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ABSTRACT

Osteosarcoma is the most common primary sarcoma of
bone, and it is a leading cause of cancer death among
adolescents and young adults. However, the molecular
mechanism underlying osteosarcoma carcinogenesis
remains poorly understood. Recently, cyclin-dependent
kinase 6 (CDK6) was identified as an important onco-
gene. We found that CDK6 protein level, rather than
CDK6 mRNA level, is much higher in osteosarcoma
tissues than in normal adjacent tissues, which indicates
a post-transcriptional mechanism involved in CDK6
regulation in osteosarcoma. MiRNAs are small non-
coding RNAs that repress gene expression at the post-
transcriptional level and have widely been shown to play
important roles in many human cancers. In this study,
we investigated the role of miR-29b as a novel regulator
of CDK6 using bioinformatics methods. We demon-
strated that CDK6 can be downregulated by miR-29b via
binding to the 3′-UTR region in osteosarcoma cells.
Furthermore, we identified an inverse correlation
between miR-29b and CDK6 protein levels in osteosar-
coma tissues. Finally, we examined the function of miR-
29b-driven repression of CDK6 expression in

osteosarcoma cells. The results revealed that miR-29b
acts as a tumor suppressor of osteosarcoma by target-
ing CDK6 in the proliferation and migration processes.
Taken together, our results highlight an important role
for miR-29b in the regulation of CDK6 in osteosarcoma
and may open new avenues for future osteosarcoma
therapies.
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migration, tumorigenesis

INTRODUCTION

Osteosarcoma is the most common primary bone malig-
nancy, mainly occurring in children and adolescents (Marina
et al., 2004; Longhi et al., 2006). It is usually found at the end
of long bones, mainly in the knee (Admassi, 2009).
Osteosarcoma is the eighth leading cancer with an incidence
of 4.4 per million people. Of all children diagnosed with
osteosarcoma, the 5-year survival rate is less than 30%, and
the 10-year survival rate is less than 50% (Marina et al.,
2004; Longhi et al., 2006). Despite advances in therapeutic
strategies, there is still no effective treatment for osteosar-
coma due to the poor understanding of its etiology. Studies
have demonstrated diverse genetic alterations in osteosar-
coma cells including structural abnormalities, gain and/or
loss of chromosomes, mutations in tumor suppressor genes
and epigenetic modifications (Kansara and Thomas, 2007;
Broadhead et al., 2011). However, the molecular mecha-
nisms underlying the initiation, development and metastasis
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of this disease remain unclear. Therefore, more research
should be performed to determine the molecular mecha-
nisms underlying osteosarcoma carcinogenesis, which
might provide novel strategies to improve the survival and
quality of life of osteosarcoma patients.

Oncoproteins are attractive therapeutic targets as they
are causally related to cancer development, and cancer cells
often become dependent on them for continued proliferation
and survival (Weinstein and Joe, 2006). One such onco-
protein is CDK6 (cyclin-dependent kinase 6). CDK6 is a
member of the CDK family. CDKs play important roles in the
major cell-cycle transitions and phases of all eukaryotic
organisms either directly or indirectly. Furthermore, prolifer-
ation of mammalian cells is primarily governed by CDKs
(Ekholm and Reed, 2000; Matushansky et al., 2003). CDK
family members have attracted widespread attention as
potential oncogenes and are widely reported to be deregu-
lated in many cancers. Moreover, the oncogenic capacity of
CDK6 has been shown in experimental models by several
groups (Malumbres and Barbacid, 2009). CDK6 activation
can directly lead to some of the hallmarks of cancer by
causing proliferation that is independent of normal extracel-
lular cues or by over-riding checkpoints that ensure genomic
integrity and stability (Musgrove et al., 2011). Furthermore,
many studies show that specific inhibitors of CDK6 have
anti-tumor effects in various malignancies (Fry et al., 2001;
Fry et al., 2004; Finn et al., 2009). However, little is known
about the expression and function of CDK6 in osteosarcoma.

MicroRNAs (miRNAs) are a class of small, non-coding,
single-stranded RNAs that bind target mRNAs at comple-
mentary sites in their 3′-untranslated regions (3′-UTRs),
thereby suppressing the expression of the target gene at the
post-transcriptional level in two manners: by inhibiting mRNA
translation or promoting mRNA degradation (Lee et al.,
2004). In animals, most miRNAs are imprecisely comple-
mentary to their mRNA targets and they inhibit protein syn-
thesis without destroying the stability of the mRNA target
(Carrington and Ambros, 2003; Ambros, 2004). Through this
mechanism, miRNAs regulate a wide range of biological
processes, including cell proliferation, differentiation, migra-
tion, apoptosis, development and metabolism (Calin and
Croce, 2006; Ma and Weinberg, 2008; Nicoloso et al., 2009).
Importantly, dysregulated and dysfunctional miRNAs play
important roles in different human diseases, including most
cancers, due to the ability of miRNAs to affect the translation
and stability of targeted oncogenes and tumor suppressors,
which eventually influences cellular physiology (Calin and
Croce, 2006; Ma and Weinberg, 2008; Nicoloso et al., 2009).
One such miRNA is miR-29b, the expression of which is
frequently downregulated in human cancers (Mott et al.,
2007; Garzon et al., 2009; Mott et al., 2010) and in
osteosarcoma (Jones et al., 2012; Dai et al., 2013). In par-
ticular, it has been shown that miR-29b can function as a
tumor suppressor to inhibit cancer cell proliferation (Zhang
et al., 2014). However, the underlying molecular mecha-
nisms through which downregulation of miR-29b contributes

to the development and progression of osteosarcoma
remain to be fully elucidated.

In this study, we found that CDK6 protein levels, but not
mRNA levels, were upregulated in osteosarcoma tissues.
Then, we identified CDK6 as a direct target gene of miR-29b.
The inverse correlation between miR-29b and CDK6
expression level in osteosarcoma tissues and normal adja-
cent tissues was further analyzed. Moreover, the potential
role of miR-29b as a tumor suppressor of osteosarcoma
through targeting CDK6 in the processes of proliferation and
migration has been experimentally validated.

RESULTS

Upregulation of CDK6 protein but not mRNA
in osteosarcoma tissues

We first determined the expression patterns of CDK6 in
osteosarcoma tissues. After measuring the levels of CDK6
protein in 6 pairs of osteosarcoma tissues and adjacent
noncancerous tissues (the clinical features of these tissue
samples are listed in Table S1) via Western blotting, we
found that CDK6 protein levels were significantly higher in
the cancer tissues (Fig. 1A). Subsequently, we performed
quantitative RT-PCR to measure the levels of CDK6 mRNA
in the same 6 pairs of cancerous and noncancerous tissues.
We found that CDK6 mRNA levels did not differ significantly
between the cancerous and noncancerous tissues (Fig. 1B).
This disparity between CDK6 protein and mRNA levels in
osteosarcoma tissues strongly suggest that a post-tran-
scriptional mechanism is involved in the regulation of CDK6.

Identification of conserved miR-29b target sites
in the 3′-UTR of CDK6

One important mode of post-transcriptional regulation is the
repression of mRNA translation by miRNAs. Therefore,
miRNAs are likely to play a biologically relevant role in reg-
ulating CDK6 expression in osteosarcoma. Three computa-
tional algorithms, including TargetScan (Lewis et al., 2003),
miRanda (John et al., 2004) and PicTar (Krek et al., 2005),
were used in combination to identify potential miRNAs that
can target CDK6. Among the numerous candidate regulatory
miRNA of CDK6, we selected miR-29b for further investi-
gation because we only focused on miRNAs that had mul-
tiple target sites within the 3′-UTR of CDK6. There were
three predicted hybridizations between miR-29b and the
3′-UTR of CDK6, and the minimum free energy values of
these hybridizations are −19.8, −18.7 and −23.0 kcal/mol,
respectively, which are well within the range of genuine
miRNA-target pairs (Fig. 2A). Moreover, there is perfect
base-pairing between the seed regions (the core sequence
that encompasses the first 2–7 bases of the mature miRNA)
and the cognate targets. Furthermore, two of the three miR-
29b binding sequences in the CDK6 3′-UTR are highly
conserved across species.
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Detection of an inverse correlation between miR-29b
and the CDK6 protein in osteosarcoma tissues

We next investigated whether miR-29b was inversely cor-
related with CDK6 in osteosarcoma. After determining the
levels of miR-29b in the same 6 pairs of osteosarcoma tis-
sues and adjacent noncancerous tissues, we found that
miR-29b levels were significantly downregulated in
osteosarcoma tissues (Fig. 2B). The correlation between
miR-29b and CDK6 protein or mRNA levels were further
illustrated using Pearson’s correlation scatter plots. The
results revealed that the inverse correlation of miR-29b with
the CDK6 protein (Fig. 2C) was stronger than that with the
CDK6 mRNA (Fig. 2D) in the osteosarcoma tissues.
Because animal miRNAs are generally believed to block
translational processes without affecting transcript levels, the
results strongly indicated the involvement of a miRNA-me-
diated post-transcriptional regulatory mechanism in CDK6
repression. In conclusion, the results of bioinformatics pre-
diction taken together with the inverse correlation between
miR-29b and CDK6 protein levels, but not mRNA levels,
indicated that CDK6 is a target of miR-29b in human
osteosarcoma tissues.

Validation of CDK6 as a direct target of miR-29b

The correlation between miR-29b and CDK6 was further
examined by evaluating CDK6 expression in the human

osteosarcoma cell line MG-63 after overexpression of miR-
29b. Here, we overexpressed miR-29b by transfecting cells
with pre-miR-29b, which is a synthetic RNA oligonucleotide
that mimics the miR-29b precursor. The efficient overex-
pression of miR-29b in MG-63 cells is shown in Fig. 3A.
Cellular miR-29b levels were increased approximately
25-fold when MG-63 cells were transfected with pre-miR-
29b. As anticipated, overexpression of miR-29b significantly
suppressed the CDK6 protein levels in MG-63 cells (Fig. 3B).
Furthermore, we determined CDK6 mRNA expression levels
by qRT-PCR after transfecting the cells with pre-miR-29b. As
shown in Figure 3C, overexpression of miR-29b did not
affect CDK6 mRNA levels in MG-63 cells. Taken together,
these results demonstrated that miR-29b specifically regu-
lates CDK6 expression at the post-transcriptional level,
which is the most common mechanism for animal miRNAs.

To determine whether the negative regulatory effects of
miR-29b on CDK6 expression were mediated through the
binding of miR-29b to the presumed sites in the 3′-UTR of
the CDK6 mRNA, a 1500 bp fragment of CDK6 3′-UTR
containing the three presumed miR-29b binding sites was
placed downstream of the firefly luciferase gene in a reporter
plasmid. The recombinant plasmid was transfected into MG-
63 cells along with pre-miR-29b or pre-miR-control. As
expected, luciferase activity was markedly reduced in the
cells transfected with pre-miR-29b (Fig. 3D). Furthermore,
we introduced point mutations into the corresponding com-
plementary sites in the 3′-UTR of CDK6 to eliminate the
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Figure 1. Downregulation of CDK6 in osteosarcoma tissues. (A) Western blotting analyses of the expression levels of the CDK6

protein in 6 pairs of osteosarcoma tissues (denoted as “C”) and corresponding noncancerous tissues (denoted as “N”). Upper panel:

representative image; lower panel: quantitative analysis (***P < 0.001). (B) Quantitative RT-PCR analyses of the expression levels of

CDK6 mRNA in the same 6 pairs of osteosarcoma tissues and corresponding noncancerous tissues. The results were normalized to

GAPDH (***P <0.001).
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predicted miR-29b binding sites (All three binding positions
were mutated). This mutated luciferase reporter was unaf-
fected by overexpression of miR-29b (Fig. 3E). These find-
ings suggested that the binding sites strongly contribute to
the interaction between miR-29b and CDK6 mRNA. In con-
clusion, our results demonstrated that miR-29b directly rec-
ognizes and binds to the 3′-UTR of the CDK6 mRNA
transcript and inhibits CDK6 translation in osteosarcoma
cells.

MiR-29b suppresses the proliferation of osteosarcoma
cells via targeting CDK6

We next analyzed the biological consequences of the miR-
29b-driven repression of CDK6 expression in osteosarcoma
cells. Because CDK6 is essential for the regulation of cell
proliferation, we evaluated whether miR-29b would modulate
cell proliferation via binding to CDK6 in osteosarcoma cells.
First, we evaluated the effects of miR-29b on the proliferation
of MG-63 cells using CCK8 assays. As expected, MG-63
cells transfected with pre-miR-29b showed decreased pro-
liferation (Fig. 4A). Subsequently, we investigated the role of

CDK6 on cell proliferation by overexpression or knockdown
of CDK6 to provide a better understanding of the CDK6-
involved pathway in osteosarcoma. To knock down CDK6, a
siRNA targeting CDK6 was designed and then transfected
into MG-63 cells. Both CDK6 protein (Fig. 4B) and mRNA
(Fig. 4C) levels were significantly reduced by CDK6 siRNA.
Then, we performed CCK8 assays to determine cell prolif-
eration ability after transfection with control siRNA or CDK6
siRNA. Similar to miR-29b overexpression, transfection of
CDK6 siRNA markedly reduced the cell proliferation ability of
MG-63 cells (Fig. 4D). To overexpress CDK6, an expression
plasmid designed to specifically express the full-length open
reading frame (ORF) of CDK6 without the miR-29b-respon-
sive 3′-UTR was constructed and transfected into MG-63
cells. Both CDK6 protein (Fig. 4E) and mRNA (Fig. 4F) levels
were significantly increased by the CDK6 plasmid. Then, we
performed CCK8 assays to determine cell proliferation ability
after transfection with the control plasmid or CDK6 plasmid.
Consistent with previous studies showing that CDK6 func-
tions as a proliferation promoter, transfection of the CDK6
plasmid markedly increased the cell proliferation ability of
MG-63 cells (Fig. 4G). Moreover, compared with cells
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Figure 2. Inverse correlation between the miR-29b and CDK6 protein expression levels in osteosarcoma tissues.

(A) Schematic description of the hypothetical duplexes formed by the interactions between the binding sites in the CDK6 3′-UTR (top)

and miR-29b (bottom). The predicted free energy value of each hybrid is indicated. The seed recognition sites are denoted, and the

conservation of the nucleotides in these regions across species, including human, mouse and rat, are displayed. (B) Quantitative RT-

PCR analyses of the expression levels of miR-29b in the same 6 pairs of osteosarcoma tissues and corresponding noncancerous

tissues. The results were normalized to U6 (***P < 0.001). (C) Pearson’s correlation scatter plot analysis of the expression levels

between miR-29b and CDK6 protein in osteosarcoma tissues. (D) Pearson’s correlation scatter plot analysis of the expression levels

between miR-29b and CDK6 mRNA in osteosarcoma tissues.
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transfected with pre-miR-29b alone, those transfected with
both pre-miR-29b and the CDK6-ORF-overexpression plas-
mid exhibited significantly higher proliferation rates (Fig. 4H),
suggesting that miR-29b-resistant CDK6 is sufficient to res-
cue the suppression of CDK6 by miR-29b and to attenuate
the anti-proliferation effect of miR-29b on osteosarcoma
cells.

MiR-29b suppresses the migration ability
of osteosarcoma cells via targeting CDK6

To further test the biological effect of CDK6-targeted miR-
29b on osteosarcoma cells, a series of Transwell assays
were performed to determine the cell migration ability. As
expected, MG-63 cells transfected with CDK6 siRNA
showed inhibited cell migration (Fig. 5A). In contrast, trans-
fection with the CDK6-overexpression plasmid had the

opposite effect on cell migration (Fig. 5B). Furthermore, cells
transfected with pre-miR-29b alone displayed repressed
migration ability (Fig. 5C). When MG-63 cells were simulta-
neously transfected with pre-miR-29b and the CDK6 over-
expression plasmid, CDK6 dramatically attenuated the
migration suppression by miR-29b (Fig. 5C). Taken together,
these results demonstrate that miR-29b inhibits cell migra-
tion by silencing CDK6.

DISCUSSION

Osteosarcoma is the most common primary sarcoma of
bone, and it is a leading cause of cancer death among
adolescents and young adults (Ottaviani and Jaffe, 2009).
The mechanisms that initiate and propagate osteosarcoma
genesis remain poorly understood (Gorlick, 2009). CDK6 is a
protein that initiates the release of the RB-dependent cell
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cycle-inhibitory ‘brake’ that governs cell cycle transitions
during quiescence, senescence and differentiation (Mus-
grove et al., 2011). Furthermore, as an oncogene, CDK6 can
promote tumor cell proliferation and is widely deregulated in
different cancers, such as breast cancer, glioma, blastoma,
lymphoma and melanoma (Malumbres and Barbacid, 2001;
Malumbres and Barbacid, 2009). Some inhibitors of the

cyclin D-associated kinases CDK4 and CDK6 may be used
as potential cancer therapeutics. However, the function and
regulation of CDK6 in osteosarcoma is still largely unknown.
In this study, we first showed that CDK6 protein levels were
significantly higher in 6 pairs of osteosarcoma tissues than in
corresponding noncancerous tissues. Furthermore, we
found that silencing CDK6 expression using siRNA could
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inhibit proliferation and migration of osteosarcoma cells,
whereas overexpressing CDK6 induced opposing effects,
validating its role as an essential oncogene during
osteosarcoma tumorigenesis. Interestingly, CDK6 mRNA
levels in human osteosarcoma tissues were not significantly
different from CDK6 mRNA levels in corresponding non-
cancerous tissues. These results suggest a post-transcrip-
tional regulation mechanism involved in CDK6 repression.
One centrally important mode of post-transcriptional regu-
lation is the repression of mRNA transcripts by miRNAs.
Therefore, we searched for miRNAs that can target CDK6
and identified miR-29b as a novel candidate. In addition, by
overexpressing miR-29b in osteosarcoma cells, we experi-
mentally validated the direct inhibition of CDK6 translation by
miR-29b. Finally, we showed that miR-29b inhibited CDK6
expression and consequently inhibited proliferation and
migration in cultured osteosarcoma cells. Our studies reveal
the importance of miR-29b targeting CDK6 as a novel reg-
ulatory pathway in osteosarcoma progression.

MiRNAs are aberrantly expressed in cancers and can
function as oncogenes or tumor suppressor genes (Calin
and Croce, 2006; Esquela-Kerscher and Slack, 2006). In this
study, we found that the levels of miR-29b were lower in
osteosarcoma tissues than in noncancerous tissues. These
results suggest that miR-29b may be involved in the patho-
genesis of osteosarcoma as a tumor suppressor. Indeed,

miR-29b has been reported to be downregulated in several
types of human cancer, including hepatocellular carcinoma
(Fang et al., 2011), myeloid leukemia (Mott et al., 2010) and
chronic lymphocytic leukemia (Sampath et al., 2012). Fur-
thermore, miR-29b plays a tumor suppressive role in cancer
by influencing cell survival, tumor growth, apoptosis, cell
cycle distribution, migration and angiogenesis (Cortez et al.,
2010; Fang et al., 2011; Kole et al., 2011; Wang et al., 2011;
Rossi et al., 2013). In this study, we found that overex-
pressing miR-29b can inhibit proliferation and migration of
osteosarcoma cells and that CDK6 reduction can mimic the
effect of miR-29b induction. Interestingly, we observed that
the restoration of CDK6 expression can successfully atten-
uate the anti-proliferation and anti-migration effects of miR-
29b on osteosarcoma cells, although miR-29b has many
other targets. These results suggest that the targeting of
CDK6 is a major mechanism by which miR-29b exerts its
tumor-suppressive function.

Taken as a whole, this study delineates a novel regulatory
network employing miR-29b and CDK6 to regulate prolifer-
ation and migration in osteosarcoma cells. Considering that
re-expression of miRNAs that are lost in cancers, through
either transfection or viral delivery method, has been
demonstrated to be potential therapeutic method against
human cancers (Kumar et al., 2008; Iorio and Croce, 2012),
our study may open new avenues for future osteosarcoma
therapies.

MATERIALS AND METHODS

Cells and human tissues

The human osteosarcoma cell line MG-63 was purchased from the

Shanghai Institute of Cell Biology, Chinese Academy of Sciences

(Shanghai, China). MG-63 cells were cultured in DMEM supple-

mented with 10% fetal bovine serum (GIBCO, CA, USA) and incu-

bated in 5% CO2 at 37°C in a water-saturated atmosphere. The

osteosarcoma and paired normal adjacent tissues were derived from

patients undergoing a surgical procedure at the Jinling Hospital of

Nanjing University (Nanjing, China). All protocols concerning the use

of patient samples in this study were approved by the Medical Ethics

Committee of the Jinling Hospital of Nanjing University (Nanjing,

China). A signed consent form was obtained from each donor. The

tissue fragments were immediately frozen in liquid nitrogen at the

time of surgery and stored at −80°C. The clinical features of the

patients are listed in Table S1. The study protocol was approved by

the Medical Ethics Committee of the Jinling Hospital of Nanjing

University (Nanjing, China), and all experiments were performed in

accordance with approved guidelines of the Jinling Hospital of

Nanjing University (Nanjing, China).

RNA isolation and quantitative RT-PCR

Total RNA was extracted from the cultured cells and human tissues

using TRIzol Reagent (Invitrogen, Carlsbad, CA) according to the

manufacturer’s instructions. Assays to quantify miRNAs were per-

formed using Taqman miRNA probes (Applied Biosystems, Foster

b Figure 4. MiR-29b represses cell proliferation via targeting

CDK6 in osteosarcoma cells. (A) The CCK8 assays were

performed 12, 24, 36 and 48 h after the transfection of

osteosarcoma cells with pre-miR-control, pre-miR-29b or noth-

ing (mock). ***P < 0.001. (B) Western blotting analyses of the

expression levels of the CDK6 protein in osteosarcoma cells

after transfection with control siRNA or CDK6 siRNA. Left panel:

representative images; right panel: quantitative analysis (***P <

0.001). (C) Quantitative RT-PCR analyses of the expression

levels of CDK6 mRNA in osteosarcoma cells after transfection

with control siRNA or CDK6 siRNA (***P < 0.001). (D) The

CCK8 assays were performed 12, 24, 36 and 48 h after the

transfection of osteosarcoma cells with control siRNA or CDK6

siRNA (***P < 0.001). (E) Western blotting analyses of the

expression levels of CDK6 protein in osteosarcoma cells after

transfection with control plasmid or CDK6 plasmid. Left panel:

representative images; right panel: quantitative analysis (***P <

0.001). (F) Quantitative RT-PCR analyses of the expression

levels of CDK6 mRNA in osteosarcoma cells after transfection

with control plasmid or CDK6 plasmid (***P < 0.001). (G) The

CCK8 assays were performed 12, 24, 36 and 48 h after the

transfection of osteosarcoma cells with control plasmid or CDK6

plasmid (***P < 0.001). (H) The CCK8 assays were performed

12, 24, 36 and 48 h after the transfection of osteosarcoma cells

with pre-miR-control plus control plasmid, pre-miR-29b plus

control plasmid, pre-miR-29b plus CDK6 plasmid or pre-miR-

control plus CDK6 plasmid (***P < 0.001).
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City, CA) according to the manufacturer’s instructions. Briefly, 1 µg of

total RNA was reverse-transcribed to cDNA using AMV reverse

transcriptase (TaKaRa, Dalian, China) and a stem-loop RT primer

(Applied Biosystems). The reaction conditions were as follows: 16°C

for 30 min, 42°C for 30 min, and 85°C for 5 min. Real-time PCR was

performed using a TaqMan PCR kit on an Applied Biosystems 7300

Sequence Detection System (Applied Biosystems). The reactions

were incubated in a 96-well optical plate at 95°C for 5 min, followed

by 40 cycles of 95°C for 15 s and 60°C for 1 min. All of the reactions

were run in triplicate. After the reaction, the cycle threshold (CT) data

were determined using fixed threshold settings, and the mean CT of

the triplicate PCRs was determined. A comparative CT method was

used to compare each condition to the controls. The relative levels of

the miRNAs in cells and tissues were normalized to U6. The amount

of miRNA relative to the internal control U6 was calculated using the

2−ΔΔCT equation, in which ΔΔCT = (CT miRNA − CT U6) test condition −
(CT miRNA − CT U6) control condition.

To quantify CDK6 mRNA, 1 µg of total RNA was reverse-tran-

scribed to cDNA using oligo dT and AMV reverse transcriptase

(TaKaRa) in the reaction, which was performed with the following

conditions: 42°C for 60 min and 70°C for 10 min. Next, real-time

PCR was performed using the RT product, SYBER Green Dye

(Invitrogen), and specific primers for CDK6 and GAPDH. The

sequences of the primers were as follows: CDK6 (sense): 5′-TGC

ACAGTGTCACGAACAGA-3′; CDK6 (antisense): 5′-ACCTCGGA

GAAGCTGAAACA-3′; GAPDH (sense): 5′-GATATTGTTGCCATCA

ATGAC-3′; and GAPDH (antisense): 5′-TTGATTTTGGAGGGAT

CTCG-3′. The reactions were incubated at 95°C for 5 min, followed

by 40 cycles of 95°C for 30 s, 60°C for 30 s, and 72°C for 30 s. After

the reactions were complete, the CT values were determined by

setting a fixed threshold. The relative amount of CDK6 mRNA was

normalized to GAPDH.

Cell transfection

Synthetic pre-miR-29b and scrambled negative control RNAs (pre-

miR-control) were purchased from Ambion (Austin, TX, USA). Cells

were seeded in 6-well plates and were transfected using Lipofec-

tamine 2000 (Invitrogen) the following day when the cells were

approximately 70% confluent. In each well, equal amounts of pre-

miR-29b or scrambled negative control RNA were used. The cells

were harvested 48 h after transfection for quantitative RT-PCR and

Western blotting.

Luciferase reporter assay

To test the direct binding of miR-29b to the target gene CDK6, a

luciferase reporter assay was performed as previously described

(Chen et al., 2009). Briefly, a 1500 bp fragment of human CDK6

3′-UTR containing the three presumed miR-29b binding sites was

directly synthesized by Realgene (Nanjing, China). The synthetic

product was inserted into the p-MIR-reporter plasmid (Ambion), and

the insertion was confirmed by sequencing. To test the binding

specificity, a 1500 bp fragment of mutant CDK6 3′-UTR containing

three mutant miR-29b binding sites was synthesized and inserted

into an equivalent luciferase reporter. For luciferase reporter assays,

MG-63 cells were cultured in 12-well plates, and each well was

transfected with 0.8 µg of firefly luciferase reporter plasmid, 0.8 µg of
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Figure 5. MiR-29b represses cell migration via targeting CDK6 in osteosarcoma cells. (A) Transwell analyses of the migrated

osteosarcoma cells after transfection with the control siRNA or CDK6 siRNA (***P < 0.001). (B) Transwell analyses of the migrated

osteosarcoma cells after transfection with the control plasmid or CDK6 plasmid (***P < 0.001). (C) Transwell analyses of the migrated

osteosarcoma cells after transfection with pre-miR-control plus control plasmid, pre-miR-29b plus control plasmid, pre-miR-29b plus

CDK6 plasmid or pre-miR-control plus CDK6 plasmid (**P < 0.01; ***P < 0.001).
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a β-galactosidase (β-gal) expression plasmid (Ambion), and equal

amounts (40 pmol) of pre-miR-29b or the scrambled negative control

RNA using Lipofectamine 2000 (Invitrogen). The β-gal plasmid was

used as a transfection control. Twenty-four hours after transfection,

the cells were assayed using a luciferase assay kit (Promega,

Madison, WI, USA).

Plasmid construction and siRNA interference assay

The siRNA sequence targeting the human CDK6 cDNA was

designed and synthesized by GenePharma (Shanghai, China). The

siRNA sequence was 5′-TACTTCTGAAGTGTTTGACATTT-3′. A

scrambled siRNA was included as a negative control. A mammalian

expression plasmid encoding the human CDK6 open reading frame

(pReceiver-M02-CDK6) was purchased from GeneCopoeia (Ger-

mantown, MD, USA). An empty plasmid served as a negative con-

trol. The CDK6 expression plasmid and CDK6 siRNA were

transfected into MG-63 cells using Lipofectamine 2000 (Invitrogen)

according to the manufacturer’s instructions. Total RNA and protein

were isolated 48 h post-transfection. The CDK6 mRNA and protein

expression levels were assessed by quantitative RT-PCR and

Western blotting.

Protein extraction and Western blotting

All cells were rinsed with PBS (pH 7.4) and lysed on ice for 30 min in

RIPA lysis buffer (Beyotime, China) supplemented with a Protease

and Phosphatase Inhibitor Cocktail (Thermo Scientific 78440). The

tissue samples were snap frozen with liquid nitrogen, ground into

powder, and lysed on ice for 30 min in RIPA lysis buffer containing

the Protease and Phosphatase Inhibitor Cocktail. When necessary,

sonication was used to facilitate lysis. Cell lysates or tissue homo-

genates were centrifuged for 10 min (at 12,000 ×g and 4°C). The

supernatant was collected, and the protein concentration was cal-

culated using the Pierce BCA protein assay kit (Thermo Scientific,

Rockford, IL, USA). The protein levels were analyzed via Western

blot using the corresponding antibodies. The protein levels were

normalized by probing the same blots with a GAPDH antibody. The

following antibodies were purchased from the corresponding sour-

ces: anti-CDK6 (Santa Cruz Biotechnology sc-130545, Santa Cruz,

CA, USA) and anti-GAPDH (Santa Cruz Biotechnology sc-365062,

Santa Cruz, CA, USA). Protein bands were analyzed using ImageJ

software (National Institutes of Health, USA).

Cell proliferation assay

The transfected cells were seeded in 96-well plates at a density of

5 × 103 cells per well. The cell proliferation index was measured

using a CCK8 assay (Dojindo, Japan) at 12, 24, 36 and 48 h after

the cells were seeded. Five wells were tested for each group at each

time point. A volume of 10 µL CCK8 solution from the CCK8 kit was

added to each well. After incubation for 2 h, plates were read at a

wavelength of 450 nm to measure the absorbance of each well. The

day when seeding was practiced was set as Day 0, and the relative

cell number was calculated by the ratio of absorbance of Day n to

Day 0.

Cell migration assay

The MG-63 cells were transfected as described above, and the

migration ability was tested in a Transwell Boyden Chamber (6.5-

mm, Costar, USA). The polycarbonate membranes (8-µm pore size)

on the bottom of the upper compartment of the Transwells were

coated with 1% human fibronectin (R&D systems 1918-FN, USA).

The cells were harvested 12 h after transfection and suspended

in FBS-free DMEM. Then, cells were added to the upper chamber

(4 × 104 cells/well). At the same time, 0.6 mL of DMEM containing

10% FBS was added to the lower compartment, and the Transwell-

containing plates were incubated for 12 h in a 5% CO2 atmosphere

saturated with H2O. After incubation, cells that had entered the lower

surface of the filter membrane were fixed with 4% paraformaldehyde

for 20 min at room temperature, washed 3 times with PBS, and

stained with 0.1% crystal violet in 0.1 mol/L borate and 2% ethanol

for 15 min at room temperature. Cells remaining on the upper sur-

face of the filter membrane (non-migrant) were gently scraped off

using a cotton swab and the cells on the lower surface were counted

randomly in 3 scopes at least.

Statistical analysis

All Western blot images are representative of at least three inde-

pendent experiments. Quantitative RT-PCR, luciferase reporter

assays, and cell proliferation and migration assays were performed

in triplicate, and each experiment was repeated several times. The

data shown are the mean ± SE of at least three independent

experiments. The differences were considered statistically signifi-

cant at P < 0.05 using Student’s t-test.
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