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Abstract

The lifespan of red blood cells (RBCs) plays an important role in the study and interpretation of 

various clinical conditions. Yet, confusion about the meanings of fundamental terms related to cell 

survival and their quantification still exists in the literature. To address these issues, we started 

from a compartmental model of RBC populations based on an arbitrary full lifespan distribution, 

carefully defined the residual lifespan, current age, and excess lifespan of the RBC population, and 

then derived the distributions of these parameters. For a set of residual survival data from biotin-

labeled RBCs, we fit models based on Weibull, gamma, and lognormal distributions, using 

nonlinear mixed effects (NLME) modeling and parametric bootstrapping. From the estimated 

Weibull, gamma, and lognormal parameters we computed the respective population mean full 

lifespans (95% confidence interval): 115.60 (109.17–121.66), 116.71 (110.81–122.51), and 116.79 

(111.23–122.75) days together with the standard deviations of the full lifespans: 24.77 (20.82–

28.81), 24.30 (20.53–28.33), and 24.19 (20.43–27.73). We then estimated the 95th percentiles of 

the lifespan distributions (a surrogate for the maximum lifespan): 153.95 (150.02–158.36), 159.51 

(155.09–164.00), and 160.40 (156.00–165.58) days, the mean current ages (or the mean residual 

lifespans): 60.45 (58.18–62.85), 60.82 (58.77–63.33), and 57.26 (54.33–60.61) days, and the 

residual half-lives: 57.97 (54.96–60.90), 58.36 (55.45–61.26), and 58.40 (55.62–61.37) days, for 

the Weibull, gamma, and lognormal models respectively. Corresponding estimates were obtained 

for the individual subjects. The three models provide equally excellent goodness-of-fit, reliable 

estimation, and physiologically plausible values of the directly interpretable RBC survival 

parameters.
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Introduction

The survival of red blood cells (RBCs) has been studied for nearly a century [3] because of 

its importance in clinical medicine and translational research. To cite three examples, the 

mean RBC lifespan and production rate determine the steady-state hemoglobin (Hb) 

concentrations in both healthy and diseased individuals [41]; variation in mean RBC lifespan 

is sufficient to result in clinically important differences in HbA1c among diabetics with the 

same mean blood glucose level [13]; and reduced mean RBC lifespan contributes to the 

anemia of chronic renal failure [47, 65]. Equally important is the role of the RBC lifespan in 

establishing criteria for stored RBCs for transfusion, elucidation of the physiology and 

pathophysiology of erythropoiesis, and the design of therapies for anemia and other 

hematological conditions [4, 19, 46].

Confusion and a lack of proper quantification of various aspects of RBC survival still exist 

in the literature. Before discussing these issues we describe the two approaches, direct and 

indirect, commonly used to study RBC survival and the types of RBC samples used in such 

studies [45]. We then provide a brief literature review.

Direct and indirect models of RBC survival

The direct approach [45] involves observing and quantifying the disappearance of a 

population of labeled RBCs from the circulation. Direct models fall primarily into two 

categories: 1) empirical models for simple curve fitting [9, 13, 32, 42, 44, 46, 53, 65], and 2) 

“phenomenological” models accounting for macroscopic phenomena such as random 

destruction of the cells, lifespan-based elimination of the cells, neocytolysis (selective 

hemolysis of young RBCs under conditions of RBC excess when acutely exposed to 

increased tissue oxygen content), etc., and method-specific phenomena such as radioactive 

decay of the label, elution, vesiculation, etc. in the case of labeling by 51Cr [8, 9, 16, 17, 24, 
35, 36, 45, 61].

Instead of the direct measurement of RBC survival, the indirect approach [45] relies on 

native Hb, glycosylated Hb, or other pharmacokinetic/pharmacodynamic (PK/PD) 

information over time to make inferences about the RBC lifespan [22, 41, 45, 59, 62, 64]. 

Indirect models are lifespan-based compartmental PK/PD models (e.g., lifespan-based 

indirect response or LIDR models [38]), of which transit compartment (TC) models are a 

special case [37]. A series of transit compartments, each compartment with a PDF 

representing the lifespan distribution of the cells in that compartment [30, 37, 45] is a 

hallmark of TC models.

As the name indicates, LIDR models are “indirect” models. Direct models, in which the 

survival of labeled RBCs is tracked over time, are based on the residual survival function 

(SF), which is derived here as a consequence of the LIDR model.
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Random and cohort samples

Direct RBC survival studies can be conducted in two ways depending on the type of sample 

of RBCs used [19]. A random (or population) sample consists of a mixture of RBCs of all 

ages, such as that obtained by a venous blood draw. In contrast, a cohort sample consists of 

RBCs that are all approximately the same age [19]. Random sample methods are more easily 

performed and thus more widely used in RBC survival studies [19, 53]. In such studies, 

RBCs in blood drawn from a donor are labeled and transfused into a recipient (possibly the 

same person), and their disappearance is followed [19]. The time at which the sample is 

collected is called the index time, and the corresponding RBC population (in the circulation 

plus in the sample) at that time is the index population.

For a random sample study, the sampling of blood and transfusion of labeled RBCs back 

into the subject should ideally happen at the index time and within a time interval 

insignificant in comparison to the shortest lifespan of all but a negligible fraction of the 

RBCs; further, the transfused RBCs should be distributed homogeneously in the circulation 

immediately. The concentration of labeled RBCs in the circulation at that instant would 

serve as the baseline concentration. In practice, the labeled RBC enrichment at day 1 is 

taken as the baseline to minimize artifacts from RBCs that are damaged and consequently 

removed during the first 24 h in circulation [28]. Blood samples are subsequently drawn at 

sufficient intervals after the labeled RBC transfusion to permit determination of RBC 

survival parameters. The ratio of the concentration of labeled RBCs in the later samples to 

the baseline concentration gives the survival data at each time. A plot of these measurements 

against time constitutes the random sample (residual) survival curve.

Labeling with radioactive 51Cr is the current de facto gold standard for RBC survival studies 

[53], despite the fact that it exposes subjects to radiation and despite the analytical 

complications due to radioactive decay, elution of 51Cr from cells, and loss of label by 

vesiculation [34]. Recently, Mock et al. [52] demonstrated that random sample survival data 

for normal adults obtained using nonradioactive biotin labeled RBCs (bioRBCs) can be used 

in RBC survival studies with results similar to those from 51Cr. Rather than measuring the 

radioactivity of hemoglobin bound 51Cr in the blood samples, which is inevitably 

confounded by radioactive decay, vesiculation, and elution, individual cells are enumerated 

by flow cytometry after separation from unlabeled RBCs based on fluorescence intensity 

due to binding of fluorescent-labeled streptavidin to the biotin label on the RBCs. Thus, this 

method is free from the problems of elution and vesiculation. Moreover, biotinylation at 

lower densities appears not to affect the RBC lifespan [53].

Brief literature survey

Mathematical descriptions of RBC survival are broadly based on the direct or indirect 

method described above. Direct models are based on the theory for transfused RBCs 

developed early on [7, 9, 14, 60]. Some quantitative descriptions developed later focused on 

fitting a curve to the survival curve and quantifying the mean lifespan and half-life [7, 8, 17, 
24, 32, 65]. Complicated phenomenological models were also used [8, 9, 16, 17, 24, 34–36, 
61]. Some authors used simple linear or cubic curve-fitting of the survival curve to estimate 
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the mean age at the time of labeling [13, 53]. Many studies use the maximum RBC lifespan 

(Tmax), a term that is difficult to quantify [13, 32, 44] in a plausible manner.

A direct PK/PD model including RBC survivor functions of various complexity was 

presented by Uehlinger et al. [64]. A new lifespan based compartmental PK/PD model paved 

the way to an indirect and compartmental approach to quantify RBC/reticulocyte mean 

lifespan [39]. Earlier works based on this approach assumed that all cells in a compartment 

survived for a fixed time, which introduced a time-delay in the input/output models thus 

representing the lifespan of the cells in a compartment by a point distribution [1, 38, 39, 41, 
57, 59]. The theory was expanded later to represent the RBC lifespan distribution by 

possibly time-varying continuous PDF [21–23, 40, 61]. These indirect methods do not 

involve direct measurement of random sample cell survival data. But Lledó-García et al. [45] 

presented a somewhat “hybrid” approach that used a TC model to estimate mean lifespan 

from a set of biotin-labeled random sample RBC survival data previously published by 

Cohen et al. [13].

There exist confusions in the literature primarily due to failure to distinguish between 

various survival functions and survival parameters and subtle disconnects in the theoretical 

relationships developed. Furthermore, some models have a large number of unknown 

parameters, which creates identifiability issues.

Objectives

In this paper, starting with a LIDR model based on an arbitrary lifespan distribution, we 

derive the relations between the residual lifespan distribution, which is the basis of 

observations in the direct method, and the full lifespan distribution; these are expressed 

through the survival functions corresponding to each distribution. Further, we derive survival 

functions for the current age distribution (distribution of ages in the index RBC population) 

and the excess lifespan distribution (distribution of remaining lifespan of cells in the index 

population that have survived beyond a specified time te past the index time). Other RBC 

survival descriptors (mean lifespan, mean current age, etc.) are then easily obtained.

We apply these results to analyze a set of bioRBC data [53] using the NLME framework. We 

consider three models, based on the Weibull, gamma, and log-normal distributions, 

respectively, for the full RBC lifespan. The PDFs for these distributions are given in 

Appendix A. These distributions are widely used in reliability theory [5, 49, 55], survival 

analysis [43], and studies of aging and lifespan for both mechanical and biological systems 

using a reliability theory approach [6, 10, 25, 26, 33]. Although the Weibull is widely used 

as a failure distribution [5], aside from the papers by Friese et al. [22, 23], ours is the only 

use of the Weibull as an RBC lifespan distribution to our knowledge. In RBC survival 

studies the gamma distribution arises in transit compartment models [37] with a fixed, 

specified integer-valued shape parameter, a restriction we avoid in this work.

Based on observations of the residual survival function provided by the experimental data, 

the estimated structural parameters of each model are used to compute the survival functions 

for the full lifespan, current age, and excess lifespan distributions. From these it is easy to 

estimate many RBC survival descriptors at both the population and individual levels; as 
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examples we use the mean lifespan, the standard deviation of the lifespan distribution, τ95 

(as a surrogate for maximum lifespan), mean current age, and residual half-life. The 

definitions of these terms are provided later in the text.

The process of RBC aging and the eventual death is an issue of special scientific and clinical 

interest [2, 29, 31]. The RBC lifespan distribution may provide information of clinical and 

research relevance in understanding the type of red cell elimination taking place in normal 

individuals and in those with specific diseases. For example, these models can potentially be 

used to determine whether elimination is primarily driven by an intrinsic lifespan-based 

mechanism or is the result of extrinsic factors acting independently of the RBC lifespan.

Post-transfusion survival of stored RBC has important implications in determination of the 

shelf life of RBCs [46, 63]. Excess lifespan of RBC can potentially be used to better 

quantify the post-transfusion survival of stored RBC.

A potential use of current age and excess lifespan distributions is to help identify 

morphological and/or physiological attributes of RBCs that correlate to the RBC age 

distribution, shedding light on the mechanism of RBC aging and eventual death in health 

and disease [20]. For example, it has been shown that the surface area and hemoglobin 

amount generally resemble lognormal distribution and the distribution changes in a time 

dependent manner as the membrane continues to be shed [27]. Time dependent changes in 

the density distribution of biotin-labeled sickle RBC have been studied in [18]. If we are 

able to accurately measure the current age or excess lifespan distributions based on some 

morphological or physiological attributes of RBCs, then it would potentially allow the 

quantification of full RBC survival descriptors discussed in this paper with a single random 

sample of blood instead of multiple consecutive random samples over the period of up to 4 

months as in the most commonly used residual lifespan data.

Mathematical Model

The birth time of an RBC is the time when a reticulocyte transitions to a fully matured and 

hemoglobinized RBC after losing the ribosomes and mitochondria. By death time of RBC 

we mean the moment of elimination of the RBC from the circulation. At birth time t = −u, 

each RBC is assumed to be endowed with a full lifespan τ. Consider the index time t = 0 

when the RBC sample is collected and labeled. The age of an RBC in the index population 

at this time is the current age, τc = u, which is the amount of time already spent by it in 

circulation since its “birth.” The residual lifespan of the RBC is the time τr that it remains in 

the circulation before its “death”. Thus

Given a fixed, specified time te after the index time, the remaining lifespan of the RBC is 

excess lifespan of the RBC, τe = τ − te. Not all RBCs are born with the same lifespans. The 

full lifespan and hence the residual lifespan, the current age, and the excess lifespan can be 

represented by respective continuous probability density functions (PDFs). In general the 

RBC survival distributions for different people will not be the same.
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We assume that the RBCs in healthy individuals survive independently of each other. We 

assume the internal environment of the study subject is stable in the sense that the RBC 

lifespan distribution is time-invariant and that there is no abnormal blood loss or other 

significant intercurrent event (e.g., events leading to hemolysis).

Full lifespan distribution

The (full) lifespan distribution in the population of RBCs in a given individual is represented 

by a PDF p(t), t ≥ 0. The corresponding full SF is the probability that the lifespan is > t; 
more explicitly,

(1)

The mean lifespan μ is then given by the well-known formulae

(2)

In principle, if we could isolate a sample of newly produced RBCs released into the 

circulation (i.e., a cohort sample), label them, and transfuse them into the recipient, the 

survival curve obtained by tracking the labeled RBCs would provide an estimate of the full 

SF P̄(t).

RBC compartmental model

We start with the LIDR compartmental model previously studied by several other groups [1, 
21, 38, 40, 57]. In brief the model specifies that

(3)

where r(t) denotes the number of cells in the RBC compartment at time t, k(t) is the RBC 

production rate, which is the rate of entry of cells into the RBC compartment, and p(t) is the 

full RBC lifespan PDF, which can be a completely arbitrary PDF on the positive real 

numbers. The integral term in equation (3) is the rate at which cells leave the compartment, 

i.e., the rate of RBC death due to senescence or hemolysis [40]. We assume k(t) is bounded 

and nonnegative, 0 ≤ k(t) ≤ M < ∞ for all t, −∞ < t < ∞, and that the mean lifespan μ 

(equation (2)) is < ∞. Integrating equation (3) from 0 to t > 0, we obtain

Because k(t) is bounded, both integrals are finite. After exchanging the order of integration 

in the double integral, letting r0 = r(0) be the size of the index population (i.e., the RBC 

population that was present at time t0 = 0, which is the index time as described above), and 

some algebraic manipulation, we find
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(4)

where

(5)

and

(6)

The integral in (4) represents the RBC population due to past production, that is, during t < 

0, that is present at time t0 = 0. This can be seen by noting that k(−u)du is the number of 

cells produced during the time interval −u to −u + du, and P̄(u) is the fraction of cells that 

survive for time u > 0, and the integral is the sum of these quantities over all u > 0. For a 

person with a stable internal environment, this will be the RBC population at time 0, thus r0 

and the integral cancel each other in equation (4) and we are left with

(7)

The term r0(t) represents the part of the index population that has survived until time t > 0, 

whereas r1(t) is the portion of the RBC population that is present at time t > 0 that was 

produced between times 0 and t.

Residual lifespan distribution

The survival time after t = 0 of a cell in the index population is called the residual lifespan of 

the cell. The residual survival function (RSF), P̄
r(t), is the proportion of the index population 

that has survived at least until time t > 0 (equivalently, the probability of residual lifespan > 

t), P̄
r(t) = r0(t)/r0(0). From equation (5),

(8)

Survival curves reported in studies of random RBC samples are in fact estimates of the RSF.

The RSF depends on the past production rate k(t) for times t < 0, as indicated in equation 

(8). If k(t) can be assumed constant for t < 0 (which is consistent with the assumption that 

the subjects had a stable intravascular environment), P̄
r reduces to the familiar form

(9)

Note the similarity between equations (9) and (1). The corresponding PDF of the residual 

lifespan is
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(10)

Integration by parts of  gives the mean residual lifespan μr, which is different 

from mean full lifespan:

(11)

where E(·) signifies expected value, and μ and σ2 are the mean and variance of the full RBC 

lifespan τ.

Current age distribution

The members of the index population that have age > t ≥ 0 at time 0 are those that were 

produced at some time u before time −t and have survived for an additional time −u; as in 

the case of equation (4), this is given by

The fraction of the index population of age > t, namely,

(12)

is the SF of the current age distribution, which is the distribution of ages in the cell 

population at the index time t0 = 0. It reduces to equation (9) if the past production rate is 

constant; in this specific situation, but not in general, the current age distribution is the same 

as the residual lifespan distribution and hence mean current age, μc= mean residual lifespan, 

μr.

Excess lifespan distribution

Consider the subpopulation of the index population that is still present at a specified time te 

> 0; these are the cells that were produced at some time −u < 0 and survived for a time te + 

u. The excess lifespan distribution corresponds to the SF P̄
e(t), which is the fraction of this 

subpopulation of age > te + t, where t > 0 is called the excess lifespan. By an argument 

similar to that following equation (4), the subpopulation of age > te + t consists of those cells 

that were produced at some time some time −u < 0 and have survived for time te + t + u; the 

number of such cells is . The entire subpopulation present at time te 

corresponds to t = 0 in this expression. Thus the fraction of those present at time te that are 

of age> te + t is the ratio

(13)
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This is the conditional probability that the lifespan of an RBC in the index population is > t 
+ te given that it is > te. Given a constant past production rate it reduces to

(14)

and this can be estimated from the observed residual survival curve. The corresponding PDF 

of excess lifespan distribution is given by

(15)

Note that, for te = 0, the excess lifespan SF is the same as the current age SF and 

consequently is the same as the residual lifespan SF in the case under consideration.

Relation (2) holds for any probability distribution, including the full lifespan, residual 

lifespan, current age, and excess lifespan distributions. We can use equations (8), (12), and 

(14) to compute the mean residual lifespan (μr), mean current age (μc) in the index 

population, and the mean excess lifespan (μe) in the surviving part of the index population at 

any time te > 0. These results generalize those of Lindsell et al. [44], without the 

questionable assumption of a stable, stationary, and closed population [54].

Methods and Statistical Analysis

We used a nonlinear mixed effects (NLME) model [58] to analyze data obtained from 8 

healthy adults who received autologous biotin-labeled RBCs [53]. Parametric bootstrap 

analysis was performed to confirm the results of NLME analysis because the number of 

subjects is small. The NLME model analysis was conducted using the nlmefit function in the 

Statistics toolbox of MATLAB software [48]. All computations and simulations were 

conducted using the same software. A personal computer with a 4 GB RAM and a 2 core 

Intel© (R) Core(TM) i3M 370 @ 2.40GHz processor was used for all computations.

We analyzed the lowest density bioRBC data from Mock et al. [53] as biotinylation at lower 

densities has negligible effect on the RBC lifespan [53]. Details of the experimental design 

and data collection are provided in [53]. Briey, each of eight healthy subjects was transfused 

with autologous bioRBCs labeled at a biotinylation reagent density of 6μg/mL of packed 

RBC. Post-transfusion residual RBC survival data were collected. Since even microliter 

blood samples contain many RBCs, the laws of large numbers from probability theory imply 

that such samples will replicate the residual lifespan distribution of the whole circulation at a 

given time within measurement error; this is the basis of the statistical analysis of random 

blood samples. Since the flow cytometric instrumentation allows tracking of the 

disappearance of at least 97 % of bioRBCs [53], we excluded values of the survival curves 

smaller than 0.03. The bioRBC concentration at day 1 was used as the baseline value.

We performed separate analyses for the Weibull, gamma, and lognormal models. For each 

model, the nonlinear mean-value terms are the RSFs as in equation (9), but with the 

appropriate survival functions; thus,
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(16)

where W̄
r, Ḡr, and L̄

r denote the RSFs, W̄, Ḡ, and L̄ denote the full SFs, and μw, μg, and μl 

denote the mean full lifespans (see Appendix A) in the Weibull, gamma, and lognormal 

models, respectively. The same letters α and β are used for all of the Weibull, gamma, and 

lognormal parameters for brevity in presentation, but we emphasize that they are entirely 

unrelated. We refer to α and β as the structural parameters on the original scale.

Just as P̄
r(t) is the ratio of the surviving part of the index population relative to the size of the 

index population, the observed residual survival curve, is the ratio of the measured 

concentration of the surviving part of the labeled RBCs at time t > 0 relative to the 

concentration at index time t = 0. In standard mixed effects model notation, the models in 

equation (16) are

(17)

where W̄
ij, Ḡij, and L̄

ij denote the observed residual survival curve corresponding to the 

Weibull, gamma, and lognormal models, respectively, M = 8 is the number of subjects, ni is 

the number of observations on the ith subject, tij is the time of the jth observation on the ith 

subject, and εij is an additive random error term, assumed normal N(0, ϕ2) (we use ϕ2 to 

denote variance of the random error to not confuse with σ2 used to denote the variance of the 

full lifespan distribution). Thus W̄
ij = W̄ (tij), for example, is the observed residual survival 

curve for the ith subject at the jth time using the Weibull model. To ensure the parameter 

estimates are > 0 we write

(18)
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and rewrite the models as

(19)

(20)

We call ai and bi the individual structural parameters on the log scale; this well known “log 

trick” [58] allows the use of unconstrained optimization techniques. af (= log(αf)) and bf (= 

log(βf)) denote the fixed effects, representing the average values of the parameters (in log 

scale) over the whole population from which the subjects in the sample are drawn (the 

reference population), and ari and bri denote random effects, which represent the deviations 

of an individual’s parameters from the population average [58]. “Mixed effects” refers to the 

presence of both fixed and random effects in (20). The random effects vector (ari, bri) is 

modeled as multivariate normal, N(0, Ψ), independent of the measurement errors εij, and 

independent between subjects; likewise, the errors are assumed independent between and 

within subjects [58].

For the distribution specified by the corresponding PDF, the derived parameters for each 

individual are the functions of corresponding αi and βi and for the population (fixed effects 

estimates) are the functions of corresponding αf and βf. For the corresponding full lifespan 

distribution, the mean full lifespan (or simply mean lifespan) μ and the standard deviation σ 

are the derived parameters that can be computed easily using the formula provided in 

Appendix A. Other derived parameters describing RBC survival of potential clinical 

importance are

1. τ95, defined as the 95th percentile of the full lifespan distribution, a surrogate for 

the maximum lifespan,

2. the mean current age, μc, defined as the mean of the current age distribution, which 

is equal to the mean of the residual lifespan distribution or the mean of the excess 

lifespan distribution at index time t = 0 assuming constant past production rate, and

3. the residual half-life, T50, defined as the median of the residual lifespan 

distribution. Note that we use the term half-life irrespective of whether or not the 

distribution is exponential.

The values of τ95 and T50 have to be obtained numerically as they cannot generally be 

expressed in closed form; any modern statistical software has a facility to do this. An 
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exception is that τ95 is easily obtained for the Weibull distribution: τ95 = β(log(20))1/α (all 

logarithms in this paper are natural logarithms). The closed form expressions for μc for the 

corresponding PDFs are presented in Appendix B. Formulas for mean residual lifespan and 

steady state mean full lifespan are provided in Appendix B. Mathematical manipulations for 

efficient computation of the different survival functions based on the Weibull, gamma, and 

lognormal PDFs are also provided therein.

Results

Figure 1 shows the population fits for the 8 study subjects using the 3 different models. 

Residual survival data for each subject along with the respective individual fits using the 

Weibull, gamma, and lognormal models are shown in Figure 2. The group values of root 

mean square errors (RMSEs) are 0.0120, 0.0126, and 0.0129 for Weibull, gamma, and 

lognormal models, respectively. Corresponding fractional RMSE (RMSE/average response 

value) are 0.023, 0.024, and 0.025 respectively. The log likelihood (logl) values are 358, 

354, and 351 respectively. The RMSE and logl values are shown in Table 1.

The individual weighted residuals, population weighted residuals, and conditional weighted 

residuals for all of the models were consistent with normality based on normal probability 

plots (not shown) and Shapiro-Wilk tests (P ≥ 0.05). The population fit for the RSF along 

with the computed full lifespan, current age, and excess lifespan (at different times te after 

index time) SFs and corresponding PDFs using the gamma model are shown in Figure 3 top 

and bottom panels respectively. Such a graph can easily be computed for individual subjects 

too (not shown). Similarly, the population and individual survival functions and the 

corresponding PDFs can easily be computed using the Weibull and lognormal models as 

well (not shown).

Population-level (fixed effects) estimates of the structural parameters on the original scale, 

αf and βf, for all the models are given in Table 2. For each of the three models, Table 3 gives 

maximum likelihood estimates (top), mean of the bootstrap estimates (middle), and the 

bootstrap 95% CI of the population derived parameters μ, σ, τ95, μc, and T50. The predicted 

values of the individual structural parameters on original scale are shown in Table 4 and the 

values of the individual derived parameters of the RBC survival are shown in Table 5.

The range of individual μ was 97.5 – 128.0 days for the Weibull, 99.6 – 128.4 days for the 

gamma, and 100.95 – 128.37 days for the lognormal model. The range of σ was 18.84 – 

36.97 days for the Weibull, 18.86 – 35.59 days for gamma, and 19.51 – 34.98 for the 

lognormal model. For τ95 the ranges were 149.2 – 160.1, 155.3 – 164.5, and 157.14 – 

165.72 days, for μc they were 55.7 – 65.39, 56.18 – 65.59, and 48.62 – 63.50 days, and for 

T50 they were 50.1 – 64.0, 50.3 – 64.2, and 50.65 – 64.19 days, for the Weibull, gamma, and 

lognormal, respectively.

Discussion

Various distributions have been used for the full RBC lifespan in the literature, including the 

homogeneous lifespan model [40, 41, 59, 64], in which each of the cells has the same fixed 

lifespan, and the Weibull [22, 23], gamma [40], and lognormal [15] distributions. A more 
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complicated model, a mixture of two Weibulls (a socalled bathtub-shaped distribution), was 

used by Korell et al. [32, 34–36]. (Note that there is a misplaced minus sign in equation (1) 

in both [36] and [34]). By judicious choice of the parameters its shape can be made to mimic 

senescence, random destruction, and neocytolysis. This is a phenomenological model in the 

sense mentioned earlier.

In the present paper three separate models, using the Weibull, gamma, and lognormal 

distributions, were employed to analyze the bioRBC data from 8 healthy adult subjects. The 

nonlinear mixed effects approach provided a framework for analysis of both population and 

individual variability of the structural and derived parameters. Because of the large number 

of parameters in their model, the authors in [32, 34–36] were unable to estimate all of them 

simultaneously and thus found it necessary to fix several of them in the analysis. By 

contrast, we were able to carry out complete analyses with the Weibull, gamma, and 

lognormal models, each with only 2 structural parameters, without fixing any parameter in 

advance.

The fits appear excellent visually (Figures 1 and 2). The fractional RMSEs (RMSE/ average 

response value) of 0.023, 0.024, and 0.025 respectively for Weibull, gamma, and lognormal 

models together with the fact that the residuals are consistent with normality support the use 

of the NLME methodology.

In addition to routine model diagnostics we performed a parametric bootstrap simulation 

(details in [61]) to confirm the results from the NLME software (MATLAB [48]), which are 

based on asymptotic theory for maximum likelihood and require the number of subjects to 

be large. The bootstrap simulation utilizes the NLME information from the reference 

population to generate a large number of virtual datasets that duplicate the random 

mechanism that generated the original data set. The confidence intervals (CIs) of structural 

parameters obtained from the bootstrap analysis are similar to those from the NLME 

analysis. This shows that parameter estimation by the NLME software is reliable even with 

the small number of subjects (M = 8) in our dataset. Since analytical expressions for the 

standard errors (SEs) of the derived parameters are not available, we also used the bootstrap 

results to quantify their SEs in order to compute the resulting 95% CIs (= estimate 

±1.96×SE).

All three models give physiologically plausible values for the parameters μ, σ, τ95, μc, and 

T50 for both the population and the individual subjects. The agreement between the three 

models is almost exact for μ, σ, μc, and T50, but the gamma and lognormal models give 

consistently greater values (approximately 3%) for τ95 than the Weibull. The reason is that 

the full lifespan distributions are very similar in their midranges but diverge towards the long 

survival tail, where the data are sparse, and τ95 is a property of the tail. We speculate that a 

data set with more reliable measurements in the tail region of the residual survival curve 

might provide a stronger basis for deciding which (if any) of the models is significantly 

better than the others. Techniques for more accurately enumerating bioRBCs after removal 

of 95% of the initial population are currently being developed by some of the authors (JAW, 

DMM, PV-P).
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Because of the small sample size there is no statistical criterion by which to decide 

confidently which is the “best” of the three models entertained here. For some purposes the 

choice of any particular model is immaterial, and in this case the three models are about 

equally mathematically and computationally tractable; see Appendix B. One advantage of 

the gamma model in certain applications is that a clean state space representation exists 

when α is an integer. We presented such a gamma-based erythropoiesis model that is 

physiologically relevant and demonstrated its applicability using clinical data [12].

Recently, Lledo-Garcia et al. [45] gave extensive comparisons of three common RBC 

lifespan models: homogeneous lifespan, random destruction (RD), and transit compartment 

(TC) models. The TC model contains a series of compartments connected by first order cell 

transfer rates [37]. The TC model with one compartment is the RD model. A TC model with 

infinitely many compartments converges to the homogeneous lifespan model [37]. The TC 

model with 12 compartments was found by Lledo-Garcia et al. to describe the data best 

based on likelihood functions (in the form of the objective function value or OFV, defined as 

minus twice the loglikelihood) and visual predictive checks. The mean full lifespan for the 

12 TC model was found to be 91.8 days for healthy subjects, which is substantially shorter 

than the normally accepted value of around 120 days.

There can be difficulties with likelihood-based model selection [11], especially for non-

nested models [66] as occur in [45] and in the present paper. Unless the data satisfy the 

technical requirements, such as normality or independence, for several models, as must be 

determined from model diagnostics, a comparison based on likelihood may be questionable, 

as the likelihood function is then just a criterion function that is not the same for different 

models. Even when such requirements are met, it is not always clear what such a 

comparison means. To say, as is often done, that the model with the higher 

likelihood ”explains the data better” is circular, because, without some discussion of the 

mechanism behind the data, the only sense in which the data are ”explained” in this situation 

is by the higher likelihood. Unfortunately the probabilistic justification of a comparison by 

likelihood will also be inapplicable if the sample size is small, as is the case in some of the 

studies discussed in [45] and here.

The gamma model in the current paper is equivalent to TC model with α compartments if α 

is a positive integer. For comparison we conducted NLME analyses of our bioRBC data with 

1 to 50 compartments, namely, by taking α = 1 to 50 and estimating only β in each case. The 

smallest RMSE (= 0.0151), fractional RMSE (= 0.029), and largest loglikelihood (= 336), all 

occurred for the 22-compartment TC model (α = 22), as shown in Figure 3. These values 

were less favorable than those for the unconstrained Weibull, gamma, and lognormal 

models; in particular, the loglikelihood for the lognormal model (= 351), which was the 

smallest loglikelihood for our three models, was considerably larger than that of the 22-

compartment TC model.

It is accepted in the literature that RBC lifespan values are tightly dispersed around a mean 

value for healthy individuals. There are many diseases which impact RBC lifespan, e.g., 

sickle cell disease, diabetes, chronic kidney disease, etc. In such cases, information about the 

whole distribution of RBC lifespan, in particular the mean (μ) and the standard deviation (σ), 
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may be helpful in distinguishing between health and disease. A simultaneous estimation of μ 

and σ of the RBC lifespan distribution has never been done to the best of our knowledge. 

Typically, RBC survival studies have been focused on quantifying an average description, 

e.g., mean age (i.e mean current age according to our definition) of circulating RBCs [13], 

RBC survival (meaning the half life of the 51Cr disappearance from the circulation) [65], 

half-life [47], mean lifespan [32, 36, 45, 51], mean potential lifespan (MPL) [53], mean 

remaining life span [42] (this is similar to mean excess lifespan at te = 0 according to our 

definition), etc.

The concepts of residual lifespan, current age, and excess lifespan have often appeared in the 

literature, but are not named explicitly and sometimes not treated rigorously [13, 14, 20, 46, 
54, 63]. Outside of RBC survival literature, the concepts of current age and excess lifespan 

appear in renewal theory [56] but have not previously been used in compartmental models, 

which are conceptually different from renewal theory.

In the literature, the maximum RBC lifespan Tmax is defined as the time when all of the 

labeled RBCs disappear from the circulation [13, 32, 44]. Taken literally, this means Tmax is 

the time at which the residual survival curve decreases to zero. The determination of that 

time is highly dependent on the sensitivity of the method and associated analytical 

instrumentation because the proportion of labeled RBCs becomes very small towards the tail 

region. Tmax is often estimated as the time at which a linear or nonlinear curve fitted to the 

residual survival curve intersects the time axis. When a linear fit of the entire residual 

survival curve is used, this intersection is actually an estimate of the mean lifespan rather 

than the maximum [14, 52]. When a nonlinear fit is used [13, 44], the estimate is strongly 

dependent on the last sample time of the residual survival curve. The final 2 points of the 

residual survival curve were extrapolated to the time axis to estimate the maximum RBC 

lifespan in [13]; such an estimate will also depend on the distance between the last two 

measurement points.

We used the 95th percentile τ95 of the lifespan distribution as a surrogate for the maximum 

lifespan; by definition, τ95 is the value such that 95% of the RBC lifespans are < τ95. (The 

Weibull, gamma, and lognormal distributions extend to infinity in the positive direction; 

hence have no true maximum value.) The choice of 95% is arbitrary and is used here only 

for illustration. Any other percentile could be used; in practice the choice would likely be 

dictated by the nature of the application. The estimated population values of τ95 are in 

physiologically plausible ranges.

Recently, a new clinically relevant parameter to assess the quality of transfused red blood 

cells called Mean Remaining Lifespan (MRL) has been introduced [42]. MRL is analogous 

to the area under the curve (AUC) or mean residence time (MRT) in PK studies. It is defined 

as the AUC of the fraction of the transfused RBCs remaining in the circulation versus time 

[42]. This is in fact an estimate of mean residual lifespan described in the current paper 

. Measurement of MRL as described in the paper [42] again runs into 

the problem of determining when the last of the transfused RBCs have left the circulation. 

For practical purposes, MRL is replaced by MRL0.95, which is defined as the area under the 

curve until the time, t0.95, when 95% of the transfused cells have disappeared from the 
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circulation. t0.95 is estimated by interpolation of the curve [42]. The accuracy of MRL0.95 

depends on the frequency of sampling around t0.95 and the last sample must wait until at 

least 95% of the transfused cells have disappeared, which takes approximately 3 to 4 months 

in healthy individuals.

As shown by Dornhorst [14], it follows from equation (9) that the mean RBC lifespan μ is 

given by the negative reciprocal of the slope of the RSF at t = 0, a result that holds for any 

lifespan distribution, assuming the past production rate is constant. Thus the MPL (mean 

potential lifespan) described in [53] is actually an estimate of μ for each individual (note that 

we use the data from [53]). The average MPL for the eight subjects given in [53] was 115 

± 8 days, which is very close to our population values of μ = 116 ± 3 for Weibull and 117 

± 3 for both the gamma and lognormal (mean ± SE). Similarly, the time to disappearance of 

50% of the labeled RBCs from the circulation, denoted by T50 and given as 58 ± 4 days in 

[53], is very close to the population residual half-lives T50 found here (58±1.5 for all 

models).

Why use a complicated method like NLME when the simple MPL method gives similar 

results? There are both statistical and practical reasons. From the statistical point of view, 

first, the average MPL in [53] is the average of the individual MPLs obtained by simple 

linear regression for each subject separately. This approach yields an overestimate of the 

variability among individuals, and hence the SD of the MPLs, based on only 8 subjects, is 

likely too large. By contrast, NLME gives estimates and standard errors at both the 

population and individual levels [58]. Second, the MPL does not model the full lifespan 

distribution and, therefore, is incapable of providing quantitative information about other 

survival parameters such as the longest lifespans in the distribution as reflected in τ95. 

Information about the whole distribution may be helpful in distinguishing between health 

and disease (e.g., sickle cell disease). Third, the NLME framework provides standard 

methodology to include covariates such as sex, age, ethnicity, etc. in the analysis. Fourth, 

NLME is well-suited to the situation of sparse samples, which is usually the case in clinical 

settings. The results of a NLME analysis can be used to determine the minimum number, 

optimal timing, and the last time point of measurement for measurements in a new subject 

when only a few measurements are possible [50, 61], e.g., in infants or sick patients.

Our results in Appendix B allow complete, rigorous, and computationally efficient analyses 

of the models considered here (parameter estimation took under a second for Weibull and 

just over a second for the gamma and lognormal models on a personal computer). Further, 

there are no constraints on parameters during the estimation process, as in other published 

models [34, 36, 45], or computational constraints, such as the inability of the software to 

handle more than 30 compartments described by Lledó-García et al. [45].

Conclusions

Starting with definitions of index population, which has previously not been made explicit, 

and of birth time, death time, full lifespan, residual lifespan, current age, and excess lifespan, 

we provided mathematical descriptions of RBC survival parameters, which remove the lack 

of clarity often found in the literature. We exhibit the connections between a compartmental 
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(or LIDR) model for the RBC population based on a given lifespan distribution and the 

residual lifespan, current age, and excess lifespan distributions, not available previously in 

the literature. We gave analytical expressions for mean full lifespan, mean residual lifespan, 

mean current age, and steady-state mean full lifespan, and indicated how to compute RBC 

half-life and 95th percentile of the RBC lifespan distribution (τ95). The use of τ95 (or other 

percentiles) avoids the questionable concept of Tmax often used in the literature.

Employing nonlinear mixed effects modelling, we analyzed residual survival data from 

biotin-labeled RBCs using models based on the Weibull, gamma, and lognormal 

distributions. The three models fit the data closely and gave equally physiologically 

plausible estimates of clinically interpretable RBC survival parameters at population and 

individual levels.

Our modelling framework could be useful in studying RBC lifespans in various diseases that 

affect RBC survival, especially in situations with strongly non-linear survival curves (e.g., 

sickle cell anemia). The model cannot be used if the assumption of “stability” of the 

subject’s internal environment is not satisfied, as may occur in the case of blood loss and/or 

other significant intercurrent events (e.g., events leading to hemolysis). The framework also 

lends itself to analyzing richer data sets containing covariates such as age, gender, and 

weight.
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APPENDICES

A Weibull, Gamma, and lognormal PDFs

The PDF of the Weibull distribution, denoted by w(t; α, β), is given by

(21)

The Weibull parameters α and β are both > 0 and are called the shape and scale parameters, 

respectively. The mean and variance for the Weibull are

(22)

The PDF of the gamma distribution with parameters α, β > 0 is
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(23)

(Γ denotes the Euler gamma function). Note that we write g instead of p for the PDF of the 

gamma distribution. The parameters α and β are again called the shape and scale parameters, 

respectively. The mean and variance are

(24)

Let X ~ N(α, β2), i.e., normal with mean α and variance β2, and Y = eX. Then Y has the 

lognormal distribution with parameters α and β, and PDF

(25)

The mean and variance for the lognormal are

(26)

The same letters α and β are used for the Weibull, gamma, and lognormal parameters for 

brevity in presentation, but we emphasize that the parameters in the three distributions are 

entirely unrelated. The PDFs represent the full RBC lifespan distributions in the Weibull, 

gamma, and lognormal models respectively and the means correspond to the full RBC 

lifespan.

B Survival functions for Weibull, gamma, and lognormal lifespan 

distributions

For any lifespan distribution we have

(27)

Interchanging the order of integration yields

(28)

The full survival functions (equation (1)), in the case of gamma, Weibull, and lognormal 

lifespan distributions are given by

(29)
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(30)

and

(31)

respectively, where N(x) is the CDF for the standard normal Z ~ N(0, 1). Thus using 

equations (9) and (28), we obtain the residual survival function in the case of the gamma 

lifespan distribution

(32)

Similarly, from equation (14) we obtain the excess lifespan survival function for the gamma 

lifespan distribution

(33)

Given α and β, the survival functions in equations (32) and (33) are readily calculated by 

numerical integration in most statistical packages, including MATLAB [48]; equations (32) 

and (33) show that the survival functions of the residual lifetime and the current and excess 

lifespan distributions are no more difficult to calculate than the full survival function. It also 

follows from equations (32) and (2) that the mean residual lifespan and mean current age are 

both equal to (α + 1)β/2: the integral from 0 to 1 of Ḡ(t; α + 1, β) equals (α + 1)β and the 

integral of tḠ(t; α, β) equals αβ2(1 + α)/2, as shown u = Ḡ(t; α, β), dv = tdt.

The survival functions Ḡr and Ḡc of the residual lifetime and current age distributions, for 

the gamma lifespan distribution cannot be expressed in closed form, but there is a closed 

form when α is an integer ≥ 1. The gamma distribution with α = 2 has been used [12] in an 

erythropoiesis model for chronic kidney disease patients.

Although the Weibull survival function (30) has a simple form, the corresponding residual 

survival function does not. The integral in equation (9) can be expressed in terms of the 

gamma survival function:

(34)

The residual, current age, and excess lifespan survival functions, W̄
r, W̄

c, and W̄
e, can now 

be written for the Weibull model as follows:

(35)
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(36)

Using equations (9), (14), (28) and (31), the residual, current age, and excess lifespan 

survival functions, L̄
r, L̄

c, and L̄e for the lognormal model can be written as follows:

(37)

(38)

From equations (2) and (9) the mean residual lifespans for the gamma, Weibull, and 

lognormal distributions are given by , and 

, respectively (using equation (11)); these are obviously different from 

the corresponding mean full lifespans (Appendix A). We also note that, in equilibrium, the 

steady state residual lifespan distribution has PDF pr,ss(t) = P̄(t)/μ, which is the same as the 

transient residual lifespan distribution. The steady state full lifespan has PDF pss(t) = tp(t)/μ 

[15]. Thus the mean residual and mean full lifespans in steady state are respectively (σ2 + 

μ2)/2μ (equation (11)) and (σ2 + μ2)/μ. In steady state, therefore, the mean residual lifespan 

is one half the mean full lifespan. For the gamma, Weibull, and lognormal the steady state 

mean full lifespans equal μg,ss = (α + 1)β, μw,ss = 2βΓ(2/α)/Γ(1/α), and μw,ss = exp(μ 

+ 3β2/2), respectively. For an individual in stable condition, these distributions are what 

would be seen for RBCs in the circulation.
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Fig. 1. 
Fitted population-level residual survival curves for data of all 8 study subjects. Insert: tail 

region where the models differ the most.
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Fig. 2. 
Fitted individual-level residual survival curves for data of all 8 study subjects.
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Fig. 3. 
Population survival functions (top panel) and PDFs (bottom) based on gamma model. For 

constant past production rate the residual lifespan, current age, and excess lifespan (for te = 

0) SFs and PDFs coincide. Note the changes in excess lifespan SF and PDF depending on 

the choice of te.
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Table 1

Goodness-of-fit and model selection criteria. RMSE: Root mean squared error. logl: loglikelihood.

Goodness
of fit Weibull

Model
Gamma Lognormal

RMSE 0.0120 0.0126 0.0129

logl 358 354 351
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Table 2

Estimated population-level structural parameters αf and βf on original scale (subscript f indicates fixed 

effects); The parameters in the Weibull, gamma, and lognormal models have different meanings and are 

neither related nor comparable. i) Maximum likelihood estimates of the population fixed effects parameters on 

log scale are obtained from the NLME analysis; exponentials of the estimates give the values in original scale. 

Confidence intervals (CIs) on original scale are given by exp(fixed effect estimate on log scale ± 1.96SE) ii) 

Bootstrap estimates of αf and βf are the means of the NLME estimates of 1000 virtual experiments.

Bootstrap Parameter
Weibull

Model
Gamma Lognormal

NLME

αf 5.38 23.02 4.74

95%CI (4.17, 6.58) (13.99, 32.05) (4.68, 4.80)

unit - - -

βf 125.38 5.06 0.0421

95%CI (119.75, 131.01) (3.31, 6.81) (0.0272, 0.0571)

unit day day -

Bootstrap

αf 5.42 23.54 4.74

95%CI (4.32, 6.81) (15.45,34.95) (4.68, 4.80)

unit - - -

βf 125.39 5.15 0.0428

95%CI (119.88, 130.64) (3.49,7.21) (0.0282, 0.0593)

unit day day -
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Table 3

Population estimates and confidence intervals for derived parameters, μf mean of the full lifespan distribution 

(or mean full lifespan), σf standard deviation of the full lifespan distribution, τ95f : 95th percentile of the full 

lifespan distribution, μcf mean of the current age distribution (or mean current age), and T50f median of the 

residual lifespan distribution (or residual half-life). All the units are in days. Top: maximum likelihood 

estimate (computed from NLME estimates of structural parameters); middle: bootstrap estimate; bottom: 95% 

bootstrap confidence interval. Subscript f indicates fixed effect.

Derived
Parameters

Parameter
Info Weibull

Model
Gamma Lognormal

μf

NLME 115.60 116.57 116.64

Bootstrap 115.62 116.71 116.79

(CI) (109.17, 121.66) (110.81, 122.51) (111.23, 122.75)

σf

NLME 24.77 24.30 24.19

Bootstrap 25.84 24.38 24.28

(CI) (20.82, 28.81) (20.53, 28.33) (20.43, 27.73)

τ95f

NLME 153.76 159.20 160.07

Bootstrap 153.95 159.51 160.40

(CI) (150.02, 158.36) (155.09, 164.00) (156.00, 165.58)

μcf

NLME 60.45 60.82 57.26

Bootstrap 60.51 60.93 57.32

(CI) (58.18, 62.85) (58.77, 63.33) (54.33, 60.61)

T50f

NLME 57.94 58.29 58.32

Bootstrap 57.97 58.36 58.40

(CI) (54.96, 60.90) (55.45, 61.26) (55.62, 61,37)
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