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Abstract

DNA replication is essential for faithful transmission of genetic information and is intimately tied 

to chromosome structure and function. Genome duplication occurs in a defined temporal order 

known as the replication-timing (RT) program, which is regulated during the cell cycle and 

development in discrete units corresponding to topologically-associating domains (TADs) that are 

spatially compartmentalized in the nucleus. Correlations of RT to chromatin organization and gene 

regulation have been known for decades but causal and mechanistic links remain unknown. The 

complete elucidation of these intriguing liaisons is critical to understand the connection between 

the three-dimensional organization of the nucleus and cellular function. Here, we discuss emerging 

evidence providing new insights into regulation of chromosome architecture, transcription and its 

connections with RT.

Introduction

Two decades ago studies of DNA replication discovered the presence of stable submegabase 

units of chromosome structure and their spatio-temporal compartmentalization in the 

nucleus. Pulse-labeling followed by in situ detection revealed punctate sites of DNA 

synthesis (“replication foci”) that segregated into distinct spatial compartments depending 

upon the time of S phase labeling (Figure 1A) [1–5]. When chased for multiple generations, 

replication foci persisted as stable chromosome units [6–8], each estimated to contain 0.5–

1Mb of DNA replicated by clusters of several synchronously firing replicons [9]. Early 

replicated foci located at the nuclear interior while late replicating foci were more tightly 

clustered and associated with the periphery of the nucleus and nucleolus (Figure 1A), as well 

as other sites of heterochromatin [4,5,10*]. The development of genome-wide methods to 

map RT found that during cell fate commitment half of the genome changes RT, coinciding 

with changes in gene expression and select examples of re-localization within the nucleus 

(Figure 2) [11,12]. These RT changes occurred in units of 400–800 kilobases termed 

replication domains (RDs) that are likely to be molecular equivalents of replication foci.

Each 7 years, Current Opinions has asked us to review the enigmatic relationships between 

replication timing, sub-nuclear chromatin organization and transcriptional regulation 
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[13,14]. 14 years ago, we had little more than anecdotal observations from cytogenetics and 

comparisons of individual gene behavior in several cell lines to suggest a mutually 

reinforcing relationship between RT and chromatin structure for which teasing out causality 

resembled the chicken and egg conundrum (Figure 1 of [13]). 7 years ago genomics had 

emerged to fill in gaps from anecdotal studies into complete descriptions of the complexity 

of RT and transcription, suggesting strong correlative links to 3D genome organization 

(Figure 1 of [14]). In the past 7 years, developments in stem cell differentiation have 

facilitated extensive mapping of regions of the genome subject to developmental control of 

RT and 3D organization, and identified unique properties of constitutive vs. developmental 

RDs that challenge longstanding correlations previously presumed to be clues to causal 

linkages between these complex phenomena. Mapping interactions with the nuclear lamina 

revealed chromosome domains physically associated with the nuclear periphery (lamina-

associated domains; LADs) [15–18]. Intriguingly, live single-cell tracking of LADs from 

one cell cycle to the next revealed that a significant proportion of peripheral chromatin 

redistributed to locations throughout the nucleus that resemble the spatial distribution of late 

replicating foci (Figure 1A) [19], and in situ hybridization suggests that late replicating 

segments can associate with any of these locations [20*] suggesting that these varied 

locations that replicate simultaneously constitute a single functionally equivalent sub-nuclear 

compartment. The explosion of chromatin conformation capture methods (Hi-C) has 

permitted genome-wide mapping of early and late replicating spatial compartments, and has 

identified stable structural units of topologically self-associating chromatin (TADs) that 

correspond to RDs we discussed 7 years ago and likely to foci we discussed 14 years ago. 

Here we summarize the most recent findings, emphasizing structure-function relationships 

in the nucleus, and we predict that the next 7-year cycle will be dominated by genome 

editing methods that may finally get us “beyond cause and effect”.

Replication timing reflects the spatial organization of the genome

The biggest conceptual leap for RT in the last 7 years is the molecular elucidation of 3D 

genome conformation by Hi-C, providing genome map coordinates that indisputably align 

the spatio-temporal relationships revealed through cytogenetics to those mapped by RT 

functional genomics. RT profiles are generally displayed as the ratio of early/late replication 

along the length of each chromosome [21–24*] and reveal chromosome segments with 

uniform replication timing, known as constant timing regions or CTRs (Figure 1B), which 

often consist of several adjacent RDs that replicate within 1–2 hours [25–27]. Intriguingly, 

chromatin conformation methods (Hi-C) detect not only chromatin partitioning into TADs 

but also folding of TADs into multi-megabase compartments of active/open (A-

compartments) or inactive/closed (B-compartments) chromatin [28]. Consistent with the 

cytogenetic studies, comparison of RT profiles and Hi-C compartments shows remarkable 

alignment of RT to physical compartmentalization of the genome (Figure 1B, [29–32]). 

Moreover, by mapping RT transitions in multiple cell types the majority of RD boundaries 

could be mapped revealing a near one-to-one alignment to TAD boundaries [26**] (Figure 

1C). Hence, the “replication domain model” [26**,27,33] proposes that RD/TADs are stable 

chromosome units segregated into spatially distinct and coordinately replicated nuclear 

compartments (Figure 1D). Indeed, tracking the formation of TADs and 3D compartments 
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through the cell cycle revealed that 3D structure is dismantled during mitosis [34,35**], but 

both TAD structure and interaction compartments were re-established coincident with the re-

establishment of RT in a very early window during G1 referred as the timing decision point 

(TDP) [35**], demonstrating a convincing intimate co-appearance of structure and function. 

However, TADs and compartments persist into G2 phase, when RT function is lost [36], 

suggesting that 3D structure is not sufficient for RT, but may provide a necessary scaffold on 

which cell cycle regulated factors operate to maintain the RT program [35**].

In fact, several factors have recently been implicated in regulating replication timing in the 

context of chromosome 3D organization, all of which act by antagonizing or recruiting the 

essential replication initiation cell division cycle 7 kinase (Cdc7). In budding yeast, forkhead 

proteins (Fkh1 and Fkh2) are thought to organize early replication origins into clusters that 

permit the concentration of Cdc7 activity [37]. In yeast and mammals, the large multi-

functional rap1 interacting factor (Rif1) has been shown to localize to late replicating 

regions of the genome [38], and in yeast Rif1 recruits phosphatase PP1 to antagonize Cdc7 

[38–41]. Rif1 depletion appears to disrupt 3D chromatin organization in mammals 

[42,43**], leading to speculation that Rif1 regulates RT through establishing 3D structure. 

However, there is still contradictory data as to whether Rif1 is removed from chromatin 

during replication [42,44], so whether Rif1 is directing 3D structure necessary but not 

sufficient for RT, or whether Rif1 interacts with the 3D scaffold in a cell cycle regulated 

fashion to influence RT is still a matter of debate.

Intrinsic and extrinsic variation in RT and large-scale chromosome 

architecture

An important gap in our understanding of RT is the degree of stochastic variation and cell-

to-cell heterogeneity. Recent studies of budding and fission yeast replicon structure using 

isolated DNA fibers demonstrate a great deal of heterogeneity in the sites and timing of 

initiation for replication [45,46*]. However, current DNA fiber methods do not retain cell of 

origin information to distinguish extrinsic (cell to cell) and intrinsic (homologue to 

homologue) variation. Moreover, compelling cytogenetic evidence in mammalian cells 

suggests that the same cohort of replication foci labeled in one cell cycle are also labeled 

coordinately in the subsequent cell cycle [47], implying a great degree of coordination. It is 

now imperative to develop methods to probe how structure and function co-vary within 

single cells. Although single-cell RT has not been developed, great progress in single-cell 

isolation and whole genome amplification techniques have paved the way for transcriptome 

and epigenome analyses of individual cells [48,49]. The first glimpses of single-cell Hi-C 

suggest stability in the structure of TADs but considerable variability in long range 

interactions that nonetheless remained within their respective interaction compartment [50] 

while single-cell LAD mapping has confirmed cell to cell heterogeneity in chromatin 

interaction with the nuclear periphery [51*] predicted from the earlier single cell studies 

[19]. However, both studies examined haploid chromosomes, precluding measurements of 

intrinsic variation. In mammals, RT profiles may soon emerge from single-cell copy number 

measurements [52*], and high-throughput methods to analyze individual DNA fibers are 
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becoming state-of-the-art [53,54*], suggesting measurements of origin firing and RT 

variability are on the horizon.

While we do not yet have good assessments of the degree of stochastic intrinsic variation, 

there is evidence for deterministic influences on intrinsic RT variation. Genomic imprinting 

in mammals is associated with silencing and delayed replication of the imprinted allele 

[55,56] and mono-allelically expressed genes are also generally replicated earlier when 

active [57,58]. Moreover, during chromosome X inactivation in female mammals, the 

inactive chromosome X (Xi) replicates later than the active X (Xa) [59,60]. Intriguingly, the 

Xi is depleted of TADs [61–63] and replicated by a rapid and synchronous firing of origins 

throughout the whole chromosome [64,65*]. Analysis of RT by deep sequencing of phased 

genomes (i.e. with all allelic variants mapped to distinguish the parental origin of each 

haplotype) permits correlations between allelic DNA sequence variation and RT. In general, 

homologues replicate highly synchronously with very few regions showing allelic 

differences in RT or in origin usage related to DNA sequence variation, although some reach 

statistical or disease-associated significance worth further investigation [24*,66*,67,68*,
69*]. An elegant series of recent papers has revealed a new class of cis-acting elements 

involved in the regulation of RT, mitotic condensation and chromosome stability [70–72**]. 

These elements consist of monoallelically expressed long non-coding RNAs that appear to 

be present on each mammalian chromosome, and interact in cis to regulate RT, monoallelic 

gene expression and structural stability of the entire chromosome [72**]. Overall, these 

results uncover specific mechanisms that control intrinsic allelic variation in RT that are 

certain to be the subject of much investigation in the coming years.

Clinging onto Proteus’s neck

Strong correlations between genome organization, RT and gene regulation are found in all 

multicellular organisms studied [11,12,22,73–80]. Half of the genome changes RT during 

development in units of 400–800 kilobases (entire RD/TADs) closely coordinated with 

transcriptional competence (Figure 2) [11,12,77,81–83]. Just as holding the mythical Proteus 

throughout all his transformations was necessary to learn his secrets, understanding these 

intriguing liaisons requires careful observation of their order of events during cell fate 

transitions. However, until recently, systems capable of eliciting change found that the 

changes in RT, gene activity and nuclear positioning were too synchronous to temporally 

separate them [12]. By taking advantage of new human embryonic stem cell (hESC) 

differentiation systems that allow highly synchronous derivation of distinct cell types [84–
86**], we were able to track changes in RT and gene expression through multiple 

intermediate steps in lineage specification [86**]. Surprisingly, our study revealed that the 

strong correlation between early replication and active transcription is restricted to RT-

constitutive genes (i.e. genes that do not change their RT program), while the RT-switching 

genes have a much weaker correlation that is further diminished during differentiation. 

Moreover, some RT-switching genes are expressed only when replicated early (E-class), 

while the majority (C-class) can be strongly expressed in one or more cell types while late 

replicating, demonstrating that transcription is not sufficient for early replication (Figure 3). 

Additionally, a rare category of genes (L-class) were expressed exclusively when replicated 

late. Tracking C-class gene activity through cell fate transitions showed that this class of 
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genes commonly reach high expression levels in the same lineage where an RT switch 

occurs, but preceding the change to early RT by one or two intermediate stages of 

differentiation, while down-regulation often followed changes to late RT (Figure 3) [86**]. 

These results suggest that some aspects of transcriptional control could indirectly influence 

RT. One possibility is that RT responds to aspects of transcriptional regulatory circuitry, but 

is not directly related to transcription itself.

Studies of RT changes during differentiation also revealed that many other longstanding 

correlations to RT, in addition to transcription, apply only to the RT-constitutive domains 

and that RT-switching or “developmental domains” have independent organizational 

principles that challenge many of the assumptions that guided our hypotheses over the last 

few decades. In addition to their distinct sequence composition (see [86**] and Figure 1 of 

[14]), they are highly nuclease insensitive, depleted of replication origins [87,88], less 

confined to A/B Hi-C compartments and chromatin states correlated to RT in constitutive 

domains are much less correlated to RT in developmental domains [35**]. Hence, 

chromosome domains fall into categories that reflect their developmental control of DNA 

RT. Importantly, it is not known whether the lack of correlations in the RT-switching half of 

the genome is due to intermediate properties of these domains, increased cell-to-cell 

heterogeneity, or structural instability within a single cell cycle. It is now imperative to tease 

out what properties actually do correlate with RT within the half of the genome that changes 

RT and 3D organization during differentiation.

Twisting the lion’s tail

Understanding causal relationships between RT, chromosome architecture and gene 

regulation requires experimental manipulation or ‘twisting the lion’s tail’ [89]. Several 

studies expressing artificial proteins consisting of sequence-specific DNA binding domains 

fused to domains that can target to sub-nuclear domains or strongly remodel chromatin have 

revealed some important principles. Rapid re-localization (1–2 hrs) of a chromosome site 

has been observed from the periphery to the nuclear interior upon robust transcriptional 

induction [90] or towards RNA processing sites following heat shock [91*]. Conversely, 

artificial anchoring of distinct genes to the nuclear lamina leads to their reversible repression 

[92–94], but this re-positioning occurs only after a passage through mitosis [93]. Tethering 

to the periphery is sufficient to suppress the expression of some but not all genes [92,95,96], 

implying the existence of different sensitivity classes of genes, as was found with the RT 

studies discussed above. Although RT was not measured in these studies, since the periphery 

is a late replicating compartment such analogies are reasonable to expect. Additionally, 

mechanisms tethering LADs to the nuclear periphery remain unknown and some evidence is 

contradictory: mES cells depleted of nuclear lamins preserved normal chromatin interactions 

with the nuclear periphery [97], while other studies suggest that lamin A/C is required to 

anchor chromatin to the nuclear periphery [98,99].

Several earlier studies suggested that targeting strong artificial transcriptional activators is 

sufficient to induce a change from late to early replication of some specific loci [100–103]. 

More recently, targeting an exceptionally strong transactivator induced changes in both 

nuclear repositioning and RT [104*], while targeting a mutated transactivator with chromatin 
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unfolding but not transcription activity [105] elicited repositioning but not a change in RT, 

prompting the authors to conclude the transcription is sufficient for the RT switch [104*]. 

This is clearly not a generalized conclusion, since genome-wide studies reveal numerous 

examples of transcriptional upregulation without alterations in RT and approximately 20% 

of late replicating genes are expressed [11,12,73,86**]. Moreover, RT changes in response 

to the artificial transactivator were less robust than changes observed at this same locus 

during differentiation [104*] and some evidence suggests that remodeling of chromatin 

during DNA replication precedes and is necessary for gene activation during differentiation 

at other loci [106]. Hence, we are beginning to witness a transition in the field from 

correlative to more manipulative studies that are providing glimpses of causality, but also 

complexity. It is possible that transcription, RT, chromatin structure and chromosome 

organization all influence each other in a contextually or quantitatively dependent manner. 

Clearly there is much exciting work ahead to establish the governing principles relating 

large-scale structure and function in the nucleus.

Conclusions and future directions

There is an intimate connection between, on the one hand, fundamental chromosome 

functions of RT and transcription and, on the other hand, the structural organization of 

chromosomes into TADs and their 3D organization in the nucleus. A critical issue to be 

resolved is the extent to which genome structure is cause or consequence of genome 

function. From the intriguing equivalence between RDs and TADs it is tempting to speculate 

that RT reflects the organization of the genome, but to date it is not clear how RT is 

regulated while TAD organization is not sufficient to dictate RT [35**]. Moreover, studies of 

RT have revealed that domains with developmentally plastic RT lack or have measurably 

weaker associations of RT to chromatin structure and transcriptional control as compared to 

the RT-constitutive domains. Transcriptional activity appears to be capable of influencing 

both gene position and RT, but only in as yet poorly defined contexts. Moreover, 

developmental domains can be just as early or late replicating as constitutive domains, yet 

they do not follow the correlations between RT and chromatin properties identified over the 

last 30 years. Figure 4 presents a hypothetical model in which chromosomes are partitioned 

into distinct RD/TADs that agglomerate to form early and late compartments. Dynamic 

changes in nuclear organization, initiated by the transcriptional induction of C-class genes, 

elicit a compartment switch in the following mitosis that changes RT, creating a new stable 

state reinforced by chromatin assembly at a different time and location in the nucleus. Newly 

emerging approaches may finally be capable of teasing out cause and effect in these 

relationships. For example, combining chromosome “domain engineering” with evaluating 

effects during cell fate transitions [107,108] will identify necessary and sufficient cis-acting 

elements of chromosome structure and function, while recently developed methodologies for 

analysis of thousands of randomly integrated reporters [109] will provide much needed 

insight into influence of large scale architecture on functional outputs.
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Figure 1. 
Replication timing reflects genome organization. A) Cells were pulse-labeled with CldU, 

chased for 3 hours, pulse-labeled with IdU, and fixed and immunofluorescently stained for 

CldU (green) and IdU (red) [29]. Shown is a nucleus from a cell labeled with the early 

replicating compartments labeled in green and the late replicating compartment in red. B) 

LADs (green) labeled at the nuclear periphery during one cell cycle re-distribute in the next 

cell cycle to locations that resemble the late replicating foci. H3K4me3 labels active 

chromatin [19]. C) Exemplary RT profile of 50 Mb of human Chr10 from IMR90 

fibroblasts, segments of chromosomes with uniform RT (CTRs) aligned with Hi-C 

interaction compartments (Eigenvector display) and LaminB1 contact maps (DamID). D) 

RD boundaries align with the boundaries of both topologically associating domains (TADs) 

and lamin-associated domains (LADs). E) Replication domain model. Early and late 

replicating regions correspond to the Hi-C A/B compartments and RDs are equivalent to 

TADs, while late RDs and RDs in the passively replicated transitional regions between early 

and late RDs are associated with the nuclear periphery (LADs). The graphs were plotted 
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using public data: RT from [29], HiC from [28], lamin-B1 from [16] and boundaries 

alignment from [26**].
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Figure 2. 
RT changes are associated with nuclear re-localization and gene expression. A) Schematic 

depiction of neural differentiation (NPCs) from mouse embryonic stem cells (ESCs). B) RT 

changes during neural differentiation. Location of Dppa2 and Ptn genes are shown at the top. 

C) Nuclear re-localization of Dppa2 and Ptn domains during neural differentiation 

visualized by DNA FISH. D) Measurements of radial nuclear positioning (distance to the 

nuclear periphery) and gene expression of Dppa2 and Ptn genes. Colors in the graphs 

represent the distinct differentiation stages as shown in (A). Data and FISH images were 

obtained from [12].
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Figure 3. 
Transcription changes precede or follow RT changes for different classes of genes. RT 

changes and gene regulation during differentiation of human ESCs to liver, pancreas and 

muscle (Schematized in A). Exemplary genes switching from early to late (B) and from late 

to early (C) replication are shown. Lines represent the RT and bars the expression values at 

distinct cell fate transitions. E-class genes (top panels in B and C) are transcribed only when 

replicate early. C-class genes (bottom panels in B and C) down-regulation follows changes 
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to late replication while their induction precedes changes to early replication. Specific 

details of differentiation stages and original data from [86**].
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Figure 4. 
Genome organization, RT and gene regulation in the nucleus. A) Organization of RDs at the 

nuclear interior. Late replicating domains are located at the nuclear and nucleolar periphery 

(and other regions as shown in Figure 1A), early replicating domains are located at the 

nuclear interior and developmental regulated domains are less well compartmentalized 

[35**]. B) Early replicating compartments contain open/active chromatin at the nuclear 

interior where genes can be highly expressed. Developmentally regulated RDs contain 

distinct classes of genes: E-class genes are silenced while C-class genes can be expressed 

despite being late replicating and close to the periphery [86**]. C) RT changes and nuclear 

repositioning are commonly accompanied by an increase in expression of C-class genes, 

while E-class genes are induced only after the RT change.
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