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Abstract

Current variant callers are not suitable for single-cell DNA sequencing (SCS) as they do not 

account for allelic dropout, false-positive errors, and coverage non-uniformity. We developed 

Monovar, a novel statistical method for detecting and genotyping single nucleotide variants in SCS 

data. Evaluation based on an isogenic fibroblast cell line and three different human tumor datasets 

showed substantial improvement of Monovar over standard algorithms for identifying driver 

mutations and delineating clonal substructure.

Next-generation sequencing (NGS) technologies have vastly improved our fundamental 

understanding of the human genome and its variation in normal populations and diseases 

such as cancer. However, most NGS datasets are composed of admixtures that represent 

genomes derived from millions of cells, and therefore mask genomic variations within the 

tissue sample. Recently, single cell sequencing (SCS) methods have emerged as powerful 

tools for resolving genomic variation in complex admixtures of cells, and measuring 

genomic information in rare subpopulations1. SCS tools have had a major impact on diverse 

fields of biology, including cancer research, neurobiology, microbiology, immunology and 

development2. In cancer research, SCS methods have greatly improved our understanding of 

intratumor heterogeneity and clonal evolution in human cancers3.
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While substantial progress has been made in the development of new technologies for single 

cell DNA and RNA sequencing, the computational tools are severely lacking2,3. While some 

progress has been made in computational methods for estimating DNA copy number4,5 and 

RNA expression6,7 in single cells, the methods for calling single nucleotide variants (SNVs) 

have not yet been developed. In most studies to date8–10, standard NGS variant callers such 

as GATK11, Samtools12, SOAPsnp13, SNVMix214, and Varscan215 have been applied. 

These variant callers, designed for bulk tissue samples, make many assumptions regarding 

the underlying properties of the data. This is problematic for SCS data, which have inherent 

properties and technical errors due to whole genome amplification (WGA), including non-

uniform coverage depth, allelic dropout (ADO) events, false-positive (FP) errors and false-

negative (FN) errors, making it difficult to call SNVs accurately16. Consequently, these 

studies have been challenged by a large number of FP and FN errors, which require 

extensive orthogonal validation.

To improve the detection of SNVs in SCS datasets, we developed a novel statistical method 

called Monovar (Fig. 1a and Online Methods), which leverages data from multiple single 

cells to discover SNVs with high confidence and mitigates the effects of uneven or low 

coverage. Monovar independently analyzes each locus of the DNA, assuming data coming 

from different loci to be independent. For a particular locus, the input data consists of an 

array of observed bases from multiple single cells and the corresponding base quality scores. 

Monovar calculates the posterior probability of the locus containing a variant, PsSNV = Pr(s 
= SNV|D) and based on this probability, the locus is classified as SNV or not. To calculate 

the posterior probability PsSNV, Monovar applies Bayes’ rule and uses the likelihood values 

λ(l) of alternate allele count, l, for every value of l in the set {0,..,2m}, where m is the 

number of single cell samples. Calculation of λ(l) requires summation of genotype 

likelihoods over all possible combinations of genotype conformations of the single cells that 

result in the corresponding alternate allele count and these values are efficiently estimated 

using a dynamic programming algorithm given a prior distribution of allele frequency. 

Monovar models the effects of WGA specific FP errors in the calculation of genotype 

likelihoods for homozygous genotypes. For heterozygous genotypes, effects of both ADO 

and FP errors are accounted for. After a locus is classified as SNV, the jth cell is genotyped 

based on the posterior probability of the genotype, , calculated using a dynamic 

programming algorithm. An optional consensus-filtering step follows genotyping, where 

variants with support from only one cell are filtered. The final output is a VCF4 file in which 

each SNV is a different row followed by a genotype vector with length equal to the number 

of single cells (Fig. 1a).

We first evaluated the performance of Monovar on three simulated SCS datasets (Online 
Methods and Supplementary Note), which showed that Monovar achieved higher precision 

compared to Samtools, GATK UnifiedGenotyper and GATK HaplotypeCaller 

(Supplementary Table 1). To validate Monovar’s performance on real datasets, we analyzed 

12 single cell exome sequencing data (mean coverage depth 65X and breadth 92.7%), 

generated by a method called single nucleus exome sequencing (SNES) from an isogenic 

fibroblast cell line (SKN2)16. Exome sequencing of reference population sample at high 

coverage depth (59×) and breadth (99.76%) was used for constructing a reference set of 
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variants (Supplementary Note). We compared Monovar against Samtools and GATK 

(HaplotypeCaller) for multi-sample SNV callset on the basis of precision and detection 
efficiency. Detection efficiency (or recall) of an algorithm is defined as the percentage of 

true SNVs that are discovered in the single cells. Precision of an algorithm denotes the 

fraction of SNV calls that are true positives. Monovar achieved substantially higher 

precision (0.8376) compared to GATK (0.6641) and Samtools (0.5845) with some 

improvement in the detection efficiency (Supplementary Table 2). Such improvement was 

particularly evident, when inspecting the true-positive (TP) and the false-positive (FP) SNVs 

called jointly or uniquely by the 3 callers (Fig. 1b–c). These data showed a major 

improvement in the reduction of specific FP classes, such as C:G > T:A transitions, which 

are the most prominent class of FP errors that arise during WGA in SCS experiments16 (Fig. 

1d, Supplementary Fig. 1b).

Monovar also achieved the highest dbSNP precision, i.e., 83.02% of the SNVs detected by 

Monovar, 67.55% by GATK and 60.71% by Samtools were found in dbSNP (v138), 

respectively (Supplementary Table 3). Precision-recall curve obtained by varying the 

threshold used for calling SNV revealed Monovar’s superior performance over GATK and 

Samtools regardless of the choice of threshold used for calling SNV (Fig. 1e, Supplementary 

Fig. 1a). In addition, Monovar achieved consistently better results as compared to GATK 

HaplotypeCaller, when we down-sampled SKN2 data to various coverage depths 

(Supplementary Note and Supplementary Fig. 2). Monovar was able to detect a high 

percentage of true mutations with high precision in minor subclones created by intermixing 

(Online Methods) in silico subsets of normal SKN2 single cells with subsets of tumor cells 

from a triple negative breast cancer patient (TNBC) data8 (Supplementary Note and 

Supplementary Fig. 3).

We applied Monovar to detect somatic mutations and delineate the clonal substructure of 

three human tumor samples: a TNBC patient8, a muscle invasive bladder cancer patient17 

and a childhood acute lymphoblastic leukemia (ALL) patient18 (Fig. 2). In the TNBC 

patient, Monovar was applied to single cell exome data from 16 tumor and 20 normal cells, 

resulting in the detection of 120 synonymous and 282 nonsynonymous somatic SNVs 

(Supplementary Table 4.1). Hierarchical clustering and multi-dimensional scaling (MDS) 

identified three major tumor subpopulations that shared a common genetic lineage (Fig. 2a) 

as evidenced by 269 shared founder mutations that arose early in tumor evolution and 

unique subclonal mutations in SYNE2 and PPP2R1A (sub 1), CHRM5 and NSD1 (sub 2) 

and TNC (sub 3). In addition to the previously reported mutations8, Monovar also detected 

an additional 163 clonal somatic mutations in genes including PTCRA, TLR1, ZNF581, 
ABCC10, KHDRBS1, TNFAIP3, in addition to subclonal mutations in ZNF266, NCOR1, 
CSRP2BP, LILRB3 (sub 1), MOGS, MANEAL and TMEM161A (sub 2), and TUBB4A and 

CHST7 (sub 3) (Supplementary Table 5.1).

Monovar was then applied to single cell exome data from 42 tumor cells and 11 normal cells 

from a muscle-invasive bladder carcinoma17 and detected 94 somatic mutations. 

Hierarchical clustering and MDS analysis identified three major subpopulations of tumor 

cells (sub 1, sub 2, sub 3) in addition to the normal cell population. Additionally, Monovar 

detected 54 subclonal mutations that were unique to each subpopulation, including 
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mutations in KIAA1958, NFATC3, VAMP3, NOP56, CYP4A11, RPL3, PARP4 (sub 1), 

ZNF785 and ATM (sub 2), and PALB2 and MTTP (sub 3) (Supplementary Table 4.2). 

Importantly, Monovar identified 42 additional somatic mutations that were not detected in 

the original study17, including clonal cancer gene mutations in FGFR3, CNTNAP3 and 

ZNF708 and subclonal cancer gene mutations in PCDH19 (sub 1), ZNF785 (sub 2) and 

PALB2 (sub 3) (Supplementary Table 5.2).

We also applied Monovar to targeted single cell DNA sequencing data from a pediatric ALL 

patient18 (patient #3) to analyze 255 single cells. Hierarchical clustering and MDS analysis 

of somatic SNVs identified 5 major subpopulations (Fig. 2c). In total, Monovar discovered 

57 somatic mutations (Supplementary Table 4.3), including 28 new somatic SNVs 

(Supplementary Table 5.3). Monovar identified significant mutations in OR4C3 and 

GPR107 (all subclones), LRFN5, PKD2L1 and ZNF781 (present in sub 2, 4, 5), DNAH7 
(sub 1), LYAR and FMNL1 (sub 2), RGS3 (sub 4, 5), and ADAMTS13, PRSS3, and 

PKD2L1 (sub 2, 3, 4, 5). Among these mutations, the clonal mutations in OR4C3 and 

GPR107, and the subclonal mutations in PKD2L1, ADAMTS13, PRSS3 and RGS3 were not 

identified in the original study18 (Supplementary Table 5.3).

In summary, these data show that Monovar is a major advance for calling SNVs in SCS 

datasets, compared to standard NGS variant callers. With the recent innovations in high-

throughput SCS methods to analyze thousands of single cells in parallel for RNA 

analysis19,20 (which will soon be extended to DNA analysis) the need for accurate DNA 

variant detection algorithms will continue to grow. Monovar is capable of analyzing large-

scale datasets, and handling different WGA protocols, therefore it is well suited for such 

studies. Although this study focused mainly on cancer datasets, Monovar can also be applied 

to SCS datasets in broad fields of biology, including neurobiology, microbiology, 

immunology, development and tissue mosaicism5. In the near future, as SCS methods move 

into the clinic, we expect that Monovar will have important translational applications in 

cancer diagnosis and treatment, personalized medicine and pre-natal genetic diagnosis, 

where the accurate detection of SNVs is critical for patient care.

 ONLINE METHODS

 Software availability

Monovar was implemented in Python. The source code and instructions for running 

Monovar are available at https://bitbucket.org/hamimzafar/monovar.

 Monovar Algorithm

Monovar is a multi-sample SNV calling method that takes as input aligned read data from 

multiple single cells. Monovar quantifies the likelihood values of alternate allele count in the 

population of single cells and utilizes those values to detect the presence of SNV at a 

particular site. The calculation of the likelihood values of alternate allele count requires 

summing over all possible combinations of genotype conformations necessitating the 

quantification of genotype likelihood values for each cell. Each single cell is assigned the 
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genotype with the highest value of the posterior probability calculated via a dynamic 

programming algorithm.

 Model assumptions

In a single cell sample, sequence data at different sites are assumed to be completely 

independent. This assumption follows what is practiced by most of the state-of-the-art NGS 

SNV callers for the sake of simplicity. Sequencing and mapping being context dependent, 

this assumption might not hold always for real data21. But this assumption should not affect 

our analysis, as we are interested in calling point mutations. We also assume that the data 

coming from different single cells are independent. At a genomic site, the mapping and 

sequencing errors of different reads are assumed to be independent. Since we are interested 

in finding SNVs, we assume that the variants are bi-allelic (triallelic SNVs are rare, 

~0.2%22).

 Calculation of genotype likelihood

In each single cell, the sequencing data at a site contains an array of bases observed on the 

sequenced reads and the corresponding base qualities. Considering the variants to be bi-

allelic, we denote the reference allele as r and alternate allele as a at a site. For homozygous 

reference and variant genotypes (g = 0(rr) and g = 2(aa) respectively), the likelihood 

calculation does not require the effect of allelic dropout (ADO). For the case pertaining to g 
= 1(ra) (heterozygous variant genotype), we need to account for allelic dropout. At a 

genomic site s, for a single cell having sequencing data d consisting of n reads, the 

likelihood of g = 0 and g = 2 can be calculated as

(1)

(2)

For the heterozygous genotype (g = 1), the effect of allelic dropout is considered while 

calculating the genotype likelihood. We assume that the preferential non-amplification due 

to an ADO event can affect either of the alleles with equal probability. At a particular site, 

ADO affects all the reads as amplification precedes sequencing. The likelihood of g = 1 can 

be calculated as

(3)

where,
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(4)

In Equations (1) to (4), di represents the observed base in the ith read.  represents the 

probability of β being the ‘intermediate allele’ given the genotype g = g[1]g[2]. β is a variable 

that takes value from {A,T,G,C}. The term ‘intermediate allele’ refers to the allele which is 

called after amplification. In the absence of any amplification errors, β should be either g[1] 

or g[2]. Due to the errors introduced during preparation of the sample, β can differ from both 

g[1] and g[2]. In the context of single cell sequencing data, β accounts for the FP errors 

introduced during the amplification process. β is a latent random variable and we assume 

that it follows a discreet four point distribution with parameter pe(Supplementary Table 6). 

pe represents a prior probability that β equals an allele different from the haplotypes of the 

given genotype. This type of distribution has been previously proposed23 in the context of 

bulk sequencing data. pad is the prior probability of allelic dropout.

 Variant Calling

Assuming diploid single cells, m single cells contain 2m chromosomes at a site. The 

posterior probability of the site being a SNV, PsSNV = p(s = SNV | D) is given by the 

probability, that at least one among 2m chromosomes contains an allele which is different 

from the reference allele. We introduce a random variable l, named alternate allele count, 

which gives us the number of chromosomes containing allele different from the reference 

allele. l can vary from 0 to 2m.

(5)

p(l = 0 | D) can be calculated using Bayes’ rule as

(6)

The sequencing data vector is given by D = {D1,.., Dm}. For a random genotype vector for 

m cells g⃗ = {g1,.., gm}, the likelihood of alternate allele count l is evaluated by

(7)

Zafar et al. Page 6

Nat Methods. Author manuscript; available in PMC 2016 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



δl,k is the Kronecker delta function which equals 1 if l = k and equals 0 otherwise. 

 is the number of alternate alleles in the genotype vector g⃗ = {g1,.., gm}.

To employ dynamic programming for the efficient computation of these likelihood values, 

we define hl,j as follows:

(8)

hl,j can be iteratively calculated using

(9)

The base cases are as follows

Likelihood of alternate allele count can be obtained from hl,j values using:

(10)

This type of dynamic programming approach has previously been explored21, 24 in the 

context of NGS data on a population of individuals.

The prior distribution on the alternate allele count is inspired by a population genetic prior

(11)

In equation 11, θ represents population level mutation rate, which is set to 0.00124. Higher 

prior probability was assigned to alternate allele frequency of 0 or 1, because we expect that 

at the vast majority of sites, a population of single cell genomes will have identical 

homozygous genotypes. This prior can help limit false positives introduced by whole 

genome amplification and sequencing, which occur randomly at single cell level.
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If the value of p(l = 0 | D) is smaller than 0.05, then the site is called as variant. The variant 

quality score in Phred scale is computed as

(12)

 Genotyping of single cells

After a site is declared to be a variant, each single cell is genotyped. For a variant site with 

reference allele r and alternate allele a, the genotype of a single cell can be either of 

{rr,ra,aa} corresponding to v ∈ {0,1,2}, indicating the number of alternate alleles. The 

posterior probability for the genotype of jth single cell,  is given by

(13)

where, cl,v is given by

 is the value of hl,m calculated for m − 1 cells excluding jth cell, {1,2,…, j − 1, j + 1,

…,m}. For the estimation of the posterior genotype probabilities of the single cells, the 

values of  are recalculated for all m possible subsets found by excluding one cell from 

the data. The genotype with the highest posterior probability is assigned to the single cell. A 

similar genotyping approach has been used previously 25 for bulk sequencing data. The 

genotyping results are stored as a string, called genotype vector that contains one character 

corresponding to one single cell. The character corresponding to a single cell can be ‘0’: 

homozygous reference, ‘1’: heterozygous variant, ‘2’: homozygous variant and ‘×’: 

insufficient coverage depth.

 Consensus filtering using multiple cells

To achieve a higher quality call set, a filtering step is introduced after genotyping. The 

consensus filter removes low quality variants that have lower support. Depending on the 
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genotype vector, the SNVs that are detected only in one single cell are removed as low 

quality. This step helps to remove spurious FP errors that occur at random positions in the 

single cell dataset. This step is optional but recommended for achieving a high quality call 

set.

 Computational complexity of variant and genotype calling

The variant calling and genotyping step contributes to the major computational complexity 

of Monovar. For the variant discovery process for a site of the genome, s, the dynamic 

programming algorithm comprises most of the computation. Let us assume, we have m 
single cell samples. The average number of reads per single cell is denoted by . If the total 

number of reads at site s combining all cells is denoted by Ns, , then . 

During the dynamic programming, for each single cell, amount of calculation is . 

The genotype likelihood calculation for each cell is  and for each single cell, we need 

to fill O(m) entries of the DP matrix. We need to do this for m single cells. Therefore, the 

asymptotic complexity of the variant discovery algorithm for a single site is 

i.e., O(m2 + Ns). Ns varies over different sites and the variant discovery has linear 

complexity on the size of Ns. In the genotyping step, Monovar genotypes each single cell at 

the site s, where a variant has been discovered. To genotype a single cell, we need to find the 

genotype likelihood, which is . Also we need to redo the dynamic programming 

excluding the current single cell. Therefore, cost of genotyping a single cell is 

. Asymptotic complexity of genotyping m single cells is given by 

 i.e., O(Ns (m2 + Ns)). If we store the genotype likelihood values found in 

the variant discovery process, then the asymptotic complexity of genotyping of each single 

cell is O(1).O(m2) i.e., O(m2). Therefore, asymptotic complexity of genotyping m single 

cells is O(m3).

 Simulation of single cell sequencing dataset

A 1 Mbp region of chromosome 20 of human genome (hg19) was chosen as the reference 

genome. Assuming ncell to be the number of single cells in the population, ncell synthetic 

genomes were constructed from the reference genome. The SNVs introduced in synthetic 

single cell genomes are the true SNVs. 1,000 SNVs (SNV rate 0.001/bp) were introduced in 

the reference region and those were shared by the single cells. These 1,000 SNVs served as 

the gold standard set. 1/3rd of the SNVs were present in all the cells. Other 1/3rd SNVs were 

present in half of the single cells. The rest of the SNVs had frequency other than 0.5 or 1 in 

the population and were either shared by a number of single cells or present as singletons in 

different single cells. Amplification errors were introduced in the single cell genomes. 

Allelic drop out rate was set to 20%8 and false positive error rate was set to 3.2e− 516. Paired 

end sequencing reads were generated for each single cell using program dwgsim (http://

davetang.org/wiki/tiki-index.php?page=DWGSIM). Sequencing error rate was set to 0.01% 

while generating the reads. dwgsim also simulated base quality scores for each sequenced 

nucleotide. Reads were discarded at random intervals to emulate the coverage variation in 

single cell sequencing data. The coverage depth of the simulated data was 24×. Three 

datasets varying in the number of cells (10, 15 and 20) were generated.
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 Isogenic cell line data

Single cell sequencing data from an isogenic fibroblast cell line (SKN2) was used for the 

validation of Monovar. SKN2 is an isogenic human fibroblast cell line that was obtained 

from the Cold Spring Harbor Laboratory (Dr. Michael Wigler). SKN2 was cultured using 

Dulbecco’s Modified Eagle Medium with 10% fetal bovine serum, penicillin/streptomycin 

and L-glutamine. The data consisted of exome sequencing data from 12 single cells and bulk 

sequencing data (reference population) from millions of cells.

 Sequencing data from human tumor samples

We applied Monovar to three different human tumor samples that were previously 

published: a triple-negative breast cancer (TNBC) patient8, a muscle invasive bladder cancer 

patient17 and a childhood acute lymphoblastic leukemia (ALL) patient18.

 Sequence alignment and data processing

For the simulated dataset, raw fastq files were aligned to the reference genome using BWA-

MEM (v0.7.12)26. For SKN2 dataset, BWA-MEM (v0.7.12)26 was used to align the raw 

reads (FASTQ files) to the human genome (hg19). For all three human tumor datasets, 

sequenced reads in FASTQ format were mapped to the human genome assembly US 

National Center for Biotechnology Information (NCBI) build 36 (hg18) using the Burrows-

Wheeler alignment tool (BWA version 0.7.12)26 with default parameters and sampe option 

to create SAM files with correct mate pair information, and read group tag that includes 

sample name. Samtools (0.1.19)12 was used to convert SAM files to compressed BAM files 

and sort the BAM files by chromosome coordinates. The reads with lower mapping quality 

(≤ 40) were removed from the BAM files. This removes about 5% of the total reads. For the 

SKN2 and TNBC datasets, the Genome Analysis Toolkit (GATK v1.4–37)11 was used to 

locally realign the BAM files at intervals that have indel mismatches before PCR duplicate 

marking with Picard (version 1.56) (http://picard.sourceforge.net/).

 Comparison of algorithms for performance evaluation

For the simulated data and SKN2 data, Monovar’s performance was compared against 

GATK11 (v3.5) and Samtools12 (v0.1.19), two widely used NGS SNV callers. Monovar was 

run with default parameter values (https://bitbucket.org/hamimzafar/monovar) on pileup data 

obtained from the bam files of all single cells in the dataset. For GATK, we used two variant 

callers UnifiedGenotyper and HaplotypeCaller. Each of them were run with default 

parameters as per GATK best practices recommendation (https://www.broadinstitute.org/

gatk/guide/tooldocs/

org_broadinstitute_gatk_tools_walkers_genotyper_UnifiedGenotyper.php, https://

www.broadinstitute.org/gatk/guide/tooldocs/

org_broadinstitute_gatk_tools_walkers_haplotypecaller_HaplotypeCaller.php). For the 

experiments with SKN2 data, HaplotypeCaller was used in most comparisons as per GATK 

best practices recommendation. For Samtools, Samtools mpileup command was used 

followed by bcftools for detecting variants. Maximum read depth for calling SNV was set to 

10,000. For each dataset, each algorithm was run on data pooled from all single cells in the 

dataset.
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 Construction of the validation set for SKN2 data

For the SKN2 data, the gold standard variant set was constructed based on the results of 

GATK and Monovar on the reference population sequencing data. A union of the variant sets 

called by GATK and Monovar consisting of 51,154 SNVs was used as the gold standard 

variant set. 50,374 (98.5%) SNVs in the gold standard set were called by both GATK and 

Monovar. The rationale for computing the union is to have a gold standard variant set that is 

unbiased towards any variant calling algorithm, ensuring a fair comparison. The set of 

variants that Samtools discovered from the reference population sample was a subset of the 

gold standard variant set.

 Down-sampling experiments

DownsampleSam program of the Picard toolkit (version 1.56) (http://

picard.sourceforge.net/) was used to down sample the exome sequencing data from SKN2 

single cells. DownsampleSam allows a user to randomly extract a certain percentage of 

reads from the original input BAM file. For example, the following command extracts 

37.7% of the reads from the input sample, which has an average coverage depth of 53 ×, to 

generate a downsampled BAM file that has a coverage depth of 20 ×.

$ java -jar DownsampleSam.jar I= SKN2.bam O=SKN2.20X.bam P=0.377

Each single cell in the SKN2 dataset was down-sampled to 40 ×, 30 ×, 20 × and 10 × 

respectively. Monovar and GATK HaplotypeCaller were run on each down-sampled dataset. 

Precision and detection efficiency were measured for each algorithm for each down-sampled 

dataset.

 Tumor-Normal Mixing experiments

6 in silico mixed datasets were prepared by mixing subset of normal SKN2 cells with subset 

of tumor cells from triple-negative breast cancer (TNBC) patient8. Such mixed datasets 

mimic a heterogeneous DNA sample where set of SKN2 cells forms a subclone. The SKN2 

subclone size was varied from 7.6% (i.e. 7.6% of the cells in the population are normal 

SKN2 cells) to 50%. More specifically, the number of SKN2 cells were 1, 2, 3, 6, 9, 12 

respectively in the 6 mixed datasets while keeping the number of TNBC cells fixed at 12. 

Monovar was run on pooled data from all the cells for each dataset. Monovar’s precision and 

detection efficiency were measured for each dataset.

 Calling somatic mutations in human tumor datasets

For the human tumor datasets, from the set of SNVs called by Monovar, somatic mutations 

were identified by filtering the germline variants. The bulk normal tissue sequencing data 

worked as the source of germline variants for the triple-negative breast cancer8 and the 

muscle invasive bladder cancer17 datasets. For the acute lymphoblastic leukemia dataset18, 

germline variants were obtained from highly targeted amplicon sequencing data.

 Clustered filtering

A common technical artifact that occurs in single cell sequencing data is genomic regions 

with clusters of false-positive (FP) mutations. These regions correlate with known areas of 
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the human genome that have poor mappability and repetitive elements. To remove these FP 

artifacts from human tumor datasets, we filtered ‘clustered regions’ from the VCF files in 

which more than 1 SNV is detected within a 10bp window using a custom Perl script.

 Genotype passcodes

In order to subset mutations, a binary string ‘passcode’ is added to each line in the VCF file 

that represents the genotype of each sample for each mutation: homozygous variant (2), 

heterozygous variant (1), absence of mutation (0) and insufficient coverage depth (×). For 

tumor samples or normal single cells, the minimum coverage we use is 10 × and the 

minimum number of reads required to call a variant is 3. However, to correct for high 

coverage samples, we use different thresholds depending on the coverage depth. When 

coverage is more than 20 × and less than 100 ×, we require a variant allele frequency of 

15%. When coverage is more than 100 ×, we require a variant allele frequency of at least 

10%. For the matched normal population sample, we require a more stringent cut off, 

coverage depth at least 6 × and at least 2 variant alleles - to detect germline mutations during 

the filtering steps. The ‘passcode’ also indicates whether a mutation resides within the 

targeted region or exome region or not. An example ‘passcode’ is <E01X02101X21120>. 

Here ‘<’ and ‘>’ represent the start and end of the ‘passcode’ respectively. ‘E’ indicates that 

this mutation is within the exome or targeted region, or alternatively ‘N’ indicates that the 

variant is present outside the targeted region. The number and order of samples in a 

‘passcode’ is the same as the sample number and order at the VCF header.

 Annotation of somatic mutations

Mutations were annotated with ANNOVAR27 (http://annovar.openbioinformatics.org/en/

latest/) to integrate multiple databases and classify mutations as non-synonymous, 

synonymous, intergenic and non-coding mutations. We then determined if mutations 

intersect with known cancer genes using the ‘intersect’ function of BEDTools28 (http://

bedtools.readthedocs.org/en/latest/). The cancer gene list was compiled from multiple 

sources including the Cosmic29 (http://cancer.sanger.ac.uk/cosmic) database and cancer gene 

census30 (http://cancer.sanger.ac.uk/census). We developed a custom Perl script that reads a 

VCF file as input and runs through the annotation steps automatically and combines all 

annotation results into one tab-delimited text output file. Another Perl script was used to 

extract ‘passcode’ and allele frequency information of each sample from the input VCF file. 

The final annotation output can then be imported into Microsoft Excel, R or MatLab for 

statistic analysis or for visualization by building a heatmap.

 Predicting damaging impact of mutations

To evaluate whether a mutation is likely to affect protein structure or function, we used two 

databases: Polyphen31 (http://genetics.bwh.harvard.edu/pph2) and SIFT32 (http://

sift.jcvi.org/). Mutations with Polyphen score > 0.5 and SIFT score < 0.05 were considered 

to be significant. We considered mutations that were predicted to be significant by both 

databases as protein structure/function damaging.
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 Multi-dimensional scaling (MDS) analysis

Non-synonymous and synonymous mutations were parsed from the VCF file containing 

single cell exome and targeted variant data to construct a binary distance matrix for sites 

where coverage depth was ≥ 6 ×. Hamming distance was used as the distance metric and 

missing values with no coverage were replaced by value 0.5. The resulting binary matrix 

was used to perform multi-dimensional scaling (MDS) analysis in R (http://www.r-

project.org). The MDS coordinates 1 and 2 were plotted on the X and Y axes respectively to 

identify clusters of cells with similar genotypes or mutations.

 Hierarchical clustering and heatmaps

A binary matrix was calculated using non-synonymous and synonymous mutations from the 

single cell genotype ‘passcode’ strings. Heterozygous and homozygous mutation sites were 

converted to a value of 1. For sites without mutations, we used a value 0. Sites with coverage 

depth less than 6 × were assigned value 0.5. The heatmap was generated using the heatmap.2 

function in R and 2-dimensional hierarchical clustering was performed using both rows 

(mutations) and columns (cells).

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Monovar Algorithm and Performance in a Normal Cell Line
(a) Monovar variant detection flowchart. (b)–(e) Evaluation of Monovar, GATK and 

Samtools for the detection of SNVs in a single cell exome sequencing dataset generated 

from a normal isogenic fibroblast cell line. (b) Venn diagram showing the number of TPs 

called by different algorithms. (c) Venn diagram showing the number of FPs called by 

different algorithms. (d) Comparison of the SNV spectrum for FP errors detected using 

different variant detection algorithms. (e) Precision vs Detection Efficiency (Recall) curve 

for Monovar.
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Figure 2. Application of Monovar to Human Tumor Samples
Monovar was applied to detect somatic mutations in datasets from three human tumor 

samples, including a triple-negative breast cancer (a), a muscle-invasive bladder cancer (b) 

and a childhood acute lymphoblastic leukemia patient (c). Multi-dimensional Scaling 

analysis (left panels) and hierarchical clustering (right panels) were performed using the 

single cell genotype matrices to identify subpopulations of single cells that shared common 
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sets of somatic mutations. Mutations in genes that were previously detected in these studies 

are listed in black, while new mutations identified by Monovar are listed in red.
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