic responses
137

, suggesting that leptin 

resistance commonly occurs in obesity. Many lines of evidence suggest that hyperleptinemia 

contributes to CVD. Leptin has pro-inflammatory actions in many immune cell types 

including monocytes/macrophages
139–142

, neutrophils
143

, NK cells
144

, and T cells
145, 146

. In 

addition, it exhibits several pro-atherogenic actions. For example, leptin increases ROS 

production in endothelial cells
147, 148

. In VSMCs it promotes the expression of MMP-2, a 

metalloproteinase linked to atherosclerotic plaque vulnerability
149

. In addition, leptin 

facilitates cholesterol accumulation in macrophages
150, 151

.

Despite this body of evidence suggesting a pathogenic role for leptin in CVD, animal studies 

have given rise to inconsistent results regarding its role in atherosclerosis development. 

LDL-receptor knockout (LDLR-KO) mice that are also leptin-deficient develop more 

extensive atherosclerotic lesions than single LDLR-KO controls, likely due to the 

confounding effects of exacerbated insulin resistance and the general worsening of the 

circulating lipids profile caused by leptin deficiency-associated obesity and 

hyperphagia
152, 153

. Studies in apoE-KO mice, an atherosclerosis model that is less prone to 

obesity and insulin resistance
154

, have also generated conflicting results. In one study, leptin 

deficiency was found to suppress atherosclerosis development in apoE-KO mice fed an 

atherogenic diet, supporting the pro-atherogenic role of leptin
155

. In contrast, apoE-KO mice 

lacking the long isoform of the leptin receptor have been reported to exhibit hastened 

atherosclerosis regardless of the type of dietary regime
156

. When considering these 

conflicting results, it must be noted that the interpretation of these studies is difficult due to 

the secondary metabolic defects that result from hyperphagia in mice deficient in leptin or 

the leptin receptor (e.g. hyperglycemia, hyperinsulinemia, and insulin resistance). To 

overcome this limitation and explore the consequences of hyperleptinemia in organisms with 

intact leptin signaling, some studies have investigated the effects of exogenous leptin 
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delivery on atherosclerosis development in non-obese mice. Supporting the pro-atherogenic 

role of leptin, two independent studies found that recombinant leptin administration 

aggravates atherosclerosis in apo-E-KO mice without affecting blood lipids levels
155, 157

 and 

one study found that it strongly promotes plaque calcification
158

. Taleb et al. investigated 

atherosclerosis development in leptin-deficient, LDLR-KO mice and LDLR-KO controls 

matched according to circulating cholesterol levels to evaluate the actions of leptin 

independently of its anorexic and metabolic actions
159

. In this experimental setting, leptin-

deficient mice exhibited markedly reduced atherosclerosis, coinciding with an attenuated 

Th1 immune response and improved Treg cell function. Overall, these results support the 

notion that leptin plays a major pathogenic, pro-inflammatory role in atherosclerosis. 

Importantly, many human studies support this hypothesis. Some studies have shown a 

significant correlation between circulating leptin levels and markers of subclinical 

atherosclerosis such as coronary artery calcification
160

 and intima-media thickness of the 

common carotid artery
161, 162

. Similarly, several independent reports have shown that 

circulating leptin levels are a potent predictor of the risk of cardiac ischemic events
163–167

. 

However, this has not been replicated in other studies
168

, and one study found markedly 

different results, reporting that low plasma leptin predicted CV mortality in women
169

. This 

latter report is in line with a number of experimental studies suggesting a cardioprotective 

role of leptin after MI, at least in part, through prevention of cardiomyocyte 

apoptosis
170–174

. Overall, most of the evidence from animal and human studies generally 

suggests a scenario where hyperleptinemia in obese individuals promotes atherosclerosis and 

thereby increases the risk of cardiac ischemic events, but also exerts some local protective 

actions in the cardiac tissue by attenuating tissue damage post-ischemia. Whether any of 

these protective actions are subjected to leptin resistance in obese individuals remains 

unanswered.

Interleukin 6

Interleukin 6 (IL-6) is a pleiotropic cytokine with complex roles in metabolic and CVD. IL-6 

is known to be secreted by several tissues and can act in a local fashion. However, adipose 

tissue is a major source of this protein, capable of producing high levels of this protein in the 

blood. Therefore, IL-6 can be considered an adipokine with endocrine actions. It has been 

estimated that as much as one third of total circulating IL-6 originates from adipose 

tissue
175

, where it can be secreted by both adipocytes and non-adipocyte cells, including 

pre-adipocytes and macrophages
124, 176, 177

. Importantly, expression and secretion of IL-6 

are 2 to 3 times greater in visceral compared to subcutaneous adipose tissue in humans
124 

and indexes of visceral adiposity associated with CV risk correlate with increased circulating 

levels of IL-6
33, 178

.

IL-6-induced cell signaling is typically classified as either classic or trans-signaling, and it 

can lead to different cell responses. In classic signaling, IL-6 stimulates target cells via a 

membrane bound IL-6 receptor (IL6R), which upon ligand binding forms a complex with 

the signaling receptor protein gp130. Few cell types express membrane bound IL6R, 

whereas essentially all cells exhibit gp130 on the cell surface. While the cells that only 

express gp130 are not responsive to IL-6 alone, they can be stimulated, via trans-signaling, 
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by a complex of IL-6 bound to a naturally occurring soluble form of IL6R (sIL6R), 

markedly expanding the spectrum of IL-6 actions and target cells.

IL-6 has been widely accepted to act as a pro-inflammatory cytokine since the discovery of 

its critical role in mediating the hepatic acute phase response
179–181

. In addition, IL-6 has 

direct pro-inflammatory actions in a variety of immune and non-immune cell types, 

promoting the expression of adhesion molecules in endothelial cells and 

lymphocytes
182, 183

, monocyte-to-macrophage differentiation
184

, antibody production by B 

cells
185

 and recruitment of T-cells to sites of injury
186

. In contrast, IL-6 has also been 

reported to exert regenerative and anti-inflammatory actions in some settings
187–189

. IL-6 

also appears to play conflicting metabolic roles in different tissues, inducing insulin 

resistance in hepatocytes
190

 and endothelial cells
191

, but increasing insulin sensitivity in 

skeletal muscle under some conditions
191–193

.

Similarly, the actions of IL-6 in the CV system are complex and incompletely understood. 

Human studies have provided compelling evidence supporting the notion that high 

circulating levels of IL-6 are associated with increased risk of coronary artery disease (CAD) 

and MI
194–197

. In addition, Mendelian randomization studies suggest that IL6R signaling 

contributes to the development of CAD
198, 199

. However, mouse studies cast some doubts 

onto the causative role of IL-6 in CVD, although these must be interpreted with caution 

given that mouse and human IL-6 proteins exhibit only 41% sequence identity. Early reports 

showed that chronic administration of supraphysiological doses of recombinant mouse IL-6 

exacerbate atherosclerosis in apoE-KO mice
200

. However, systemic inactivation of IL-6 also 

results in larger atherosclerotic lesions in the apoE-KO model
201, 202

 and does not seem to 

affect atherosclerotic plaque size in LDLR-KO mice
203

. These conflicting results could be 

due to compensatory activation of other IL-6 family proteins in IL-6-deficient mice. 

Alternatively, they may reflect the complex and multifaceted actions of this cytokine. In 

addition to its immunomodulatory actions, IL-6 may have some anti-atherogenic activities 

by preventing cholesterol deposition in the vessel through increased cholesterol efflux in 

macrophages
204

 and HDL translocation through the endothelium
205

. Therefore, it is possible 

that IL-6 plays dual roles in atherogenesis, preventing early plaque formation via removal of 

cholesterol from the vessel wall, but promoting plaque development at later stages by 

contributing to the perpetuation of vascular inflammation. Supporting this notion, one study 

found that IL-6 deficiency results in larger plaques, but markedly reduces plaque 

inflammation
201

. Regardless of the mechanisms underlying the phenotype of IL-6 deficient 

mice, recent studies have begun to evaluate the therapeutic potential of pharmacological 

inhibition of IL-6 signaling in the setting of atherosclerosis. In this regard, post-natal 

inhibition of IL-6 trans-signaling (by treatment with a fusion protein of soluble gp130 and 

IgG1-Fc) has been shown to reduce atherosclerosis development and plaque inflammation in 

LDLR-KO mice
206

.

The role of IL-6 in pathologic cardiac remodeling after ischemic injury is similarly complex. 

While human studies have shown a strong association between circulating IL-6 levels and 

the severity or prognosis of chronic heart failure
207–211

, causality is uncertain given that 

mouse studies have generated conflicting data. One study found no effect of genetic IL-6 

deficiency or recombinant IL-6 delivery on MI size, left ventricular (LV) remodeling, or 
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mortality after permanent coronary ligation
212

. In contrast, another study found that a single 

injection of an IL6-R-blocking antibody after MI suppresses myocardial inflammation, 

resulting in the amelioration of LV remodeling
213

. In addition, IL-6 may even exert some 

cardioprotective actions, since treatment with a combination of recombinant IL-6 and sIL6R 

inhibits cardiomyocyte apoptosis and reduces infarct size in a rat model of cardiac ischemia/

reperfusion (I/R) injury
214

.

Resistin

Resistin is a secreted protein that is highly expressed by mature adipocytes in rodents and 

was initially suggested to be a major link between obesity and insulin resistance
215

. 

Circulating resistin levels are increased in obese and diabetic mice
216

, and several loss- and 

gain-of-function studies in mice have suggested an important role of resistin in obesity-

associated metabolic dysfunction through pleiotropic effects on glucose metabolism and 

insulin sensitivity
215, 217–219

. However, human studies have yielded conflicting results on 

the role of resistin in insulin resistance
220–226

, and have revealed striking differences in 

resistin expression patterns in rodents and humans. While in rodents resistin is mostly 

expressed by adipocytes
215, 227

, the main sources of this protein in humans are monocytes 

and macrophages
228, 229

. Regardless of these differences between species, several studies 

suggest a tight connection between resistin and inflammatory disorders. Human resistin 

expression in monocytes/macrophages is increased in response to various pro-inflammatory 

stimuli
230–232

 and serum resistin levels show a positive correlation with various circulating 

markers of inflammation, such as C-reactive protein, TNF-α, or IL-6 in different 

pathophysiological settings
233–237

. In addition, resistin has been reported to promote 

monocyte/endothelium interactions
238

 and pro-inflammatory activation of 

macrophages
239, 240

, which suggests an important role in the development of atherosclerosis. 

Consistently, peri-adventitial resistin gene transfer accelerates plaque development in rabbit 

models of atherosclerosis
241

. In addition, a recent study suggested that overexpression of 

mouse resistin can promote atherosclerosis by an alternative mechanism mediated by central 

leptin resistance and reduced BAT activity leading to hypertriglyceridemia
242

. Despite some 

conflicting studies
243–245

, human studies also support an import role for resistin in 

atherosclerotic disorders. Elevated circulating levels of resistin have been reported to be 

associated with coronary artery calcification
246

 and CAD
247

, and to predict the occurrence 

and severity of CAD in several clinical studies
248–252

. Furthermore, resistin has been 

proposed to be an independent risk factor for major CV events in CAD patients
253, 254

. 

Although the role of resistin in cardiac ischemic events has not been investigated in animal 

models, some human studies suggest that it might also play a role in this setting, since high 

circulating levels of resistin are present in patients with acute coronary syndrome 

(ACS)
251, 255, 256

. In addition, resistin expression and secretion by epicardial adipose tissue 

has been shown to be increased in these patients
257

.

Adiponectin

Adiponectin is a widely studied adipokine that is very abundantly expressed in plasma 

(range: 3–30 μg/ml in human)
258, 259

. The adiponectin peptide contains collagen-like 

domain followed by a globular domain that is similar to complement factor C1q. 

Adiponectin exists in blood stream as three major oligomeric complexes: trimers, hexamers 
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and high-molecular weight form
258, 259

. Plasma adiponectin levels are decreased in obese 

subjects relative to lean control subjects
259

, and adiponectin levels negatively correlate with 

visceral fat accumulation
260

. Dysfunctional adipocytes produce lower levels of adiponectin 

but higher levels of pro-inflammatory cytokines, which further inhibit the production of 

adiponectin in adipocytes. Adiponectin expression by adipocytes is also inhibited by 

endoplasmic reticulum and oxidant stresses, which are features of adipose tissue dysfunction 

in obesity.

A number of clinical studies demonstrate that low plasma adiponectin levels are associated 

with systemic inflammation
258, 261

 and obesity-linked CV disorders
262–266

. Plasma 

adiponectin concentrations are lower in patients with CAD than in age- and BMI-adjusted 

control subjects
263, 264

. Circulating adiponectin levels are also reduced in patients with 

ACS
265

, and adiponectin levels rapidly decline following acute myocardial infarction
266

. 

High plasma adiponectin levels are associated with a decreased risk of MI in healthy men
267 

and diabetic men
268

. Low adiponectin has been reported to be an independent risk factor of 

coronary heart disease in some studies
269

 but not others
270–272

. On the contrary, 

hyperadiponectinemia is associated with mortality in patients with diseases that are 

associated with cachexia such as heart or respiratory failure
273, 274

. Adiponectin levels are 

also elevated in a number of chronic inflammatory and autoimmune diseases
275

. The 

upregulation of adiponectin in these severe diseases may represent a compensatory response 

since animal studies that model these diseases show that adiponectin is protective under 

these conditions.

Experimental studies have shown that adiponectin exerts anti-inflammatory and 

vasculoprotective actions in different settings
276–287

. In mice, lack of adiponectin results in 

an enhancement of myocardial ischemia-reperfusion injury, which is associated with 

increased myocardial cell apoptosis and TNF-α production
276

. Conversely, systemic 

adenovirus-mediated delivery of adiponectin diminishes infarct size in both APN-KO and 

wild-type mice. In this model, adiponectin stimulates COX-2 expression and synthesis of 

prostaglandin E2 (PGE2), a vascular- protective autocoid that inhibits inflammatory cytokine 

production in cardiac myocytes. Adiponectin-induced expression of COX-2 in myocytes is 

reduced by inhibition or deletion of sphingosine kinase-1 (SphK-1), or blockade of a 

sphingosine-1-phosphate (S1P) receptor
288

, and it has been shown that adiponectin 

stimulates ceramidase activity in cardiac myocytes and other cell types to promote 

survival
289

. In addition to its effects on COX-2 expression, adiponectin protects the 

myocardium from ischemic injury through its ability to activate AMPK signaling
278, 279, 287

. 

Adiponectin also protects from ischemia-reperfusion injury through inhibition of 

peroxynitrite-induced oxidative and nitrosative stresses
290

. In extension of these genetic 

models, delivery of recombinant adiponectin protein can protect the heart in murine models 

of I/R injury
276

. Notably, one study showed that intracoronary injection of adiponectin 

protein improved cardiac function after ischemia-reperfusion in a pig model using similar 

instrumentation and standard of care as in patients
291

.

Whereas experimental studies examining the effects of adiponectin on ischemic heart 

disease have been consistent in documenting a protective effect, adiponectin’s role in 

atherogenesis is less clear. A series of studies show that adiponectin modulates macrophage 
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function promoting an anti-inflammatory phenotype that would be consistent with an anti- 

atherogenic role. For example, adiponectin suppresses lipopolysaccharide-stimulated TNF-α 

production
292, 293

, inhibits Toll-like receptor-mediated NF-κB activation
294

, and enhances 

the production of the anti-inflammatory cytokine IL-10 in cultured macrophages
293, 295

. 

Consistently, adiponectin promotes macrophage polarization towards an anti-inflammatory 

phenotype
296

, and facilitates the rapid removal of apoptotic debris from the body which is 

critical in preventing pathological inflammation and immune system dysfunction
297

. 

Adiponectin also inhibits macrophage-to-foam cell transformation and reduces intracellular 

cholesteryl ester content in human macrophages by suppressing expression of class A 

scavenger receptor (SR-A)
298

.

Consistent with the above-mentioned in vitro findings, overproduction of circulating 

adiponectin inhibits the formation of atherosclerotic lesions and decreases mRNA levels of 

SR-A, TNF-α and VCAM-1 in the vascular wall in apoE-knockout mice, suggesting that 

adiponectin attenuates atherogenesis through anti-inflammatory actions on macrophages and 

vascular endothelial cells
299, 300

. Adenovirus-mediated overexpression of adiponectin also 

attenuates angiotensin II-accelerated atherosclerosis
301

. Conversely, one study showed that 

adiponectin deficiency in ApoE-knockout mice exacerbates atherogenesis and accelerates T 

lymphocyte accumulation in atheromata
302

. In contrast, an extensive study reported that 

neither adiponectin overexpression nor deficiency has any effects on atherosclerotic lesion 

formation in either ApoE-KO or LDLR-KO mice when fed either a normal chow or a high 

cholesterol diet
303

. Thus, additional studies are required to determine whether adiponectin 

has a significant atheroprotective role in vivo.

Cardiovascular disease and adiponectin receptors

While a large number of studies have shown that adiponectin acts as a CV-protective 

adipokine in many systems, the receptor-mediated signaling systems that confer these 

protective actions are understudied. Early, it was reported that the beneficial actions of 

adiponectin on metabolic function and AMPK signaling pathway is mediated through 

combined signaling through its cell surface receptors AdipoR1 and AdipoR2
304

. However, 

subsequent studies suggest that AdipoR1 and AdipoR2 have opposing actions: AdipoR1-

deficiency in mice leads to metabolic dysfunction, whereas AdipoR2-deficiency actually 

promotes resistance to obesity and insulin resistance
305–307

. The roles of AdipoR1 and 

AdipoR2 in CV tissues have mostly been deduced from cell culture studies. For example, in 

vitro studies in cardiac myocytes have shown that both AdipoR1 and AdipoR2 mediate the 

anti-hypertrophic effects of adiponectin
308

. Similarly, AdipoR1 has been shown to mediate 

the pro-angiogenic actions of adiponectin in cultured endothelial cells
277

. Relatively few 

studies have analyzed the roles of adiponectin receptors in the CV system using in vivo 

models. Functional evidence for receptor involvement in vivo would involve documentation 

that receptor-deficiency has a similar phenotype as adiponectin-deficiency and that the 

receptor-deficient mice would be impaired in their response to exogenously-administered 

adiponectin. In this regard, it was recently shown in a murine model of peripheral artery 

disease that AdipoR2-deficiency impairs the revascularization process (as does adiponectin-

deficiency), and eliminates the enhanced revascularization response to exogenous 

adiponectin
305

. In contrast, AdipoR1-deficiency led to a dysfunctional metabolic phenotype, 
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suggesting that the in vivo vascular and metabolic effects of adiponectin diverge at the level 

of the AdipoR1/2 receptors.

When considering receptors it is important to reconcile the unusual properties of adiponectin 

as a ligand. For example, adiponectin levels are 1000-fold greater than most growth factors 

and cytokines
259

, raising questions about receptor affinity and occupancy. Adiponectin also 

has an unusual structure that comprises a globular head and collagenous tail that is similar to 

the collectin family of proteins, including C1q, mannose binding lectin and lung surfactant 

proteins, that contribute to innate immune system regulation by functioning as “pattern 

recognition receptors” via low affinity interactions with various macromolecules
309

. Like 

other collectin family proteins, adiponectin preferentially forms higher order multimers, 

including dodecamers with a molecular mass in excess of 400 kDa, presumably to allow 

multivalent associations with low affinity targets. Studies have shown that adiponectin 

exhibits collectin-like properties, including the ability to opsonize apoptotic cells and 

facilitate their clearance
297, 310

, and it has been shown that adiponectin can bind to C1q in 

serum
311

. Thus, one would not expect a simple binary, ligand/receptor-occupancy model to 

account for the interaction between adiponectin and the AdipoRs or other candidate receptor 

molecules. In light of these considerations, studies have documented that adiponectin is 

highly localized to the heart and the vascular endothelium through an interaction with T-

cadherin, a GPI-anchored cell surface glycoprotein
312–314

. Data from mouse studies have 

shown that T-cadherin-deficiency leads to marked elevations in the level of circulating 

adiponectin, ostensibly because of its release from tissue depots. T-cadherin-deficiency in 

mice also blocks the salutary actions of exogenously administered adiponectin on ischemia-

reperfusion injury and remodeling following pressure-overload in the heart
313

, and on 

adiponectin-stimulated revascularization in a murine model of peripheral artery disease
314

. 

Thus, T-cadherin plays a key role in mediating the CV effects of adiponectin although it 

lacks a transmembrane signaling domain. Hypothetically, T-cadherin may function as a co-

receptor molecule involved in the localization and presentation of adiponectin, or a 

particular configuration of adiponectin, to AdipoR1/2, potentially explaining how 

adiponectin can function to activate receptor-mediated signaling pathways in addition to its 

low affinity, pattern recognition activities.

CTRPs

C1q/TNF-related proteins (CTRPs) are conserved paralogs of adiponectin that contain 

collagen tail domain and a globular C1q-like domain at the C-terminus
315

. Recent studies 

demonstrate that, like adiponectin, some CTRPs act as adipokines that exert cardioprotective 

effects. Examples include CTRP3 and CTRP9, which are primarily expressed in adipose 

tissue and whose expression is downregulated in obese states
316–319

.

CTRP9, which has the highest amino acid sequence similarity to adiponectin (45%)
320

, has 

been shown to have protective actions in the CV system. Systemic delivery of CTRP9 

protein reduces myocardial infarct size and apoptosis following myocardial infarction or 

ischemia-reperfusion injury in mice
317, 321

. In vitro, treatment of cardiac myocytes with 

CTRP9 protein attenuates hypoxia-reoxygenation-induced apoptosis via an AMPK-

dependent pathway involving AdipoR1
317

. CTRP9 is also effective in reducing myocardial 
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infarct size, apoptosis and oxidative stress in diabetic mice after ischemia-reperfusion
322

. 

Consistently, recent studies with CTRP9-deficient mice have shown that CTRP9 promotes 

cardiac function and myocyte survival and diminishes fibrosis following myocardial 

infarction in an AdipoR1 and AMPK-dependent manner
323

. Because circulating CTRP9 

levels are reduced in mice after ischemia-reperfusion or myocardial infarction
317, 321

, 

replenishment of CTRP9 could be beneficial in the context of ischemic heart.

CTRP3 has a 28% amino acid identity with adiponectin
320

, and supplementation of this 

adipokine has been reported to improve cardiac function and reduce fibrosis in mice after 

myocardial infarction, which is accompanied by increased capillary density and decreased 

apoptosis in ischemic areas of the heart
324, 325

. In vitro, CTRP3 inhibits TGF-β-induced 

profibrotic gene expression in cardiac fibroblasts
325

 and promotes cardiac myocyte survival 

and VEGF-A expression through its ability to activate an Akt/HIF-1α-dependent pathway. In 

humans, circulating CTRP3 levels are negatively correlated with several markers of systemic 

inflammation and cardiometabolic risk
326

.

Omentin

Omentin-1, also referred to as intelectin-1, was identified as a soluble lectin that recognizes 

galactofuranose in carbohydrate chains of bacterial cell wall
327

. Human omentin-1 is 

abundantly expressed in human visceral adipose tissue
328

. Omentin-1 is detectable in human 

blood, and circulating omentin levels are reduced in obese subjects
329

 and in patients with 

impaired glucose tolerance and type 2 diabetes
330

. Furthermore, circulating omentin-1 levels 

negatively correlate with multiple cardiometabolic risk factors such as increased waist 

circumferences, dyslipidemia, elevated blood pressure, and glucose intolerance
331

. Recent 

clinical studies also suggest the relationship between omentin-1 and CV disorders. 

Circulating omentin levels are markedly lower in patients with CAD than in age-matched 

control subjects
332–334

.. Another study demonstrated the inverse correlation between serum 

omentin-1 levels and the presence and severity of CAD in patients with metabolic 

syndrome
335

. In healthy men, omentin-1 levels negatively correlate with carotid intima/

media thickness
336

, which is a marker for subclinical atherosclerosis.

Experimental studies also support the notion that omentin-1 exerts protective actions on the 

CV system
337–340

. Systemic administration of omentin-1 attenuates cardiac injury following 

ischemia-reperfusion in mice through Akt- and AMPK-dependent mechanisms
341

. In vitro, 

omentin-1 has been shown to suppress TNFα-induced inflammatory responses in vascular 

endothelial cells via an AMPK-eNOS pathway
342

. More recently, omentin overexpression 

has been reported to attenuate atherosclerosis in hyperlipidemic mice
343

. Overall, it is 

plausible that low levels of omentin-1 can contribute to the development of CV dysfunction 

in obese individuals.

Sfrp5

Secreted frizzled-related protein 5 (Sfrp5) was identified as an adipokine that exerts salutary 

effects on metabolic function with anti-inflammatory properties
344

. Sfrp5 is expressed 

abundantly in WAT in lean mice, and it is down-regulated in severely obese rodents, such as 

20-week-old ob/ob mice. Mechanistically, Sfrp proteins are known to function as soluble 
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modulators that sequester Wnt proteins in the extracellular space and prevent their binding to 

receptors. In this context, Sfrp5 appears to function as an inhibitor of Wnt5a-mediated non-

canonical Wnt signaling, which contributes to pro-inflammatory cytokine production via 

JNK activation
44, 344, 345

. Although some conflicting data have been reported regarding the 

magnitude of Sfrp5 secretion by human WAT
346, 347

, an increasing body of evidence 

suggests that Sfrp5 is dynamically regulated in humans. Several studies have shown that 

circulating levels of Sfrp5 are reduced in obese individuals, particularly in those exhibiting 

clear evidence of metabolic dysfunction, such as impaired glucose tolerance and insulin 

resistance
346, 348–350

. Consistently, human Sfrp5 transcript levels in visceral adipose tissue 

decrease with obesity
351

. In marked contrast, one study found a positive association between 

increased serum Sfrp5 levels and high HOMA-IR, an index of insulin resistance, in 

humans
352

. An additional study failed to replicate Sfrp5 downregulation in human obesity, 

but strikingly it showed that caloric restriction-induced weight loss increases serum 

concentration of Sfrp5
353

. Taken together, these studies suggest that Sfrp5 is downregulated 

in obesity-associated metabolic dysfunction in humans, although further investigations are 

still required to corroborate this notion.

Sfrp5 may also affect the development of obesity-linked CVD. A recent study demonstrated 

that genetic Sfrp5 ablation exacerbates cardiac I/R injury in mice, coinciding with increased 

inflammation and cardiomyocyte death
345

. In addition, in a murine model of peripheral 

artery disease, Sfrp5-deficiency promoted the influx of Wnt5a-positive cells into the 

ischemic limb and impaired revascularization
101

. The role of Sfrp5 in atherosclerosis 

remains unknown at this time, but a number of studies suggest a potential atheroprotective 

action of this adipokine. A recent clinical study demonstrated that low levels of serum Sfrp5 

are associated with CAD
354

. Furthermore, Sfrp5 may affect atherosclerosis development by 

inhibiting Wnt5a, which is expressed in murine and human atherosclerotic lesions
355, 356

. It 

has been suggested that Wnt5a contributes to endothelial dysfunction in diabetic patients
357 

and promotes inflammatory reactions in macrophages and endothelial cells
44, 355, 358

. Thus, 

it is plausible that Sfrp5 attenuates inflammatory response to Wnt5a in the vasculature, but 

additional studies will be required to clarify the role of Sfrp5 in the regulation of 

atherosclerosis development.

CONCLUSION

An increasing body of evidence supports the evolving concept that quantity, location and 

quality of adipose tissue are critical factors in shaping cardiometabolic phenotypes in obese 

humans but specific pathogenic mechanisms and their relative contributions remain 

incompletely understood. adipose tissue communicate with remote organs, including heart 

and vasculature, through the release of various adipokines. In mouse models and many 

human individuals’ obesity leads to adipose tissue dysfunction or adiposopathy, particularly 

in visceral fat depots, which is mediated by dysfunctional tissue remodeling that involves 

adipocyte hypertrophy, exacerbated inflammation, increased fibrosis and impaired vascular 

function and structure. This ultimately creates an imbalance in adipokine levels (Figure 4), 

which contributes to a chronic, low grade systemic inflammatory reaction that is central to 

the initiation and progression of metabolic and CV complications. While some adipokines 

have been highly studied and have shown to be causally linked to various disease processes, 
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new adipokine candidates continue to be discovered and elucidated. In light of the fact that a 

third of the world’s population is currently overweight or obese, and this proportion is 

expected to increase in the coming decades, studies of adipokine biology should provide a 

better understanding of the pathogenesis of CVD. As our understanding of adipokine 

biology and obesity-induced adiposopathy increases, the major challenge will reside in 

translating this information into new prognostic and therapeutic approaches to limit CV risk 

in obese individuals.
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Nonstandard Abbreviations and Acronyms

AdipoR1, AdipoR2 adiponectin receptor 1, 2

AdipoRs adiponectin receptors

Akt Also known as Protein kinase B. Ak refers to the mouse strain 

and t to thymoma.

AMPK adenosine monophosphate-activated protein kinase

ANGPTL-4 angiopoietin-like 4

APN-KO adiponectin knockout

Apo-E, apoE apolipoprotein E

ATMs adipose tissue macrophages

BAT brown adipose tissue

BMI body mass index

CAD coronary artery disease

CD (CD4, CD8, CD11) cluster of differentiation (4, 8, 11)

CLS “crown-like” structures

CMD cardiometabolic disease

COX cyclooxygenase

CRP C-reactive protein

CT computed tomography
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CTRPs (CTRP3, 
CTRP9)

C1q/tumor necrosis factor-related proteins (3, 9)

CV cardiovascular

CVD cardiovascular disease

ECM extracellular matrix

eNOS endothelial nitrous oxide synthase

FFA free fatty acids

gp130 glycoprotein 130

GPI glycosylphosphatidylinositol

HDL high-density lipoprotein

HFD high fat diet

HIF1α hypoxia-inducible factor 1 alpha

HOMA-IR homeostatic model assessment-insulin resistance

ICAM-1 intercellular adhesion molecule 1

IgG1-Fc immunoglobulin 1-fragment, crystallizable

IL (IL-4, IL-6, IL-10, 
IL-13)

interleukin (4, 6, 10, 13)

IL6R interleukin 6 receptor

JNK c-Jun N-terminal kinase

Ldlr/LDLR low-density lipoprotein-receptor

LV left ventricular

MI myocardial infarction

MMP-2 matrix metallopeptidase 2

MRI magnetic resonance imaging

NF-κB nuclear factor-kappa B

NK cells natural killer cells

NKT natural killer T cells

NO nitric oxide

PDGFRα platelet-derived growth factor receptor, alpha polypeptide

PVAT perivascular adipose tissue

ROS reactive oxygen species

Sfrp5 secreted frizzled-related protein 5

sIL6R soluble form of interleukin 6 receptor
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SphK-1 sphingosine kinase-1

Th1, Th2, Th17 T helper (1, 2, 17)

TLR-4 toll-like receptor 4

TNF-α tumor necrosis factor alpha

VEGF-A vascular endothelial growth factor A

WAT white adipose tissue

Wnt (Wnt5a) Wingless-Type MMTV Integration Site Family (Member 5A)
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Figure 1. 
Adipose tissue depots occur throughout the body. Studies suggest that visceral adipose tissue 

accumulation is a major risk factor for cardio-metabolic disease, whereas subcutaneous fat 

appears to be neutral or protective. Other adipose tissue depots of note include the 

epicardium, the perivascular space, and bone marrow, but the functional significance of these 

tissues is largely unknown. Brown adipose tissue occurs in the supraclavicular and 

paraspinal regions. In contrast to white adipose tissue, brown adipose tissue is very 

metabolically active and it functions to utilize fuel to produce heat. In addition, ectopic lipid 

can accumulate in tissues, such as liver, in metabolically dysfunctional organisms.
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Figure 2. 
Functional adipose tissue (left), predominantly found in lean organisms, tends to express 

anti-inflammatory adipokines that protect against cardiovascular disease. In contrast, excess 

adipose tissue expansion promotes dysfunction (right), leading to the expression of pro-

inflammatory adipokines that promote cardiovascular disease. Dysfunctional adipose tissue 

is characterized by enlarged adipocytes, vascular rarefaction, increased inflammatory cell 

infiltrate and the appearance of crown-like structures.
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Figure 3. 
Obesity leads to adipose tissue dysfunction, triggering the release of pro-inflammatory 

adipokines which can directly act on cardiovascular tissues to promote disease. The 

adipokine imbalance can also affect the function of metabolically important tissues and the 

microvasculature, promoting insulin resistance and indirectly contributing to CVD.
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Figure 4. 
Selected anti- and pro-inflammatory adipokines with summaries of their regulation and 

actions in the cardiovascular system.
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