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Abstract

The Staphylococci comprise a diverse genus of Gram-positive, non-motile commensal organisms 

that inhabit the skin and mucous membranes of humans and other mammals. In general, 

Staphylococci are benign members of the natural flora, but many species have the capacity to be 

opportunistic pathogens, mainly infecting individuals who have medical device implants or are 

otherwise immunocompromised. S. aureus and S. epidermidis are a major source of hospital-

acquired infections and are the most common causes of surgical site infections and central line-

associated bloodstream infections. The ability of Staphylococci to form biofilms in vivo makes 

them highly resistant to chemotherapeutics and leads to chronic diseases. These biofilm infections 

include osteomyelitis, endocarditis, medical device implants, and persistence in the cystic fibrosis 

lung. Here, we provide a comprehensive analysis of our current understanding of Staphylococcal 

biofilm formation, with an emphasis on adhesins and regulation, while also addressing how 

Staphylococcal biofilms interact with the immune system. On the whole, this review will provide a 

thorough picture of biofilm formation of the Staphylococcus genus and how this mode of growth 

impacts the host.

INTRODUCTION

Bacteria from the genus Staphylococcus include a diverse group of commensals that 

colonize mammals on the skin or mucous membranes. Some of the best-known members of 

this genus, such as S. aureus and S. epidermidis, are also opportunistic pathogens and 

responsible for a tremendous burden on the healthcare system (1, 2). One of the reasons 

Staphylococci are problematic is their well-known ability to attach to surfaces and develop 

into recalcitrant community structures, often referred to as a “biofilm”. Generally, biofilms 

are defined as a community of cells encased within an exopolymeric matrix and attached to 

a surface, and they are recognized as being more resistant to antimicrobial therapy and host 

defenses (3).

The biofilm state was initially observed in studies of marine environments, in which 

adherent communities of bacteria were observed in natural as well as industrial aquatic 

environments (4). Biofilm development was subsequently found to be important in many 
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types of infections and is now a widely accepted bacterial mode of growth. According to the 

NIH, as much as 80% of human infections are biofilm-based (5). Biofilm infections present 

a clinical challenge, as they are highly resistant to antimicrobial therapies and often occur in 

areas of the body that are not easily accessible for treatment (6, 7). Staphylococci in 

particular represent a large portion of biofilm-based infections, and are a significant burden 

on the healthcare system. S. aureus and the coagulase-negative Staphylococi (CoNS) are the 

number one and number three most common etiological agents of hospital-acquired 

infections in the US, respectively, including infections of medical devices and surgical 

wounds (8). Biofilm infections clearly are a significant burden on the healthcare system 

today, and the in vivo biofilm state is an important area of study.

Definition of a biofilm

The growth of Staphylococci in a biofilm has been linked to many types of infections, but 

one of the ongoing challenges in the field is the lack of a consensus description of the 

biofilm state. There is no universal agreement on what constitutes a “Staphylococcal 

biofilm” in terms of morphology, depth, surface coverage, regulatory state, antibiotic 

resistance level, or whether surface attachment is even necessary. In the field, a biofilm is 

defined mostly by subjective observations (i.e., it has to look like a biofilm), as well as high 

antibiotic resistance relative to planktonic bacteria. There have been attempts to identify 

biomarkers of Staphylococcal biofilm formation to provide a better definition. In one 

promising study, Secor et al. determined that the non-ribosomally generated peptide 

aureusimine (phevalin) was produced in higher levels by biofilm-grown S. aureus (9), 

suggesting this natural product could be a biofilm biomarker. While encouraging, there is 

not yet enough follow-up work on aureusimine or other potential biomarkers to reach a 

consensus.

The other ongoing challenge in defining biofilms is the enormity of growth states that have 

been linked to this term. Staphylococcal biofilm growth has been linked to foreign bodies 

(10), endocarditis (11), osteomyelitis (12), skin infection (13), colonization (14), cystic 

fibrosis (15), urinary tract infection (16), and abscess communities (17). Under such a large 

umbrella of different growth conditions in the host, each requiring a unique suite of bacterial 

factors and regulatory machinery, it is impossible to obtain a universal definition of a 

Staphylococcal biofilm that will be agreed upon in the field. Not surprisingly, the 

Staphylococcal requirements to develop infective endocarditis or a skin abscess, such as 

specific toxins and superantigens (18, 19), are not the same as those needed for an 

indwelling catheter infection that can be caused by many types of Staphylococci. Further, a 

much lower bacterial load (estimated at 10,000-fold lower) is needed to colonize a foreign 

body than to cause a skin abscess (20). The reason for this is likely the lack of 

vascularization at the site, and presumably a reduced presence of innate immunity factors 

(10). Considering this point, it seems logical that the virulence factor profile of the invading 

bacterial pathogen will be different in order to survive these varied host environments. As 

one example, S. aureus deficient in the agr quorum-sensing system are unable to properly 

initiate infective endocarditis or osteomyelitis (21, 22), while the same regulatory system is 

not essential to initiate a Staphylococcal foreign body infection (23); in fact, the agr system 
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seems to inhibit colonization of the foreign body (24). Thus, it is increasingly important to 

consider the context of infection when comparing and contrasting results with other studies.

The Biofilm life cycle

The biofilm life cycle is thought to consist of at least three stages (see Figure 1): initial 

attachment to an abiotic or biotic surface, maturation of the biofilm, and dispersal. Some 

consider “microcolony formation” to be an intermediate step between attachment and 

maturation, but the precise differences between a microcolony and a mature biofilm are not 

clearly defined. Attachment involves bacterial adhesins that can stick to the surface, while 

maturation is mediated by cell-cell adhesion, although some adhesins possess both 

properties. Dispersal or disassembly is mediated by enzymes that degrade the biofilm matrix 

(25–27). These enzymes may be produced by the bacteria itself or be present in the 

environment.

A recent paper provided new insights into the stages of early biofilm development using a 

microtiter flow-based biofilm system (28). This study found that in an S. aureus biofilm, 

attachment and early accumulation were followed by dispersal of a portion of the cells, 

leaving behind small foci of biofilm growth. These foci then matured into a biofilm with 

tower structures. Interestingly, the early dispersal phase, termed “exodus,” was independent 

of the agr system, but required the sae system and was specifically modulated by the sae-

regulated nuclease. These findings provide novel insight into S. aureus biofilm development 

and the independent roles of Staphylococcal regulatory systems in the biofilm life cycle.

Biofilm matrix

The Staphylococcal biofilm matrix has been a topic of interest in a number of reports, and 

various findings have demonstrated its heterogeneity and variability (29). The biofilm matrix 

contains eDNA, both from lysed bacteria and potentially from host neutrophil cell death, and 

is susceptible to dispersal by DNAses (30, 31). Proteinaceous adhesins have also been 

identified in the Staphylococcal biofilm matrix. These may be directly associated with 

bacteria in the biofilm, or free in the biofilm matrix (32). A number of cytoplasmic proteins 

have been identified that appear to moonlight as matrix components and undoubtedly have 

an important function (33). Finally, the extracellular polysaccharide intercellular adhesin 

(PIA) has also been identified as a major component of the Staphylococcal biofilm, 

especially in certain strains of S. epidermidis (34). Both proteinaceous and polysaccharide-

based biofilms are susceptible to disassembly by proteases and polysaccharide-degrading 

agents (26, 27). Teichoic acids have also been implicated in the biofilm matrix (35), 

although their relative role in biofilm mechanisms has not received as much attention. 

Presumably, other cellular components are also present and awaiting further investigation.

Coverage of this review

This review will cover recent advances in Staphylococcal biofilm studies. We will discuss 

the mechanism of biofilm formation by Staphylococcal adhesins and regulatory systems, as 

well as the interaction of biofilms with the host immune system, with a focus on S. aureus 
and S. epidermidis as the model pathogens of the genus. Finally, we will discuss current 

knowledge on biofilm formation and virulence in other species of Staphylococci.
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STAPHYLOCOCCAL ADHESINS

Staphylococci possess a number of surface-associated adhesins that mediate initial 

attachment of biofilm cells as well as intercellular adhesion during biofilm maturation (32, 
36). The Staphylococcus aureus genome encodes more than twenty adhesins (32, 36, 37), 

while coagulase-negative Staphylococci (CoNS) have significantly fewer (38, 39). 

Staphylococcal adhesion and biofilm accumulation are mediated by covalently anchored cell 

wall proteins, non-covalently associated proteins, and non-protein factors. The general 

properties of these adhesins are presented, and their functions within biofilm development 

are included where information is available.

Covalently Linked Cell Wall-Anchored Proteins

Staphylococcal cell wall-anchored (CWA) proteins are secreted by the Sec system and share 

a C-terminal cell wall anchoring motif, hydrophobic domain, and positively-charged domain 

(40). In the majority of CWA proteins, cell wall anchoring is mediated by Sortase A, which 

cleaves the LPXTG cell-wall anchoring motif at the threonine-glycine junction and catalyzes 

the covalent linkage of the CWA protein to peptidoglycan (41). Some Isd proteins in the 

NEAT (near iron transporter) family are instead anchored by Sortase B at the NPQT/PN/S 

motif (40). The Staphylococcal CWA proteins were recently discussed in a review by Foster 

et al., who propose to classify them into four groups (see Figure 2) based on structural 

motifs (40). These are the MSCRAMMs (microbial surface component recognizing adhesive 

matrix molecules), the NEAT motif family, the three-helical bundle family, and the G5-E 

repeat family. All of these types of CWA proteins are involved in biofilm formation in the 

Staphylococci.

MSCRAMMs were originally defined as a broad category of proteins that are cell surface-

associated and able to interact with the host extracellular matrix (42). The recent definition 

proposed by Foster et al. limits the term MSCRAMM to adhesins that contain at least two 

IgG-like folds and employ a ligand binding mechanism called dock, lock, and latch (40). 

The Staphylococcal MSCRAMMs are the Clf-Sdr family proteins, including Bbp (bone 

sialoprotein-bnding protein), the FnBPs (fibronectin-binding proteins), and CNA (collagen 

adhesion). Exposure of S. aureus to human plasma in vitro enhances both MSCRAMM 

expression and biofilm formation, suggesting the importance of their role in in vivo biofilm 

infections (43).

The Clf-Sdr family consists of Clumping factor A (ClfA), clumping factor B (ClfB), and the 

Sdr proteins. In addition to the IgG-like folds, their structure contains a serine-aspartate 

repeat domain called the SD region (40). ClfA and ClfB are fibrinogen-binding proteins in 

S. aureus (40, 44), and both are up-regulated in biofilm growth relative to planktonic (45). 

Rot and agr affect bacterial binding to fibrinogen by regulating clfB but not clfA ((46), see 

regulation section).

ClfA is present on the cell wall throughout the growth cycle (47) and promotes bacterial 

clumping in solution with fibrinogen as well as bacterial attachment to immobilized 

fibrinogen (48, 49). The ClfA IgG-like fold domains N2 and N3 bind at the C-terminal 

region of the γ-chain of fibrinogen, a region that also contains platelet binding sites (50, 51). 
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ClfA has been shown to inhibit fibrinogen binding to platelets and fibrinogen-dependent 

platelet aggregation, indicating that its binding site occludes the platelet binding site (50, 52, 
53). In a murine model of S. aureus septicemia, mice lacking the ClfA-binding motif of 

fibrinogen had better survival, suggesting that ClfA-fibrinogen interactions in the blood 

contribute to virulence (54). A clfA mutant in S. aureus had a decreased ability to cause 

vegetations in a rat endocarditis model (55) and reduced bacterial load in a murine abscess 

model (56).

The S. epidermidis MSCRAMM SdrG (also called Fbe) is homologous to S. aureus ClfA, 

although it binds to the β-chain of fibrinogen rather than the γ-chain (57, 58). SdrG is the 

archetypal example of the “dock, lock, and latch” mechanism of binding using its IgG-like 

folds. The “dock, lock, and latch” model was proposed based on the crystal structure of the 

SdrG-fibrinogen interaction (59, 60). SdrG mediates adherence to fibrinogen-coated surfaces 

in vitro (61, 62), and is required for fibrinogen-dependent platelet aggregation (63). In a rat 

model of central venous catheter infection, wild type S. epidermidis was more likely to 

cause infection and formed a more robust biofilm on the catheter in vivo than a sdrG mutant, 

indicating its importance in the in vivo biofilm formation of S. epidermidis (64).

The coagulase-negative species S. lugdunensis also has a ClfA homolog called Fbl (65, 66). 

Fbl promotes both adherence to immobilized fibrinogen and cell clumping in fibrinogen-rich 

solution (66). Fbl and ClfA have similar binding affinities to fibrinogen, and both interact 

with the C-terminus of the γ-chain (67). Fbl also is used as a species-specific detection 

method for S. lugdunensis (68, 69).

Like ClfA, the S. aureus ClfB IgG-like fold region binds to fibrinogen; however, it interacts 

with the α-chain of fibrinogen rather than the γ-chain (48, 70). ClfB promotes adherence to 

immobilized fibrinogen as well as S. aureus clumping in fibrinogen-rich solution (48, 70). In 

contrast to ClfA, ClfB becomes depleted from the cell wall beginning in late exponential 

phase, suggesting that it is susceptible to proteolytic degradation (48). Further studies 

revealed that the metalloprotease Aureolysin cleaves ClfB at two sites, resulting in the loss 

of fibrinogen binding (71, 72). ClfB promotes biofilm formation in vitro, and Aureolysin 

treatment disrupts ClfB-mediated biofilms, suggesting that Aureolysin might facilitate 

biofilm dispersal by processing ClfB (73). In vivo, ClfB is required for full virulence in a rat 

endocarditis model of infection, although the phenotype of the clfB mutant in this model 

was slight (74). A clfB mutant also had decreased bacterial load in a murine abscess model 

(56).

In addition to fibrinogen, ClfB also binds to the human epithelial proteins cytokeratin 10, 

cytokeratin 8, and loricrin. ClfB bound to the C-terminal tail region of purified Cytokeratin 

10, as well as Cytokeratin 10 that was natively expressed in desquamated nasal epithelial 

cells (70, 75, 76). The ClfB IgG-like folds bind Cytokeratin 10 by the dock, lock, and latch 

mechanism (70). Similarly, ClfB bound immobilized Cytokeratin 8 and endogenous 

Cytokeratin 8 from lysates of the HaCaT keratinocyte cell line (77). ClfB also binds loricrin, 

the primary protein in the cornified envelope of the stratum corneum, which is present in the 

anterior nares. In a murine model of nasal colonization, clfB mutant S. aureus was defective 

for colonization compared to wild type. Colonization by both wild type and clfB mutant S. 
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aureus was also decreased in loricrin-deficient mice, suggesting that loricrin is a critical 

ligand for S. aureus nasal colonization (78). In an experimental model of human nasal 

colonization, clfB mutant S. aureus was eliminated significantly more quickly from the nares 

than its wild type parent, and ClfB was required for long-term colonization (79). These 

results demonstrate ClfB’s versatility in ligand binding and importance for S. aureus 
colonization.

S. aureus Sdr proteins SdrC, SdrD, and SdrE are encoded in a single locus and have striking 

similarity in sequence and structural arrangement with the Clf proteins (80). SdrC can bind a 

host ligand as well as self-associate to promote biofilm formation. A study using a phage 

display peptide library found that SdrC binds to human β-neurexins, which are expressed on 

neuronal cells (81). Although the effect of this has not been tested in vivo, S. aureus 
endocarditis and sepsis are associated with polyneuropathy, meaning that SdrC interactions 

with neurexins could contribute to S. aureus pathogenesis. A later study showed that SdrC 

self-associates at the N2 domain and promotes biofilm formation, a process that is inhibited 

by Mn2+ (82). In contrast to SdrC, the structural stability of SdrD appears to require binding 

to divalent cations, specifically Ca2+ (83). Like SdrC, SdrD mediates adherence to human 

desquamated nasal epithelial cells (84). SdrE in S. aureus (80) induces platelet aggregation 

(85). SdrE also inhibits complement activation by two mechanisms. It binds the complement 

regulatory protein factor H, which inhibits activation of the alternative complement pathway 

(86). SdrE also inhibits classical complement pathway-mediated opsonization and 

phagocytosis by binding to the classical complement regulator C4b-binding protein (87).

SdrF in S. epidermidis binds type I collagen, mediated by its B domain repeats (88). 

Interestingly, SdrF was also found to bind with high affinity to Dacron, the polymeric 

surface of drivelines that are used in ventricular assist devices for end-stage congestive heart 

failure. Since S. epidermidis is a common etiological agent of medical device infections, 

including VAD infections, this finding is relevant to its pathogenesis. Anti-SdrF antibodies 

decreased infection in a murine model of S. epidermidis driveline infection, suggesting 

possible therapeutic interventions for these infections (89). SdrF also was found to bind 

other plastic materials based on ionic interactions (90). These results suggest that inhibition 

of SdrF binding to prosthetic devices may be a promising avenue for treatment of S. 
epidermidis infections.

S. epidermidis also has SdrG and SdrH, whose sequences are similar to typical SD proteins, 

but are not present in cell wall preparations of S. epidermidis, indicating they may be 

improperly sorted to the cell wall. However, antisera from patients following infection with 

S. epidermidis were reactive to the A domains of SdrG and SdrH, suggesting that they are 

expressed during infection (91).

Other coagulase-negative Staphylococci possess Sdr family proteins that have been 

characterized in limited detail. S. capitis SdrX has an SD repeat region, although the N-

terminal domain is not strongly similar to S. aureus Sdr proteins. SdrX was reported to bind 

type VI collagen and mediate bacterial adherence to a type VI collagen-coated surface (92). 

S. saprophyticus has the Clf-Sdr family protein SdrI, which binds collagen (93) and 

fibronectin (94), the latter of which is a unique property among the Sdr proteins. SdrI was 
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also found to contribute to the hydrophobicity of the S. saprophyticus surface, a property 

that is known to enable bacterial adherence to host epithelia (95). In a murine model of 

urinary tract infection, SdrI was critical for persistence but not initial colonization (96).

Bbp (bone sialoprotein-binding protein) is an Sdr-family protein in S. aureus that is 

considered to be an allelic variant of SdrE (87). S. aureus isolates from osteomyelitis 

infections were observed to bind bone sialoprotein by an unknown adhesin (97), which was 

eventually identified to be Bbp (98, 99). Like SdrE, Bbp binds the classical complement 

regulator C4b-binding protein, inhibiting classical-pathway-mediated opsonization and 

phagocytosis (87). Bbp appears to be associated with invasive osteomyelitis infections in 

particular. Of 60 patients with deep S. aureus infections following orthopedic surgery, 95% 

of the isolates were positive for the bbp gene (100), while of 53 S. aureus isolates from 

bloodstream infections, 47% were positive for bbp (101). The presence of antibodies to Bbp 

was also shown to be effective in distinguishing osteomyelitis from soft tissue infections in 

patients with diabetic foot ulcers (102).

FnBPs

S. aureus has two fibronectin-binding proteins, FnBPA and FnBPB, encoded by fnbA and 

fnbB, respectively (103). Like the Clf-Sdr family proteins, the FnBPs contain an N-terminal 

region that forms IgG-like folds; these domains bind fibrinogen and elastin (104, 105). In 

place of the SD repeat region, the FNBPs have a region of 10–11 tandem repeats that 

recognize fibronectin (106). FnBP binding to fibronectin induces bacterial invasion into 

epithelial cells, endothelial cells, and keratinocytes (107–109). The FnBPs have been found 

to affect biofilm formation and virulence. In S. aureus, a double knockout of fnbA and fnbB 
lost the ability to bind fibronectin and to form biofilms on microtiter plates and under shear 

flow conditions. Complementation of either fnbA or fnbB alone on a plasmid restored these 

phenotypes, as well as the ability of S. aureus to agglutinate (110). The FnBPs are thought to 

promote biofilm formation by a self-association mechanism that is distinct from ligand 

binding, making them multifunctional in the S. aureus biofilm life cycle (111, 112). The 

FnBPs also were shown to enhance virulence in an experimental model of endocarditis 

(113).

The collagen-binding adhesin CNA was initially reported to be necessary and sufficient for 

S. aureus binding to the collagen-rich substrate cartilage (114). CNA consists of an A 

domain with several collagen-binding sites, and a domain containing B repeats (114, 115). 

Crystal structure characterization of the CNA-collagen interaction suggested a “collagen 

hug” model, a variation of the “dock, lock, and latch” ligand binding scheme (115). CNA 

blocks activation of the classical complement pathway (116) and contributes to virulence of 

S. aureus keratitis (117), osteomyelitis (118), septic arthritis (119), and endocarditis (120).

S. epidermidis also has a collagen-binding protein, the GehD lipase. GehD is not LPXTG-

anchored, although it is cell wall-associated, and its structure does not resemble CNA of S. 
aureus. However, purified GehD binds to immobilized collagen and inhibit mediate S. 
epidermidis binding to collagen, and therefore may contribute to colonization or 

pathogenesis (121).
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The NEAT motif family consists of the Isd (iron-regulated surface determinant) proteins. 

These CWA proteins bind heme or hemoglobin, facilitating its transport into the bacterial 

cell, and they are up-regulated in iron limiting conditions (122). S. aureus IsdA and IsdC 

bind heme via their NEAT motifs (Figure 2) (123). These proteins also play a role in survival 

against host immune defense. S. aureus IsdA is the most abundant CWA protein in iron 

starvation conditions, and also decreases surface hydrophobicity, which makes S. aureus 
more resistant to bactericidal fatty acids and peptides in human skin (124). IsdA also is able 

to bind human fibrinogen and fibronectin (125). In a murine model of systemic infection, S. 
aureus isdB expression varied among organs to which bacteria localized in the host, and 

IsdB was required for colonization of the heart (126). This suggests that isd expression 

depends upon iron availability in each host niche of infection. In S. lugdunensis, IsdC was 

found to induce biofilm formation under iron-limiting conditions, and to induce attachment 

to polystyrene as well as self-associate to promote intercellular adhesion (127).

The sole three-helical bundle cell wall-anchored protein is Staphylococcal Protein A 

(SpA), which is present in all strains of S. aureus and whose sequence variation is used for 

strain typing (128). SpA binds the conserved Fc region of immunoglobulin IgG, which 

allows immune evasion (129, 130) and has also been found in the biofilm matrix in vitro 
(131). SpA is also released from the cell wall, and released Spa has been shown to promote 

bacterial survival in human blood, suggesting that free SpA contributes to disruption of the 

host immune response (37, 132). Presumably, free SpA could also provide adhesion in the 

biofilm matrix.

G5-E Repeat Family: Aap/SasG

G5-E repeats are found in cell wall-anchored adhesins in Gram-positive organisms, and are 

so named because of the five conserved glycine residues in each repeat. G5 domains consist 

of 78 residues and form six beta strands, with E domain spacers that are of similar sequence 

to G5, but only 50 residues (133). The S. aureus G5-E repeat protein SasG and its S. 
epidermidis homolog Aap have similar structures and are thought to function similarly in 

adhesion and biofilm formation. SasG and Aap each have an N-terminal A domain that 

mediates attachment to abiotic and host surfaces via unknown ligands. In S. epidermidis 
Aap, the A domain alone promotes attachment to polystyrene (134, 135) as well as to human 

corneocytes (136). S. aureus SasG promotes attached to human desquamated nasal epithelial 

cells via its A domain (137). Multiple studies have shown that the G5-E repeats of SasG and 

Aap are able to dimerize by binding to Zn2+, forming a “twisted rope” structure (133, 138). 

This property is thought to enable intercellular adhesion when adjacent SasG or Aap 

proteins dimerize via their G5-E domains. In S. epidermidis, Aap has been shown to induce 

biofilm formation following proteolytic removal of its A domain by exogenous proteases, 

although the S. epidermidis proteases that may process Aap are not identified (139). Aap has 

also been shown to be required for full in vitro biofilm formation in S. epidermidis, as well 

as for virulence in a rat catheter model of infection (134). Recently, a small 18 kDa 

scaffolding protein, called small basic protein or Sbp, was found in the S. epidermidis 
biofilm matrix and affects both PIA-dependent and Aap-dependent biofilm formation. In 

Aap-mediated biofilm formation, Sbp was found to interact with the B domain of Aap in the 

biofilm matrix, suggesting its role as a structural component of the biofilm (140).
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Uncategorized CWA Proteins

The remaining uncategorized cell wall-anchored proteins are Bap and several Sas proteins, 

including SasA/SraP. Bap is an S. aureus cell wall-anchored protein that was identified in a 

transposon screen for mutants defective in biofilm formation (141). It has a unique structure, 

consisting of three major domains, each with sequence homology to different cell wall-

anchored proteins in other bacterial genera. Bap was found to mediate attachment to an 

abiotic surface as well as intercellular adhesion, making it a potent enhancer of biofilm 

formation. In a murine model of catheter infection, the bap mutant had decreased bacterial 

load. Bap is also present in several coagulase-negative Staphylococci, and a mutant of the 

bap homolog in S. epidermidis had decreased biofilm formation relative to wild type (142). 

A later study demonstrated that Bap promoted adherence, but inhibited invasion, of 

epithelial cells in vitro by binding the Gp96 receptor (143). The authors propose that this 

property of Bap enhances virulence of biofilm-based infections by resisting bacterial 

engulfment into host cells, although this has yet to be directly tested.

S. aureus SasA/SraP (serine-rich adhesin for platelets) is a member of the serine-rich repeat 

family of cell wall-bound proteins found in several Gram-positive pathogens, primarily oral 

streptococci (144, 145). Homologs of SraP have also been identified in the coagulase-

negative staphylococcal species S. epidermidis and S. haemolyticus (146, 147). SraP is a 

sortase-anchored, cell wall-bound adhesin that binds platelets, and it also possesses a ligand 

binding domain that is thought to promote intercellular adhesion and biofilm formation. A 

sraP mutant was reported to have decreased biofilm formation, and SraP bound to S. aureus 
whole cell lysates, suggesting that SraP may self-associate or bind other targets on 

neighboring S. aureus cells to promote biofilm development (148). The ligand binding 

domain was recently structurally characterized and found to contain a lectin-like module that 

binds N-acetylneuraminic acid (149), an abundant sugar on host glycosylated proteins. The 

S. haemolyticus serine-rich repeat protein UafB mediates binding to fibronectin, fibrinogen, 

and human uroepithelial cells (150).

SasX is another cell wall-anchored adhesin that has been shown to play an important role in 

virulence. SasX was linked to the spread of a MRSA epidemic in China, as its prevalence in 

MRSA clones increased via horizontal transfer, suggesting its importance in the pathogenic 

success of MRSA. SasX was also shown to be crucial for a murine model of nasal 

colonization, murine MRSA skin infection, and bacterial aggregation in vitro (151). SasX 

has recently been shown to be a promising vaccine candidate for S. aureus infection. Active 

or passive immunization to SasX decreased S. aureus virulence in murine models of skin 

infection, lung infection, and nasal colonization (152).

There are also several S. aureus Sas proteins that are poorly characterized. SasC is an 

LPXTG-anchored protein that contains a FIVAR domain and a domain of unknown function 

consisting of repeats. SasC, specifically its FIVAR domain, induced cell aggregation, 

binding to polystyrene, and biofilm formation (153). Genome sequence analysis of S. aureus 
revealed the putative cell wall-anchored adhesins SasB, SasD, SasF, SasJ, SasK, and SasL, 

but their structure or function have not been studied further (154).
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Surface-Associated Proteinaceous Adhesins

The Autolysins AtlA and AtlE are found in S. aureus and S. epidermidis, respectively. Atl 

and AtlE share a similar amino acid sequence and structure, with bacteriolytic amidase and 

glucosoaminidase domains (155). They are known to be involved in cell wall turnover, cell 

division, and cell lysis (156, 157). Autolysins have two properties that could promote 

biofilm formation: the ability to attach to extracellular matrix materials, and to augment the 

biofilm matrix with eDNA by inducing cell lysis. Adhesin activity was first identified in a 

transposon mutant of S. epidermidis atlE that had decreased ability to adhere to polystyrene 

and vitronectin (155). In an S. epidermidis biofilm grown on medical device biomaterials in 
vitro, atlE expression decreased during the first 12 hours of biofilm growth relative to 

planktonic culture, but by 48 hours, expression was upregulated ten-fold (158). This may 

indicate that atlE is more important later in the biofilm life cycle, when autolysis is induced 

and eDNA is released.

Non-Proteinaceous Surface-Associated Adhesins

Wall teichoic acids and lipoteichoic acids have been shown to play a role in adhesion, 

colonization of host cells, and biofilm formation. Wall teichoic acids are covalently linked to 

the peptidoglycan and consist of alternating phosphate and ribitol, while lipoteichoic acids 

attach to the outer leaflet of the cell membrane and have alternating phosphate and glycerol 

(36). Teichoic acids are highly charged, a property that was found to be critical for S. aureus 
colonization of abiotic surfaces. A mutant lacking D-alanine in its wall teichoic acid lost the 

ability to form a biofilm in vitro. This was due to its greater net negative charge, which 

decreased its adherence to plastic surfaces (159). In S. epidermidis, wall teichoic acids 

induced adherence to immobilized fibronectin (160). Teichoic acids have been identified in 

the biofilm matrices of S. epidermidis and S. aureus (35, 161, 162).

The polysaccharide intercellular adhesion (PIA) is a secreted polysaccharide that is 

synthesized by the ica operon and has been thoroughly studied in the context of biofilm 

formation, immune evasion, and pathogenesis. Several reports state that PIA is required for 

S. epidermidis biofilm formation and virulence (163–165), and it is considered to be the 

most important intercellular adhesin of the Staphylococci (34). The role of PIA in 

Staphylococcal biofilm formation has been reviewed by O’Gara (166) and by Rohde et al. 
(167), and the regulation of the ica locus in the Staphylococci in (168).

SECRETED PROTEINS IN THE BIOFILM MATRIX

A number of secreted Staphylococcal proteins have been implicated in biofilm formation, 

the most prominent being AtlA/AtlE (discussed above as surface associated), proteases, 

nucleases, and phenol-soluble modulins (PSMs). The exo-enzymes and PSMs will be 

discussed in more detail in the regulation section below, as their role in biofilm development 

more relates to dispersal than accumulation. Other secreted proteins that have been linked to 

biofilm formation are covered here.

Alpha-toxin (Hla) is a potent cytolysin secreted by S. aureus that also affects inflammation 

and contributes to pathogenesis by multiple mechanisms. Many studies have shown that 
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alpha-toxin mutants are attenuated in virulence (169). However, the contribution of this 

toxin to biofilm formation is less clear. In a study of in vitro biofilm formation on 

polystyrene, an S. aureus hla mutant had dramatically reduced biofilm in a standard 

microtiter plate assay and under flow conditions. Its initial attachment to the surface was 

also decreased, indicating that an inability to bind to the surface contributes to decreased 

mature biofilm (170), although the exact mechanism of this phenotype remains unclear.

S. aureus beta-toxin (Hlb) is a secreted sphingomyelinase that has hemolytic and 

lymphocytic activities (171, 172). Beta-toxin also has a sphingomyelinase-independent 

“biofilm ligase” activity, which refers to its ability to cross-link strands of DNA in the 

biofilm matrix. Mutants in hlb were deficient in in vitro attachment, flow-cell biofilm 

formation, and vegetation formation in a rabbit endocarditis model (173). Hlb is the first 

Staphylococcal protein identified that binds extracellular DNA (eDNA) in the biofilm 

matrix, providing more evidence of the importance of this matrix component.

S. aureus secretes multiple proteins that have been called Secreted Expanded Repertoire 

Adhesive Molecules (SERAM) (174). Two of the SERAMs, the extracellular adherence 

protein (Eap; also called the MHC class II analog protein or Map) and the extracellular 

matrix binding protein (Emp) have a demonstrated connection to biofilm formation (175, 
176). Eap is a secreted adhesin that enhances S. aureus adherence to the extracellular matrix, 

and it has been shown to bind fibrinogen, fibronectin, vitronectin, and thrombospondin-1 

with varying affinities (177–180). Eap can also self-associate to induce aggregation of S. 
aureus (177). Due to its ability to bind several matrix proteins, Eap is required for biofilm 

formation in the presence of serum (175). Regulation of the eap gene is dependent on the 

SaeRS two-component system (181, 182), and the gene is up-regulated under low iron 

conditions (176). The eap mutant biofilm phenotype is dependent on these iron-limiting 

conditions (176). The Eap protein has a number of known immunomodulating properties 

that have been summarized elsewhere (174). Less is known about Emp, but this protein can 

also bind matrix proteins like fibrinogen (174) and it is also SaeRS and iron regulated (176, 
182). Similar to Eap, Emp is required for biofilm formation on iron limiting conditions 

(176).

REGULATION OF BIOFILM FORMATION

Global changes in gene regulation occur throughout the course of the Staphylococcal biofilm 

life cycle. Microarray studies have shown that the biofilm lifestyle requires a gene 

expression profile to allow tolerance of the low pH within a biofilm, as well as a metabolic 

quiescence that includes down-regulation of transcription, translation, and aerobic processes 

(183, 184). Several global regulators, such as the agr quorum sensing system, sigma factor 

B, and SarA, have strong connections to Staphylococcal biofilm formation in vitro and 

during infection and will be summarized further below. These regulators have also been 

examined in more acute pathogenesis mechanisms, and the focus presented here will be on 

the biofilm-like infections. The majority of these studies have been performed with S. 
aureus, but some studies on S. epidermidis are also included. It should be noted that a 

number of other regulators have also been linked to biofilm formation, including MgrA 

(185) and ArlRS (186), but these are beyond the scope of this review.
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agr quorum-sensing system

The agr (accessory gene regulator) system is a peptide quorum-sensing system present in all 

the Staphylococci and a dominant regulator of pathogenesis and biofilm development in S. 
aureus. Its molecular characteristics and importance in pathogenesis have been thoroughly 

studied and reviewed in detail (187, 188). The agr system functions by sensing extracellular 

levels of an autoinducing peptide (AIP) that is produced by Staphylococci during growth. 

The chemical nature of this AIP signal is variable depending on the species, and can even 

have multiple types within a species. Briefly, the AIP is released outside the cell where it 

accumulates, and at a particular concentration (usually in the low nM range), the AIP binds 

to the surface-exposed AgrC histidine kinase, activating a two-component response. This 

results in phosphorylation of the response regulator AgrA, which in turn induces expression 

of the primary output of the system, the regulatory transcript RNAIII (189). In parallel, 

AgrA activates transcription of the PSMα and PSMβ transcripts (190), and also autoinduces 

the quorum sensing machinery. RNAIII is the main effector of the system and directly 

regulates production of virulence factors, and also regulates the translation of the repressor 

of toxins (Rot) (191). In the Staphylococcal strains where global changes in agr-dependent 

gene expression have been assessed (192, 193), the general dogma is that induction of the 

agr system leads to up-regulation of secreted enzymes and toxins, while simultaneously 

down-regulating adhesins.

Understanding and interpreting the literature on the agr system is a challenging task, in part 

due to the depth of the literature but also due to the complexities of the system. Focusing on 

S. aureus, one of the most overlooked issues is that the dynamic range of the agr system is 

tremendously variable across strains (187), meaning some strains barely produce RNAIII 

whereas others, like the USA300 strains, produce very high levels (194). In recent years, the 

molecular nature of this variability has begun to be examined (195), providing preliminary 

explanations for why some S. aureus strains have muted agr function, resulting in reduced 

RNAIII levels. The challenge becomes interpreting the results of agr mutant studies, where 

in a USA300 strain the mutation has a dramatic impact on many phenotypes (196–198), but 

in others, such as some clonal complex 30 strains (195), has little impact. Further 

complicating this issue, some older lab strains, such as 8325–4, have known mutations that 

lead to dysregulation of agr function (199). Thus, care must be taken in interpreting results 

of studies, especially in animal studies of infections, and unfortunately the agr function of 

strains used for some of these studies is not known.

Several studies have investigated the role of quorum sensing in the biofilm life cycle. The 

current model is that biofilm initiation and maturation require low agr expression, while 

subsequent agr activation within the biofilm induces dispersion to the planktonic state. 

Indeed, multiple studies of S. aureus and S. epidermidis have shown that isogenic agr 
mutants display increased biofilm formation in vitro (24, 199–201). As the biofilm develops, 

small populations experience agr re-activation and disperse from the biofilm (27, 187, 202). 

An established S. aureus biofilm can be fully dispersed by the addition of AIP to induce agr 
activation (179, 203), and the dispersion process is mediated by agr-regulated proteases, 

most prominently the Staphopain enzymes (204). The agr regulation of the proteases is via 

Rot, whose transcriptional repression of the proteases is relieved when agr is induced (205, 
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206). A model for this regulatory pathway is shown in Figure 3. Currently, the major 

missing piece of this model is the specific biofilm matrix proteins that are targeted by the 

Staphopain enzymes, and this is a topic of ongoing investigation. The other prominent agr-
regulated factors linked to biofilm dispersion are the phenol-soluble modulins (PSMs) (23). 

These peptides have surfactant activity that is anti-biofilm in nature. On the whole, these 

results support the model that under agr repressive conditions or with agr null mutants, S. 
aureus cells have increased biofilm capacity in vitro due to the absence of secreted dispersal 

factors. However, in a biofilm infection, the importance of the agr system for initiation 

depends on the type of infection (see below), presumably because in some tissue sites S. 
aureus must secrete agr-regulated immunomodulating factors to survive. Once the biofilm 

has been established, both in vitro and in vivo studies indicate that activation of the agr 
system can lead to dispersal of the cells and dissemination to new sites.

Environmental conditions are a critical factor in controlling agr function. S. aureus can 

metabolize many sugars (207), and the low pH generated from excretion of short-chain fatty 

acids can repress agr activity (208). For development of an in vitro S. aureus biofilm, excess 

sugar (e.g. glucose) must be provided to trigger the pH decline and promote biofilm 

formation (179). The expression of agr-regulated factors, such as the Staphopains, must be 

repressed in order for S. aureus cells to attach and initiate biofilm development. For other 

Staphylococcal species, this low pH requirement is less clear. In S. epidermidis, the addition 

of excess glucose was not essential for promoting biofilm formation (134), but whether this 

is related to agr function is not known. The control of agr function is also beginning to be 

appreciated in the host environment. Proteins found in human serum are known to repress S. 
aureus agr activity (209), including apolipoprotein B (210, 211). Hemoglobin is another 

abundant host protein with known agr inhibitory properties (212). Environmental 

contaminants that accumulate in the body, like triclosan, have also been linked to enhanced 

biofilm formation (213). Altered environmental conditions can impact biofilm structure as 

well, as recently demonstrated with the conversion of PSMs into protease-resistant amyloid 

fibers (214).

The role of agr during infection is complex and been the focus of many studies. The 

contribution of agr to acute pathogenesis has been reviewed previously (187), and we will 

focus on chronic infections with biofilm-like properties. One of the most common models of 

biofilm infection is a catheter placed subcutaneously in the flank of a mouse. Staphylococci 

are inoculated into the lumen of the catheter and allowed to develop into a biofilm over an 

extended time period (215). The inoculum dose can be varied, as it is known that foreign 

bodies greatly reduce the bacterial load required to colonize (10). Using this model, S. 
aureus agr mutants have no defect in the ability to colonize the catheter and develop a 

biofilm (216). However, these mutants are less able to disseminate into other tissues (23), 

consistent with the concept that the agr system is a dispersing mechanism. Using a similar 

rabbit model of indwelling medical device infection, an S. epidermidis agr mutant actually 

had an increased ability to colonize the device (24). For both S. aureus and S. epidermidis, it 

has been demonstrated that PSMs are important for dispersing from a foreign-body biofilm 

(23, 217). It seems likely that the many exo-enzymes secreted by these pathogens are also 

important for dissemination through the host, and our preliminary studies confirm this 

hypothesis (216).
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For chronic infections involving host tissue, the function of the agr system has also been 

assessed. S. aureus is one of the leading causes of osteomyelitis, a chronic infection of the 

bone that has known biofilm-like properties (12). S. aureus agr mutants are attenuated in the 

ability to establish osteomyelitis (22). S. aureus is also the leading cause of infective 

endocarditis (218), another chronic infection where bacteria attach to the heart valve and 

develop into a vegetation composed of matrix proteins, platelets, and immune cells. Similar 

to osteomyelitis, S. aureus agr mutants show a defect in the ability to establish infection 

(21). Interestingly, the agr system showed progressive activation within the endocarditis 

vegetations (219), which is in contrast to what is observed in biofilms under in vitro 
conditions (179). As an added complication of endocarditis, septic emboli can dislodge and 

enter the bloodstream, and these emboli have biofilm characteristics that make them more 

resistant to antibiotics than planktonic bacteria and are potentially life-threatening for the 

patient (220–223).

It is generally accepted that low levels of agr expression are observed in chronic infections 

(224–226), suggesting that the loss or decreased activity of agr is an adaptation to allow 

persistence in the host environment. However this is somewhat misleading, since the 

comparison for these claims is usually in vitro broth culture, in which agr function and 

RNAIII levels are extremely high. The more informative experiment is tracking agr function 

over time within the infection, which was performed with infective endocarditis (219), but 

has not been attempted more systemically in other infection types. Some of the studies on 

low agr expression are based on S. aureus isolates from the cystic fibrosis lung. Growth of 

bacterial pathogens, like Pseudomonas aeruginosa, in cystic fibrosis are known to be in 

biofilm state, but there is limited information on S. aureus, although link to biofilms has 

been suggested (15). What is clear is that agr negative mutants do frequently appear during 

biofilm growth in vitro (227) and during biofilm infections (226, 228). In part, this could be 

due to the increased fitness cost of expressing the agr system in presence of antibiotic 

pressure (229). When S. aureus reenters a normal state, the maintenance requirement of the 

agr system is restored (230).

As a global regulator, the agr quorum-sensing system has widespread effects on gene 

expression that can strongly impact the Staphylococcal biofilm life cycle. However, the 

complexity of the system and the factors that alter its expression can result in varied effects 

of the agr system in vivo. When studying the role of the agr system during infection, the agr 
expression level of the Staphylococcal strain must be considered, as well as the infection 

niche and the relevant host factors that may modify the importance of agr. Since inhibition 

of agr has begun to be investigated as possible treatment for S. aureus infections (231–233), 

further work needs to be done to clarify the types of in vivo conditions and infections that 

would benefit from this.

AI-2

AI-2, or autoinducer-2, is a second quorum-sensing molecule that is present in both Gram-

positive and Gram-negative organisms, and is thought to be a bacterial interspecies signaling 

molecule (234, 235). AI-2 has been shown to inhibit biofilm formation and virulence in both 

S. aureus and S. epidermidis. In S. epidermidis, a mutant that does not produce AI-2 had 
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greatly increased biofilm formation in vitro and increased virulence in a rat central venous 

catheter infection model (236). This mutant also had increased expression of the secreted 

polysaccharide synthesis operon ica and increased polysaccharide production, which is 

thought to be the mechanism for its biofilm phenotype. Similar findings were reported in S. 
aureus by Yu et al., in which an AI-2 mutant had increased biofilm formation in vitro and in 

a murine catheter infection model. AI-2 was also shown to positively regulate expression of 

the ica operon repressor icaR, leading to increased production of extracellular 

polysaccharide in the AI-2 mutant (237). An S. aureus AI-2 mutant also displayed increased 

survival in human blood and macrophages (238). Yu et al. also investigated the relationship 

between AI-2 and agr regulation in S. epidermidis biofilm formation. The two were found to 

have an additive effect, in which a double mutant had higher biofilm formation than either 

single mutant (237).

SigB

Sigma B (SigB) is an alternative sigma factor of RNA polymerase that is activated in stress 

response and leads to global changes in promoter specificity, and thus gene expression (239). 

Strains lacking SigB have tremendous changes in regulatory profiles that alter biofilm 

formation and virulence. S. aureus mutants in the global regulator sigB are unable to form a 

biofilm in vitro (199). This phenotype is mediated both by increased protease activity (240, 
241) and increased nuclease activity (242). Part of the reason for increased protease activity 

has been linked to hyper-activation of the agr system in SigB-defective strains (199). In S. 
epidermidis, a sigB mutant also was reported to have decreased biofilm formation and 

increased expression of icaR, which represses production of the extracellular polysaccharide 

PIA (243, 244).

SigB also plays an important role in the response of Staphylococci to the in vivo 
environment. In a murine intravenous infection model with S. aureus, SigB cascade was 

reported to be highly transcriptionally active, although a sigB mutant had no difference in 

disease outcome in the mice (245). However, an S. epidermidis sigB mutant did have a 

defect in colonization in a rat model of foreign body infection (246). Expression of S. aureus 
SigB is also activated by human pulmonary surfactant and after internalization by human 

bronchial epithelial cells (247, 248).

Spontaneous sigB mutants arise in vitro in biofilm formation and in chronic Staphylococcal 

infections (249, 250). These mutants are small colony variants, which have elevated 

extracellular protease activity and decreased biofilm formation. They also have increased 

intracellular persistence and are thought to contribute to virulence of S. aureus infections 

(250). These results suggest that biofilm populations and infecting bacteria are 

heterogeneous in gene sequence as well as expression level of key virulence factors.

SarA

The sar (Staphylococcal accessory regulator) locus was discovered in a transposon 

mutagenesis screen for fibrinogen-binding-negative mutants (251). In addition to decreased 

fibrinogen binding, the sar mutant had an altered exoprotein profile, with increased protease, 

lipase, and α-hemolysin. The sar locus produces three transcripts from three separate 
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promoters, all of which contain the ORF for the DNA-binding protein SarA (252, 253). 

Early studies showed that a sar mutant had decreased levels of the agr transcripts RNAII and 

RNAIII (254–256). EMSA (electrophoretic mobility shift assay) studies have shown that 

purified SarA directly binds to three sites within a region spanning the P2 and P3 promoters 

of the agr locus (253). SarA regulatory activity therefore occurs partially via its effects on 

agr.

SarA also directly regulates several genes that affect biofilm formation. A putative SarA 

binding site has been identified upstream of several SarA-regulated genes, providing a 

mechanism for direct regulation by DNA binding (257). SarA represses transcription of the 

collagen adhesion cna even in the absence of agr, and directly binds to the cna promoter 

region (258, 259). A microarray revealed that in addition to positively regulating fnbA and 

fnbB, SarA negatively regulates isaB and spa, and all of these gene promoters contain a 

putative SarA binding site (193). SarA also positively regulates bap, a cell wall adhesin 

found in bovine isolates of S. aureus, via direct binding to its promoter (260). Secreted 

proteases and nuclease are also up-regulated in sarA mutants (193, 261, 262). Since the 

opposite phenotypes are observed in agr mutants, it is apparent that this effect occurs via an 

agr-independent pathway.

Multiple studies have reported that in S. aureus, SarA is required for biofilm formation, both 

in vitro and in vivo (175, 263–265). Various mechanisms for this phenotype have been 

proposed. The first study to report the S. aureus sarA mutant biofilm defect also showed that 

this mutant had decreased ica transcription and PIA production, and suggested that this 

could partially account for the biofilm phenotype (264). However, a later study showed that 

while a S. aureus sarA mutant did not produce a biofilm, an ica operon knockout had no 

decrease in biofilm formation (183). These studies were performed in vitro as well as in vivo 
using a murine model of catheter-associated biofilm infection. The results indicate that ica 
regulation is not the sole factor behind the sarA knockout biofilm phenotype, and in fact that 

PIA production may not be critical under certain biofilm conditions.

Biofilm formation in sarA mutants is also thought to be inhibited by their increased protease 

and nuclease activity. Although one study found that protease inhibitor treatment did not 

alter the phenotype of a sarA mutant, only the initial attachment was tested rather than the 

endpoint of biofilm growth (264). A later report found that treatment with a cocktail of 

protease inhibitors for all the secreted proteases resulted in increased biofilm formation of a 

S. aureus sarA mutant in the clinical isolate UAMS-1 (266). This suggests that increased 

protease activity contributes to the sarA biofilm phenotype. The same study showed that a 

sarA nuc double mutant had improved biofilm formation relative to a single sarA mutant, 

demonstrating that the effect of SarA is also partially mediated by nuclease production. In a 

group of three S. aureus clinical isolates, sarA mutants had decreased biofilm formation 

regardless of their various levels of agr expression (267). This study also found that protease 

inhibitor treatment improved biofilm formation in sarA mutants of each clinical isolate, 

confirming the impact of secreted proteases on biofilm formation. On the whole, these 

results suggest that SarA-mediated effects on biofilm formation are mediated by secreted 

enzymes more than PIA, and are at least partially independent of agr.
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There are conflicting reports of the effect of sarA mutation on S. epidermidis. In two S. 
epidermidis clinical isolates, sarA mutation was found to drastically increase biofilm 

formation (268). In the same study, S. epidermidis SarA was also found to positively 

regulate transcription of the ica operon and bind to the icaA promoter, indicating that SarA 

induces biofilm formation via PIA production. In contrast, Christner et al. showed that SarA 

represses biofilm formation in an S. epidermidis clinical isolate by two mechanisms (269). 

Mutation of sarA dramatically increased biofilm formation in the aap-negative, ica-negative 

S. epidermidis clinical isolate 1585 as well as in an S. epidermidis 1457 icaA mutant. The 

first mechanism of biofilm enhancement in the sarA mutant was increased expression of the 

cell wall adhesin embp (extracellular matrix binding protein). A double sarA embp mutant 

had decreased biofilm formation relative to the sarA mutant, indicating that the sarA 
phenotype was partially dependent on Embp. The second mechanism of biofilm 

enhancement was found to be increased protease expression in the sarA mutant, although 

this is contrary to previous findings in S. aureus. S. epidermidis sarA mutants have increased 

production of the metalloprotease SepA (270), which was shown by Christner et al. to 

induce processing of the autolysin AtlE, leading to increased lysis and eDNA release (269). 

This study shows that SarA is a positive regulator of the eDNA- and Embp-dependent 

biofilm.

EVASION OF THE HOST IMMUNE SYSTEM

Staphylococcal biofilms are noted for their resistance to host immune clearing, and there 

have been significant efforts to characterize the mechanisms that contribute to this resistance 

(271–273). Studies have investigated the effects of Staphylococcal biofilms on immune cell 

function, the host antibody response to chronic Staphylococcal infection, and the 

Staphylococcal transcriptional response to host innate immune cells.

In the innate immune system, PMNs (polymorphonuclear leukocytes) and macrophages are 

the first responders to Staphylococcal infection (17, 274–276). Although one study reported 

minimal PMN influx in a murine model of catheter-associated S. aureus biofilm growth 

(273), others have demonstrated that activated PMNs are prevalent at the site of infection in 

human patients with orthopedic device-associated Staphylococcal biofilm infections (277, 
278). Multiple studies have reported that human PMNs in in vitro co-culture with S. aureus 
localize to the biofilm and can phagocytose bacteria (279, 280). In an S. epidermidis biofilm 

grown in vitro, PMNs were able to attach to the biofilm, release granule components from 

both primary and secondary granules, and phagocytose biofilm bacteria (281). These effects 

were observed with or without opsonization, which suggest they are mediated at least in part 

by bacterial components that interact with the PMNs.

PMNs can attack Staphylococcal biofilms by phagocytosis, release of toxic granule 

components, and production of NETs (Neutrophil Extracellular Traps), although there is 

evidence that these effects are dampened relative to planktonic bacteria (282). S. epidermidis 
is more resistant to in vitro killing by human PMNs when grown in a biofilm than grown 

planktonically (283). The S. epidermidis extracellular polysaccharide PIA is thought to play 

a role in evading PMN killing, as it has been shown that an S. epidermidis ica mutant 

exhibits increased susceptibility to phagocytosis and killing by human PMNs in vitro (284). 
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Similarly, the S. aureus capsular polysaccharide inhibits opsonophagocytosis of planktonic 

bacteria by PMNs in vitro and is required for full virulence in a murine model of septic 

arthritis (285, 286). Although these studies did not directly test phagocytosis of biofilm 

bacteria, the results suggest that PIA and capsule in a Staphylococcal biofilm may shield the 

bacteria from the host immune response. The agr system may also allow the Staphylococcal 

biofilm to resist PMN killing. In S. aureus, an agr mutant biofilm was less cytotoxic to 

PMNs in co-culture than its wild type counterpart, suggesting that biofilm cells expressing 

agr could kill PMNs and therefore evade phagocytosis and killing by PMNs (279). This 

corroborates an earlier study testing interactions of planktonic wild type and agr mutant S. 
aureus with PMNs, which also found that the agr mutant induced decreased PMN lysis 

(198).

Neutrophil Extracellular Traps (NETs) were first described by Brinkmann et al., who 

showed that activated PMNs produce thread-like projections composed of DNA and granule 

components (287). NETs bind to microbes in vitro and degrade bacterial extracellular 

virulence factors as well as kill the bacteria. NET formation is thought to occur via a 

regulated cell death pathway termed NETosis that is distinct from necrosis and apoptosis 

(288). S. aureus extracellular nuclease has been shown to degrade NETs, thereby allowing 

the bacteria to resist NET-mediated killing (289, 290). Since the secreted nuclease is unique 

not found in all Staphylococci, speces that lack it may be more susceptible to NETs, 

although an additional surface-attached nuclease is conserved among the Staphylococci 

(291).

The interactions between Staphylococcal biofilms and host macrophages have also been 

investigated. These studies have led to a model (see Figure 4) in which Staphylococci 

promote an anti-inflammatory, pro-fibrotic environment via alternative macrophage 

activation (271, 273). Macrophages can undergo at least two varieties of activation, 

including classical and alternative (292). Classically activated (M1) macrophages are 

characterized by their ability to present antigen and degrade intracellular pathogens, while 

alternatively activated macrophages are inefficient at both of these. Alternatively activated 

(M2) macrophages have high arginase (Arg-1) activity, which decreases their ability to 

destruct intracellular pathogens (293) and promotes collagen formation, extracellular matrix 

proliferation, and wound healing (294). Planktonic Staphylococci have been shown to 

induce classical activation of macrophages and are readily phagocytosed (295). However, in 

a S. aureus biofilm co-culture with macrophages, Scherr et al. observed little macrophage 

phagocytosis of S. aureus cells, and few macrophages in close proximity to the biofilm 

(279). A co-culture study of S. aureus biofilms and macrophages reported that macrophages 

that interacted closely with the biofilm performed little phagocytosis and exhibited gene 

expression patterns consistent with M2 activation. Further, the same study showed that 

macrophage death was induced in cells that were close to the biofilm (295). Another group 

has also reported that clfA expression prevents macrophage phagocytosis by a mechanism 

that is independent of binding to fibrinogen (296). These results suggest that biofilms can 

promote a macrophage phenotype that favors the progression of infection and produce 

factors that are cytotoxic to macrophages.
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Multiple studies have performed microarrays on S. aureus following co-culture with innate 

immune cells to determine global regulatory changes that facilitate Staphylococcal survival. 

A microarray study of S. aureus following interactions with PMNs and macrophages 

revealed more extensive changes in regulation after exposure to macrophages. Although 

various S. aureus genes were differentially regulated in response to PMNs, a striking global 

down regulation was observed following co-culture with macrophages. In both an immature 

and a mature biofilm, downregulation of hundreds of genes was observed, corresponding to 

a global decrease in metabolic processes (279). Another report demonstrated that following 

co-culture with phagocytic PMNs, S. aureus experienced widespread changes in regulation. 

Stress response proteins such as catalase were up-regulated, as well as virulence factors such 

as hemolysins and fibrinogen-binding proteins. There was also a shift in the metabolic 

profile relative to broth culture, and changes in global regulators. Of note, the Sae system, 

which positively regulates several secreted toxins and other virulence-associated proteins 

(196, 297–299), was up-regulated several fold after exposure to PMNs (300). The Sae 

system was later shown to differentially regulate its various targets in response to specific 

neutrophil stimuli (301), and sae mutants have decreased survival in in vitro PMN 

phagocytosis assays (299). These results demonstrate that S. aureus has an arsenal of tools to 

survive PMN and innate immune assault, and that the Sae system in particular is a crucial 

element.

Several studies have characterized the S. aureus proteins that are targeted by the host 

antibody response following infection or colonization (302–304). This group of antigens is 

referred to as the immune proteome, and identifies proteins that are expressed in vivo and 

may be important to virulence. These findings also may suggest targets for the development 

of a vaccine for S. aureus, which has been an area of interest in recent years.

OTHER STAPHYLOCOCCAL SPECIES

The study of Staphylococcal biofilm formation has largely focused on S. aureus and S. 
epidermidis. However, other Staphylococcal species are also pathogenic biofilm-formers. 

Staphylococci are classified based on their production of the blood-clotting enzyme 

coagulase, a secreted protein that induces the conversion of fibrinogen to fibrin (305, 306). 

The genus Staphylococcus comprises 47 species: 8 of which are coagulase-positive or 

coagulase-variable, 38 of which are coagulase-negative, and one, S. schleiferi, that has both 

a coagulase-negative and a coagulase-positive subspecies. Of the coagulase-positive 

Staphylococci, S. aureus is the sole species that is primarily associated with human-disease 

(1). However, there have been reports of other coagulase-positive Staphylococci colonizing 

or causing disease in human hosts who have significant contact with animals (307, 308). 

One example is S. pseudintermedius, a commensal of dogs that is implicated in canine 

opportunistic infection (309). Biofinformatic and proteomic analyses have been employed to 

study the cell wall adhesins of S. pseudintermedius, leading to further study of two proteins 

(SpsD and SpsL) to which canines have antibodies, indicating their expression in vivo (310, 
311).

The coagulase-negative Staphylococci (CoNS) are the third most common cause of human 

healthcare-associated infections (8) and the number one cause of bovine intramammary 
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infections (312–314). They have been reviewed thoroughly in (44) and (1). Within the 

CoNS, S. epidermidis is the most frequent cause of medical device-related infections, and is 

able to infect virtually any medical implant including catheters, central lines, ventilators, 

prosthetic joints, and pacemakers (8, 315–317). One reason for its high rate of infection may 

be its prevalence in the normal skin flora and ability to colonize many surfaces of the human 

body, including the anterior nares, axillae, and inguinal and perineal areas (1, 318). Other 

CoNS species inhabit various niches of the human body. S. lugdunensis is found particularly 

in the lower extremities of the body in the perineal and groin areas, as well as in the axillae 

(319, 320). S. haemolyticus is preferentially isolated from axillae and pubic areas (318, 
321), and S. saprophyticus from the gastrointestinal tract, rectum, and urogenital tract, 

typically in younger individuals (1, 322, 323).

Of the coagulase-negative Staphylococci, Staphylococcus lugdunensis is considered to be 

the most similar to coagulase-positive Staphylococci (1). It is a skin commensal and 

opportunistic pathogen, responsible for 0.8%–7.8% of infectious endocarditis cases in non-

drug users (324), with morality rates ranging from 38%–42% (324, 325). These high 

mortality rates are similar to those of S. aureus endocarditis, and are suggestive of aggressive 

infection. It is also implicated in infections of medical devices, such as catheters and 

prosthetic joints (326–328). Recent studies have also demonstrated that S. lugdunensis is a 

significant cause of skin and soft-tissue infections, with up to 53 per 100,000 per year (329).

For mechanisms of pathogenesis, S. lugdunensis possesses several virulence factors, 

including surface adhesins, that have been reviewed in (330). A mutant in the cell wall-

anchoring enzyme Sortase A was attenuated in an experimental endocarditis model, 

confirming that like in S. aureus, adhesins contribute to S. lugdunensis-mediated 

endocarditis (331). S. lugdunensis also has an ica locus for PIA synthesis, although its role 

in biofilm formation is not clear, since S. lugdunensis biofilms in vitro were not sensitive to 

degradation by either of the PIA-targeting factors Na-metaperiodate or Dispersin B (332). 

Biofilm formation may be a significant factor in infection, as S. lugdunensis clinical isolates 

from prosthetic implant infections have been shown to be strong biofilm formers in vitro 
(333). In addition to its biofilm-forming activity, S. lugdunensis has several putative 

cytolysins, including the SLUSH (Staphylococcus lugdunensis synergistic hemolytic) 

peptides, which are similar to S. aureus delta-toxin Hld, and another Hld-like protein (330, 
334). However, the activity and virulence role of these SLUSH proteins is not known.

S. haemolyticus has been implicated in a range of opportunistic infections in humans, 

including prosthetic device infections (335) and postoperative endophthalmitis (336). In a 

study of S. haemolyticus isolated from bloodstream infections, 66% of the isolates formed 

robust biofilms in vitro, but the same strains were all negative for PCR of the ica operon for 

PIA synthesis (337). This suggests that S. haemolyticus has other means of biofilm 

formation. The Bap adhesin was present in several biofilm-positive S. haemolyticus 
nosocomial infection isolates, identifying at least one PIA-independent mechanism that may 

contribute to S. haemolyticus biofilm formation and infection (338).

Since S. saprophyticus colonizes the rectum and urogenital tract, it is unsurprising that it is a 

common cause of urinary tract infections (UTIs). S. saprophyticus is the second most 
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frequent cause of UTI in young, sexually active women, although it also causes UTIs in 

populations of all ages (339, 340). S. saprophyticus has several adhesins that contribute to 

virulence, including SdrI and the serine-rich repeat protein UafB (see adhesins section). It 

also secretes urease, an enzyme that hydrolyzes urea to carbon dioxide and ammonia, which 

raises the pH of the urinary tract and can result in calculi formation. Urease was shown to be 

a virulence factor in a rat model of S. saprophyticus UTI (341). Chemical inhibition of 

urease was able to prevent the pH change caused by S. saprophyticus growth in an artificial 

urine medium, although the effectiveness of this as a treatment has yet to be tested in vivo 
(342).

CONCLUSIONS AND FUTURE PERSPECTIVES

The goal of this review on Staphylococcal biofilms is to summarize the latest literature on 

the function of adhesins, regulatory cascades, and the host response to these biofilms, with a 

focus on the noted pathogens S. aureus and S. epidermidis, and also coverage on other CoNS 

biofilms. The significant body of work available indicates that there are numerous 

mechanisms to assemble a mature Staphylococcal biofilm, and these structures vary 

depending on the substratum, the adhesins particular Staphylococci express, and the matrix 

materials available. Within a biofilm infection, the host niche clearly also has an important 

role in biofilm matrix composition and impacting the regulatory pathways controlling 

expression of Staphylococcal biofilm factors.

A number of recent studies provide convincing evidence that the Staphylococcal biofilm 

cells are equipped to thwart the host immune response, making them more resistant to the 

host immune system than planktonic cells. Recent findings have also shown that 

Staphylococcal biofilms contain heterogeneous populations, with a subset of cells 

contributing to the development of antibiotic resistance. In several bacteria, the phenomenon 

of persister cells has been observed, which are a small portion of a bacterial population that 

remains following antibiotic treatment (343, 344). S. aureus persisters were first observed in 

a murine model of deep wound infection. Treatment with vancomycin killed 99% of S. 
aureus cells, while the remaining 1% continued to be unaffected by vancomycin even after 

another day of treatment, suggesting a persister population (345). Other studies have 

demonstrated that the appearance of heterogeneous populations can develop within a S. 
aureus biofilm (227), and further studies have shown these sub populations can interact to 

promote vancomycin-intermediate resistance phenotypes (346). Clearly, biofilms are a 

diverse population with varying phenotypic properties that can contribute to the progress of 

an infection in complex ways.

Despite all the advancements, much remains to be elucidated regarding the defined nature of 

the in vivo biofilm state. Although the term “biofilm” is broadly applied to various growth 

states ranging from benign skin colonization to endocarditis, the universal qualities among 

these that specifically define biofilm characteristics are not clear, making it challenging at 

times to compare results across studies. There have been efforts to identify universal 

biomarkers of a Staphylococcal biofilm (9), as well as clarify the roles of virulence 

determinants that are unique to certain biofilm infection types, but there is still a pressing 

need for more studies in this direction to standardize the field. In part, researchers 
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themselves have created this dilemma by trying to link every Staphylococcal growth state to 

a biofilm without considering the limitations of such a diverse umbrella. Attempts have been 

made to reign in the enthusiasm by trying to keep certain growth states separate and 

uniquely defined, such as colonization (347), but the popularity of “biofilms” keeps this 

terminology at the forefront of any literature on Staphylococcal communities. Further, with 

the growing literature on other community states, such as synovial aggregates (348), 

polysaccharide aggregates (349), and fibrinogen-based clumping (350), there is a growing 

need for investigations to compare and contrast properties of these states with classical 

biofilm features.

The study of Staphylococcal biofilm development has advanced much over the past decade, 

and we have endeavored in this review to cover many of the recent advances. In the future, 

biofilm studies will need to be extended to more host relevant conditions in order to properly 

model and understand the in vivo biofilm state. Too often, in vitro studies leave out host 

factors that can impact biofilm maturation in many different ways, and these conditions need 

to be considered when modeling biofilm development in vitro or in vivo. We need to 

properly understand all these different complexities to best position therapeutic development 

for treating biofilm infections.
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Figure 1. 
The biofilm life cycle. Recent studies have identified steps present in early stages of biofilm 

formation. After attachment, bacteria form a lawn of growth, which undergoes an exodus 

period that leaves several small foci of cells. The exodus phase is mediated by the SaeRS 

system via nuclease enzyme activity. The foci of cells then develop into a mature biofilm, 

containing tower structures. Final dispersal is mediated by the agr system via secreted 

enzymes and PSMs.
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Figure 2. 
Cell wall-anchored adhesins. All the cell wall-anchored adhesins contain an N-terminal 

signal sequence (SS) and a C-terminal portion that is cleaved by Sortase A at the LPXTG 

sequence. MSCRAMMs contain three IgG-like folds N1, N2, and N3, followed by specific 

ligand-binding domains. In the Sdr protein subfamily, a variable number of B repeats is 

found between the IgG-like folds and the SD repeat region. SdrC is shown, which contains 

two of these B repeats. Similarly, the Isd proteins contain one, two, or three NEAT motifs. 

IsdA is shown, which has one. In SpA, there are four or five IgG-binding domains, 

sometimes referred to as domains E, D, A, C, and B. There follows a region containing a 

variable number of tandem repeats.
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Figure 3. 
Regulatory networks in biofilm formation. The agr quorum-sensing system induces 

expression of secreted Staphopain proteases by inhibiting translation of Rot (repressor of 

toxins), a negative regulator of the proteases. These proteases then degrade proteins on the 

Staphylococcal surface and in the biofilm matrix. The SaeRS system induces production of 

the nuclease enzyme that cleaves eDNA in the matrix. Sigma Factor B (SigB) inhibits agr 
expression, while SarA has been shown to directly enhance it.
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Figure 4. 
Macrophage activation pathways. Biofilm growth of Staphylococci has been shown to favor 

the M2 phenotype in macrophages, which is characterized by increased arginase and pro-

fibrotic activity, as well as decreased antimicrobial clearance. These changes are thought to 

contribute to the persistence of Staphylococci in biofilm infections. This figure is a 

reproduction from (273).
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