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Abstract

Drug sensitivity and resistance are conventionally quantified by IC50 or Emax values, but these 

metrics are highly sensitive to the number of divisions taking place over the course of a response 

assay. The dependency of IC50 and Emax on division rate creates artefactual correlations between 

genotype and drug sensitivity while obscuring valuable biological insights and interfering with 

biomarker discovery. We derive alternative drug response metrics that are insensitive to division 

number. These are based on estimating the magnitude of drug-induced growth rate inhibition (GR) 

using endpoint or time-course assays. We show that GR50 and GRmax are superior to conventional 

metrics for assessing the effects of drugs in dividing cells. Moreover, adopting GR metrics requires 

only modest changes in experimental protocols. We expect GR metrics to improve the study of cell 

signaling and growth using drugs, discovery of drug response biomarkers, and identification of 

drugs effective on specific patient-derived tumor cells.
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 INTRODUCTION

The quantification of drug response is fundamental to discovering therapeutic molecules, 

investigating their mechanisms of action1–3 and studying signal transduction, cell division 

and other biological processes using chemical biology approaches4,5. In the case of anti-

cancer drugs, cells are typically exposed to drugs over a range of concentrations, and the 
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number of viable cells (or surrogates such as ATP using CellTiter-Glo®) are measured 

several days later. Data comprising cell counts in the presence of drug divided by counts for 

untreated controls are fitted to a sigmoidal curve to compute (i) the concentration of drug at 

which the cell count is half the control (IC50), (ii) the fraction of viable cells at the highest 

drug concentration (Emax), and (iii) the area under the dose-response curve (AUC)6,7. Dose-

response and genomic datasets are often combined to discover drug response 

biomarkers1–3,8,9, but it has recently been found that large-scale drug response data vary 

from one study to the next10 for reasons that remain poorly understood11–13.

We show here that for dividing cells, traditional drug response metrics such as IC50 suffer 

from a fundamental flaw when they are estimated from cell counts made at the end of the 

experiment (the standard approach): if cells undergo different numbers of divisions during 

the course of an assay due to natural differences in proliferation rate, variation in growth 

conditions, or changes in the duration of an experiment, IC50, Emax, and AUC values will 

vary dramatically, independent of any changes in the underlying biology. Thus biomarkers 

that predict sensitivity under one (potentially arbitrary) set of assay conditions may not 

predict sensitivity under slightly different conditions. We therefore propose a new method 

for parameterizing drug response, the normalized growth rate inhibition (GR), which is 

based on comparing growth rates in the presence and absence of drug. Parameterization of 

GR data yields GR50, GRmax, GRAOC, and hGR (Hill Slope) values that are largely 

independent of cell division rate and assay duration (we use “area over the curve”, GRAOC, 

rather than AUC for reasons discussed in online methods). GR metrics can be determined 

with modest changes in experimental procedures and we propose that they replace IC50 and 

Emax values in assessing cellular response to drugs, RNAi, and other perturbations in which 

control cells divide over the course of the assay.

 RESULTS

 Definition of normalized growth rate inhibition (GR)

We used computer simulation to model drug response by three idealized cell lines having 

identical sensitivity to a cytostatic drug (i.e. a drug that arrests but does not kill cells) and 

different division times (Td = 1.8, 2.4 or 3.9 d). These division times correspond to the lower 

quartile, median, and upper quartile for breast cancer cell lines3 and are similar to those of 

NCI-60 cells14. In the slowly dividing cell line (Td = 3.9 d), the total number of cells did not 

double in a typical three-day assay, thus Emax ≥ 0.5 and IC50 was undefined. In the case of 

the two faster growing cell lines, IC50 and Emax values fell as division rate increased (Fig. 

1a) simply because cell number (or CTG value) was normalized to a drug-naïve control in 

which cell number increases as division time fell (compare curves in panels of Fig. 1a).

We can compensate for the confounding effects of division rate on drug response 

measurements by computing “normalized growth rate inhibition” at time t in the presence of 

drug at concentration c:
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where k(c,t) is the growth rate of drug-treated cells and k(0) is the growth rate of untreated 

control cells (Fig. 1b). The GR value is simply the ratio between growth rates under treated 

and untreated conditions normalized to a single cell division. The sign of the GR value 

relates directly to response phenotype: it lies between 0 and 1 in case of partial growth 

inhibition, equals 0 in the case of complete cytostasis and lies between 0 and −1 in case of 

cell death. Given GR values for a range of drug concentrations, GR50 is the concentration at 

which GR(c) = 0.5, GRmax is the maximal measured GR value, and hGR is the slope of the 

sigmoidal fit; GRAOC is calculated by integrating the GR curve over a range of 

concentrations (see online methods).

In practice, GR values can be estimated from endpoint measurement of cell number in 

treated and treated samples, given the initial cell number (Fig. 1c; this is related to the 

procedure for GI50 determination, see Supplementary Note 1). Alternatively, the doubling 

time for untreated cells can be measured under the same conditions in parallel experiments 

and used in place of the initial cell number (see online methods). A time-dependent GR 

value can be evaluated given cell count measurements at two or more time points. Time-

dependent GR values capture adaptive responses, varying kinetics of drug-target interaction, 

drug efflux, etc (Fig. 1d). Introducing time as a variable makes it possible to relate drug-

induced changes in cell states to dynamic measures of drug response at a molecular level 

(equations for all calculations are provided in online methods with links to scripts).

To compare GR dose-response curves to conventional curves we created synthetic data for 

cells with Td ranging from one to four days exposed to a drug that is partially cytostatic, 

fully cytostasic, or cytotoxic (models are described in online Methods). For all three drugs 

IC50 and Emax values were strongly correlated with division time and assay duration, but this 

was not true of corresponding GR metrics (Fig. 1e–f, Supplementary Fig. 1a–b and 

methods). In the case of drugs that kill cells rapidly, independently of cell cycle state, GRmax 

still varies with growth rate and time-dependent GR values are preferable (Supplementary 

Fig. 2 and methods). AUC combines IC50 or Emax data and is often less sensitive to 

experimental noise1,6,11 but it suffers from the same dependence on cell division time; 

GRAOC corrects for this (Supplementary Fig. 1c).

 GR metrics are robust to experimental variability

To study how changing cell division affects IC50 values we expressed BRAFV600E in 

hTERT-immortalized retinal pigment epithelial (RPE) cells and then exposed them to 

etoposide, a topoisomerase II inhibitor that has a cytostatic effect in RPE cells (and whose 

mechanism of action is independent of BRAF). Oncogene over-expression is known to slow 

the growth of non-transformed cells15,16 and expression of BRAFV600E in RPE cells under 

the control of a doxycycline-inducible promoter was observed to increase division time 3-

fold as the doxycycline concentration increased from 0 to 60 nM. Under these conditions the 

estimated IC50 value for etoposide increased 100-fold and Emax increased from 0.25 to 0.6 

(Fig. 2a and Supplementary Fig. 3a). In contrast, GR50 and GRmax values varied only 

slightly under these conditions because the effects of etoposide per cell division were 

unchanged.
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In a second experiment, we measured etoposide sensitivity in MCF 10A cells grown in 

serum-free medium supplemented with different concentrations of epidermal growth factor 

(EGF). The division time of MCF 10A cells varied from >10 d at 0.02 ng ml−1 EGF to <2 d 

at 1 ng ml−1 EGF (Fig. 2c). Across this range, IC50 and Emax for etoposide were 

substantially more variable than GR50 or GRmax values (Fig. 2b and Supplementary Fig. 3b). 

Thus, potentially arbitrary and unintended differences in cell culture conditions can lead to 

large variation in IC50 or Emax values that are unlikely to have a biological basis.

To test the GR approach in a typical small-scale drug sensitivity screen we exposed MCF 

10A and BT-20 cells, expressing H2B-mCherry to facilitate automated cell counting, to five 

different drugs chosen for diverse mechanisms of action. We measured cell number every ~8 

h over 3 d using an automated microscope. Estimated IC50 and Emax values converged only 

after three divisions (~60 h) whereas GR metrics stabilized by the first division (<20 h for 

MCF 10A and ~36 h for BT-20; Fig. 2c and Supplementary Fig. 3c). This confirms that GR 

metrics are substantially less dependent on assay duration than IC50 and Emax. In the case of 

very slow and uneven growth, by primary human tumor cells for example, the stabilization 

of GR values within one cell division is likely to be a real advantage in obtaining reliable 

estimates of drug sensitivity.

When grown in 3-D culture, MCF 10A cells are known to adapt to PI3K/mTOR inhibitors 

(such as omipalisib), becoming less sensitive over time17. End-point measures of drug 

sensitivity do not report on such adaptive responses. However, when we monitored spheroids 

by live-cell imaging, we observed that the time-dependent GR and GR50 values were lowest 

~20 h after omipalisib addition and increased ~10-fold by day 4 (Fig. 2d); endpoint GR50 

values lay midway in this range (Fig. 2d). Thus, time-dependent GR data directly capture the 

decreasing effectiveness of omipalisib in MCF 10A spheroids, enabling detection and 

further analysis of adaptive mechanisms.

 Analysis of high-throughput data using GR metrics

The majority of large-scale drug response datasets published to date neither report cell 

division rates nor allow us to estimate them. An exception is a study by Heiser et al.3, which 

recorded cell numbers for breast cancer cell lines before and after three-day exposure to a 

panel of anti-cancer drugs. For many drugs in this dataset, IC50 correlates with division rate6 

(e.g. for cell cycle inhibitors, regression coefficient of –0.54, Spearman’s p-value < 10−66, 

N=2956, Supplementary Fig. 4a). However, we could reproduce this correlation using an 

idealized model that does not assume any biological connection between drug sensitivity and 

division rate and by repeatedly simulating drug responses using random parameters 

(Supplementary Fig. 4b and methods). This finding suggests that the correlation between 

drug sensitivity and division rate found in experimental data is spurious; the correlation was 

also absent when drug response was measured using GR50 (Spearman’s p-value = 0.31, 

Supplementary Data 1) suggesting that it is an artifact of the way IC50 is calculated.

Paclitaxel, a microtubule inhibitor widely used in chemotherapy, is one drug exhibiting a 

strong negative correlation with division rate and also substantial variation (100-fold) in IC50 

across cell lines (Fig. 3a). This relationship has been previously described and is thought to 

arise because paclitaxel acts primarily on mitotic cells and the faster a cell line divides, the 
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more likely it is to be in mitosis18,19. However, reanalysis of data in Heiser et al.3, show that 

GR50 values for paclitaxel actually span a narrow range centered around 10 nM14 (Fig. 3b 

and Supplementary Fig. 4c), close to the estimated affinity of paclitaxel for assembled 

microtubules in vitro20. In contrast, GRmax values for paclitaxel vary considerably across 

cell lines and subtypes. In HER2-amplified (HER2amp) and triple-negative breast cancer 

(TNBC) lines GRmax values are negative, which is indicative of a cytotoxic response, 

whereas hormone receptor-positive (HR+) and non-malignant lines generally exhibit 

cytostatic responses (Supplementary Fig. 4c). This is consistent with data showing that 

HER2amp and TNBC (basal-like) human tumors are more taxane-sensitive that other types 

of breast cancer21. We propose that future attempts to find biomarkers predictive of 

paclitaxel response focus on variation in GRmax rather than IC50
22,23.

The average division rate of breast cancer cell lines in culture differs with clinical subtype: 

among cells studied by Heiser et al.3, HR+ and HER2amp subtypes divided most slowly 

(median Td = 3.2 d), TNBC cells divided faster (median Td = 2.3 d) and non-malignant cells 

were faster again (median Td = 1.8 d, Fig. 3c). As measured by IC50 values, non-malignant 

cells were on average more sensitive to anti-cancer drugs than tumor cells, whereas GR50 

values showed that the mean and range of drug sensitivity was similar (Fig. 3d). Focusing on 

HER2amp lines, IC50 values for EGFR/ErbB2 inhibitors were similar across breast cancer 

subtypes, even though HER2amp human tumors are preferentially sensitive to such drugs and 

ErbB2 inhibitors are front-line therapy for this disease24,25. GR50 data for HER2amp cell 

lines in Heiser et al. show that this subtype of breast cancer is in fact ~10-fold more sensitive 

to EGFR/ErbB2 inhibitors in vitro than other subtypes (Fig. 3e; p = 1.3×10−4). The failure of 

IC50 values to show the preferential sensitivity of HER2amp cell lines to EGFR/ErbB2 

inhibitors arises because their relatively slow growth rate is a hidden confounder in IC50 

calculation. From these data we conclude that artefactual dependency of IC50 on cell 

division rate obscures meaningful associations between genotype and drug sensitivity and 

also create associations where none exist.

 Effects of cell density on drug sensitivity

GR metrics allow us to quantify how drug sensitivity changes in the face of variables that 

affect division rate. One such variable is seeding density: increasing density has widely been 

reported to promote drug resistance26–29. To investigate this, we cultured six breast cell lines 

representative of different subtypes at six seeding densities over a 32-fold range. Twenty-

four hours after plating, cells were exposed to eleven drugs with diverse mechanism of 

action. Growth rates, IC50, Emax, and GR metrics were estimated by imaging and counting 

fixed cells 72 h after treatment (Supplementary Data 2). Overall, IC50 and Emax correlated 

positively with seeding number for MCF 10A, MDA-MB-231, and Hs 578T cells and 

negatively for BT-20 and SK-BR-3 cells (p < 0.01, Fig. 4a). In the first three cell lines, 

division rate decreased with density, presumably due to contact inhibition, depletion of 

essential media components, and other effects (Fig. 4b)30–32. In BT-20 and SK-BR-3 cells, 

division rate increased with density, presumably due to conditioning of the growth 

medium31,33. Correlations between density and IC50 and Emax were the weakest for MCF7 

cells, which grew equally well across all densities. Thus, the effect of density on number of 

divisions, and consequently on IC50 and Emax, varied dramatically with cell line 
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(Supplementary Fig. 5). However, only a small number of cell line-drug pairs exhibited a 

statistically significant association between plating density and GR50 or GRmax values. We 

wondered whether these were situations in which the biology of drug response was altered 

by density.

In MCF 10A cells, six drugs were associated with a significant variation in GR50 or GRmax 

(or both) across seeding densities; RNA-seq revealed that gene expression in these cells also 

varied with cell density with significant enrichment for genes involved in catabolic 

processes, cellular respiration, and wounding responses30–32,34 (Supplementary Fig. 6a). 

When the data was analyzed by principle component analysis, PC1 (which captured 32% of 

variance) was strongly correlated with the number of cells at the time of collection 

(Spearman’s ρ = 0.98) and less so with time in culture (ρ= 0.57) suggesting that cell density 

at the time of assay and not the history of the culture was the primary determinant of 

transcriptional state (Supplementary Fig. 6b). Follow up studies with methotrexate showed 

that the ratio between cell number and media volume was the key variable for sensitivity to 

this drug, not cell density per se (this was also true of oligomycin, an inhibitor of ATP 

Synthase; Fig. 5a and Supplementary Fig. 7); since cells grew in a constant volume of 

media, GR50 was therefore time-dependent. Density (and time) dependent variation in GR50 

was also observed for linsitinib, an IGF1R inhibitor in Phase II clinical trials (Fig. 5b). 

Variation in GR50 with time and density was reduced by co-treatment with the 

metalloprotease inhibitor batimastat, suggesting a role for autocrine conditioning of the 

microenvironment in drug response.

In the case of paclitaxel, GR50 values remained at ~5–10 nM across plating densities but 

GRmax was strongly density-dependent, varying from ~0 (cytostatic) at low cell densities to 

negative values (cytotoxic) at higher densities (Fig. 5c, left). Time-dependent GRmax reached 

its greatest negative value at 24 h concomitant with the an increase in the fraction of taxol-

treated cells that contain cleaved caspase-3, confirming that negative GR50 values 

corresponded to elevated apoptosis (Fig. 5c, middle and right). The molecular basis of this 

effect is unknown, but it may be one reason for the discrepancy between cell-killing 

dynamics in low-density culture and in xenograft tumors in which density is high35.

 DISCUSSION

Accurate measurement of drug sensitivity and resistance is the cornerstone of cancer 

biology, pharmacology, and many fundamental studies on cell signaling and cell division. In 

this paper we demonstrate theoretically and experimentally that variation in division rate 

seriously confounds existing drug response metrics. We also show that division rate varies 

with cell type, media composition and seeding density, often in unpredictable ways. Cell 

division rate slows down in some cell lines as density increases while speeding up in others. 

Such variation can change apparent IC50 100-fold or more and therefore introduces artificial 

correlations in data, obscures the true effects of drug action, and introduces unknown 

complications into biomarker discovery. As an alternative we propose GR metrics that are 

computed by comparing growth rates in the presence and absence of drug. GR50 and GRmax 

are robust to variation in cell division rate and should replace IC50 and Emax in studies in 

which control cells divide (including the study of drugs, gene depletion/overexpression and 
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variation in the extracellular environment). GR50 quantifies the potency of a drug on a per 

division basis, ensuring that fast- and slow-growing cells with similar biochemical responses 

to drug are scored equivalently. GRmax captures the maximal drug effect on growth rate and 

differs from Emax in that it falls between 1 and –1, where negative values denote cell death, 0 

denotes cytostasis, and positive values denote partial inhibition. GRAOC, and hGR (Hill 

Slope) values can also be calculated from GR curves; the former is often the most robust 

metric in the face of experimental noise and the later quantifies an important relationship 

between dose and response that often neglected6.

In the simplest version of our method, GR metrics are computed after measuring cell 

number or a surrogate (e.g. CTG) before and after exposure of a culture to varying 

concentrations of drug or other perturbation for a fixed time (Fig. 1c). When cell division 

rates under similar culture conditions are known from previous data, only the final cell 

number is needed (Fig. 1d; although we believe that before and after data on cell number is a 

valuable control to ensure data quality). Time-course data makes it possible to compute 

time-dependent GR values and quantify phenomena such as delayed response, drug 

adaptation, or variation in the kinetics of drug-target interaction (Fig. 1e). To facilitate the 

use of GR metrics by others we provide MATLAB and python routines and an online GR 

calculator (www.grcalculator.org). Moreover, the data in this paper, including the GR50/

GRmax values for the Heiser et al. dataset, are available online (http://

lincs.hms.harvard.edu/).

Large-scale drug-response studies based on existing response metrics1,2,8,9 are discrepant for 

poorly understood reasons5,11,12, raising concerns about the value of drug response 

biomarkers10. We speculate that comparison of datasets across centers (or even within a 

center) might be confounded by differences in plating density, growth media, and other 

factors that affect cell division rate. It might be possible to correct for this in existing data by 

computing GR values post facto, but this will require recreating the original assay conditions 

followed by measurement of division rates.

Based on the results in this paper, we believe that use of GR metrics in lieu of traditional 

IC50, Emax, or AUC values will improve our ability to identify genes and biological 

processes responsible for drug sensitivity and resistance. GR metrics decouple any effect 

that genotype or microenvironment have on division rate from their effects on drug 

sensitivity. Cell biology studies involving the modification of genes or the microenvironment 

often result in changes in cell division rate, leading to potentially spurious correlations with 

drug sensitivity (as illustrated here by oncogene overexpression and changes in EGF levels) 

and should also benefit from the use of GR metrics. By analogy with antimicrobial 

susceptibility testing for bacterial infections, it has recently been suggested that cancer 

therapy might be personalized by screening primary human tumor cells against panels of 

drugs36,37. Such cells grow slowly and unevenly in culture, making division number a 

poorly controlled variable. Accounting for such differences using GR metrics should create 

drug response data that are more reproducible and useful for optimizing patient therapy.
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 ONLINE METHODS

 Metrics of drug response

 Determining relative cell counts—Cell counts in the presence of drug are 

normalized to DMSO-treated controls grown on the same plate under the same conditions. 

In the current study, relevant conditions include seeding density, the concentration of 

exogenous growth factors (e.g. EGF in the case of MCF 10A cells), and the concentration of 

a second drug such as doxycycline or batimastat. For each cell line, drug, and drug 

concentration, we define the relative cell count as x(c)/xctrl, where x(c) is the count in the 

presence of drug and xctrl is the 50%-trimmed mean of the count for control cells. Technical 

replicates are averaged to yield an average relative cell count. We typically collect data from 

three technical replicates (on three separate plates).

 Calculating GR values using end-point drug response data—Normalized 

growth rate inhibition is calculated according to the formula:

where x(c) and xctrl are as described above and x0 is the 50%-trimmed mean of the cell 

count from a sample grown in parallel and measured just prior to drug exposure.

Alternatively, the untreated division time Td=ln(2)/k(0) can be measured in independent 

experiments and used in place of the initial cell number (x0 = xctrl · 2−T/Td):

where T is the duration of the assay.

 Calculating time-dependent GR values—GR values can be evaluated over a time 

interval (2 × Δt) around any time point t based on the equation:

The time-dependent GR values in the current paper were computed with 2 × Δt = 12 h to 18 

h, which corresponds to about half a cell division time.

 Curve fitting and estimating drug response metrics—GR data are fitted to a 

sigmoidal curve as follows (Supplementary Fig. 8a–c):

where the fitted parameters are:
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• GRinf: the effect of the drug at infinite concentration (GRinf ≡ GR(c → ∞)). 

GRinf lies between −1 and 1; negative values correspond to cytotoxic responses 

(i.e. induction of cell death, Supplementary Fig. 8a), a value of 0 corresponds 

to a fully cytostatic response (Supplementary Fig. 8b), and a positive value to 

partial growth inhibition (Supplementary Fig. 8c).

• hGR: the Hill coefficient of the fitted curve which reflects how steep the dose 

response curve is. In practice, we typically constrain hGR to a value between 

0.1 and 5.

• GEC50: the concentration at half-maximal effect. To avoid artefacts in curve 

fitting we constrain GEC50 to be two orders of magnitude higher and lower 

than the experimentally tested concentration range (in practice, this is usually 

about 10−7 to 103 µM).

If the fit of the curve is not significantly better than that of a flat curve (i.e. GR(c) ≡ GRinf) 

based on an F-test with cutoff of p = 0.05, the response is considered flat and the parameter 

GEC50 is set to 0 (Supplementary Fig. 8d).

 Inferred drug response metrics—The GR50 value is the concentration of drug at 

which GR(c = GR50) = 0.5. If the value for GRinf is above 0.5, the GR50 value is not defined 

and is therefore set to +∞ (Supplementary Fig. 8c). By extension other thresholds can be 

defined in a similar manner. For example GR100 corresponds to the concentration at which a 

drug is fully cytostatic: GR(c = GR100) = 0.

The GRmax is the maximum effect of the drug at the highest tested concentration; it lies 

between −1 and 1; a value of 0 corresponds to a fully cytostatic response and negative values 

correspond to cytotoxic response. GRmax can be estimated from the fitted curve or obtained 

directly from experimental data; we often do the later.

For time course data, all metrics are evaluated at each time point individually.

 Area under the curve and over the curve (GRAOC)—Another common metric for 

quantifying dose response is the area under the response curve (AUC), which is based on 

integrating the dose response curve over the range of tested concentrations. In the case of 

GR curves, which can have negative values, is more intuitive to use the area over the curve:

where GR(ci) are measured GR values are discrete concentrations ci. GRAOC has the benefit 

that, in the case of no response, it has a value of 0. It is important to note that GRAOC values 

(like conventional AUC) can only be used to compare responses evaluated across the same 

drug concentration range.

The GRAOC value captures variation in potency and efficacy at the same time. The 

calculation of GRAOC at discrete (experimentally determined) concentrations has the 

advantage that it does not require curve fitting and is therefore free of fitting artifacts. This is 

Hafner et al. Page 9

Nat Methods. Author manuscript; available in PMC 2016 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



especially useful for assays where fewer than five concentrations are measured and curve 

fitting is unreliable. GRAOC values are also more robust to experimental noise than metrics 

derived from curve fitting; GRmax values are particularly sensitive to outlier values when 

directly obtained from data.

 Drug concentration range—The drug concentrations used for fitting drug response 

curves need to span a sufficiently wide range and have sufficiently intermediate values, to 

obtain reliable estimates for GEC50, hGR, GRinf. Denser sampling provides more precise 

estimates, especially in the case of steep dose response curves. Optimal design of dose-

response curves has been discussed elsewhere7. In practice we suggest using nine doses 

spanning four orders of magnitude from 1 nM to 10 µM. This range can be shifted to lower 

concentrations for more potent drugs, or higher values for less potent drugs with the caveat 

that GRAOC values for different drugs can only be compared over the same concentration 

range. We suggest discarding any GR50 value which is more than an order of magnitude 

above the highest tested concentration because values extrapolated from the fitted curves are 

more subject to fitting artefacts than interpolated values. Similarly, GRinf value is not 

properly constrained if the GR(c) dose-response curve does not reach a plateau at the highest 

measured concentration. In such cases, GRAOC is the most reliable metric.

 Computing GR metrics—Source code for computing GR metrics are provided 

(Supplementary Software). To facilitate the computation of GR metrics we provide updated 

source code available under an open source software license and MATLAB and python 

scripts at https://github.com/sorgerlab/gr50_tools. We also provide an on-line calculator at 

www.grcalculator.org. This web site contains a user guide, various tutorials and explanatory 

materials and example datasets, including all of the data in the current manuscript.

 Theoretical model of drug response

To simulate the effect of division time on GR and conventional drug response metrics under 

different assumptions about the degree of cytostasis or cell killing, we developed a 

theoretical model of drug response. To the first approximation, cell growth can be 

considered exponential, with drugs either decreasing the division rate or killing cells in a cell 

cycle-dependent manner:

where x is the cell count, k is the untreated growth rate (per day), c is the drug concentration, 

SM is the maximal inhibitory effect, SC50 is the concentration at half-maximal effect of 

drug, and h the Hill coefficient. The growth rate k corresponds to the division rate k0 as k = 

ln(2)·k0 = ln(2)/Td, where Td is the division time. SM can be larger than 1 to account for 

drugs inducing cell death at a specific phase of the cell cycle. The model can also be 

generalized to account for drugs that induce cell death independent of the cell cycle:

Hafner et al. Page 10

Nat Methods. Author manuscript; available in PMC 2016 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/sorgerlab/gr50_tools
http://www.grcalculator.org


where kL is the maximal killing rate (per day), LC50 is the concentration of drug that 

produces half-maximal cell killing. Integrating these equations for an assay of t days yields 

the cell count at concentration c:

where x0 ≡ x(t = 0) is the cell number at the time of treatment. Thus, the relative cell count 

is:

and the normalized growth rate inhibition (GR value) is:

This equation for GR(c) is independent of the length of the assay t and thus, the metrics 

GR50, GRmax, GRAUC, and hGR are also independent of t. For cases where drug action is 

mainly related to the cell cycle (kL =0), GR values are also independent of the untreated 

growth rate k. As shown in Supplementary Fig. 2 and 3a–b, the impact of kL>0 is minimal 

on GR50 and relatively small on GRmax. This is also illustrated by the analytical formula for 

GRinf·GRinf = 2^(1 − SM − kL/k) − 1. Note that the metrics derived from growth inhibition 

(GI) values used in Heiser et al.3 such as GI50 are more robust than traditional metrics, but 

still depend on both division time and assay length (see Supplementary Note).

 Parameters for simulations in figure panels—Model parameters used in the 

numerical simulations shown in Fig. 1b, Supplementary Fig. 1, 2, and 7 were as follows:

• Cytostatic: SM=1, S50=1.5, TM=0, h=1.6

• Partial response: SM=0.65, S50=1.2, TM=0, h=1.6

• Cytotoxic: SM=2.6, S50=2, TM=0, h=1.6

• Partial toxic response: SM=0.45, S50=1.2, TM=0.05, T50=5, h=1.6

• Mixed response: SM=0.65, S50=1.2, TM=0.1, T50=3, h=1.6

• Complete cytotoxic: SM=2.6, S50=1.2, TM=1, T50=3, h=1.6
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For Supplementary Fig. 3b, the parameters were randomly sampled within the following 

distribution:

• Division rate k: normal distribution around 0.9 divisions per day with standard 

deviation of 0.46 and a lower bound of 0.14.

• Hill coefficient h: uniform distribution between 1.5 and 2.5

• Maximum inhibition SM: uniform distribution between 0 and 2

• Half inhibition concentration S50: log-uniform distribution ranging from 0.31 

and 10

• Maximum toxic effect TM: 0 for 50% of values, uniform distribution between 0 

and 0.5 for the other 50% of values.

• Half inhibition concentration T50: log-uniform distribution ranging from 0.56 

and 5.6

 Experimental methods and data processing

 Cell lines and tissue culture—MCF 10A, Hs 578T, MDA-MB-231, MCF7, SK-

BR-3, and BT-20 were obtained from the ATCC and grown according to ATCC 

recommendations. For time-lapse experiments MCF 10A and BT-20 cells were modified by 

inserting an H2B-mCherry expression cassette (gift of R Benezra, Addgene plasmid # 

20972)38 that comprised AAVS1 homology arms, the hPGK promotor, and SV40 polyA 

terminator (gift from R Jaenisch, Addgene plasmid # 22072)39 into the AAVS1 safe harbor 

genomic locus using CRISPR/Cas9. MCF 10A-H2B-mCherry cells were grown in the same 

manner as the parental strain, with the exception that traditional DMEM was replaced with 

FluoroBrite DMEM (Thermo Fisher Scientific) for imaging. The modified hTERT RPE-1 

cells (gift from J Chen) were created by inserting the full length BRAF(V600E) expression 

cassette (Addgene plasmid # 15269)40 drive by a tet-inducible promotor (Addgene plasmid # 

41394). Cell identity was confirmed by short tandem repeat (STR) profiling at the Dana-

Farber Cancer Institute and all cells were tested with the MycoAlert PLUS mycoplasma 

detection kit (Lonza) and found to be free of Mycoplasma prior to analysis.

 Drugs and dyes—Drugs were obtained from commercial vendors and tested for purity 

in-house as described in detail in the HMS LINCS drug collection database (http://

lincs.hms.harvard.edu/db/sm/). Drugs and reporter dyes were dispensed directly onto 

multiwall plates using a D300 Digital Dispenser (Hewlett-Packard). To stain cells, YOYO-1 

and TOTO-3 (Thermo Fisher Scientific) were used at 250 nM and 100 nM respectively; 

NucView 488 caspase 3 substrate (Biotium) was used at 200 nM.

 Manipulating cell growth rate to determine effects on drug sensitivity—
RPE-1 or MCF 10A-H2B-mCherry cells were plated in 384-well plates using the Multidrop 

Combi Reagent Dispenser (Thermo Scientific) at 250 and 500 cells per well respectively. To 

modulate the growth rate in RPE-1 cells, we induced expression the BRAF(V600E) 

oncogene by treating with indicated doses of doxycycline using a D300 Digital Dispenser 

(Hewlett-Packard). To modulate the growth rate in MCF 10A-H2B-mCherry we serum-
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starved cells twice with DMEM/F12 media supplemented with 0.1% bovine serum albumin 

and 1% penicillin-streptomycin. Media changes and cell washing was performed using a 

EL406 Microplate Washer Dispenser (BioTek). Cells were treated with indicated doses of 

human epidermal growth factor (EGF, eprotech) using a D300 Digital Dispenser. After 24 

hours the cells were treated with a dilution series of etoposide using a D300 Digital 

Dispenser. RPE-1 cells were stained and fixed for analysis at the time of drug treatment and 

after 72 hours. MCF 10A-H2B-mCherry were imaged in an IncuCyte ZOOM live cell 

imager (Essen Bioscience) starting at the time of EGF treatment and drug sensitivity was 

evaluated 72 hours after drug addition.

 Evaluating drug response metrics in MCF 10A and BT-20 over time—MCF10 

A-H2B-mCherry and BT-20-H2B-mCherry at 1250 and 2500 cells per well respectively in 

384-well plates using the Multidrop Combi Reagent Dispenser (Thermo Scientific) and 

grown for 24 hours. Cells were treated with a dilution series of the indicated drugs using a 

D300 Digital Dispenser (Hewlett-Packard) and imaged after drug addition in an Operetta 

(Perkin Elmer) for high content imaging system equipped with a live-cell chamber over a 

period of 96 hours. For these experiments, we used the following drugs:

• Etoposide, Topiosomerase inhibitor

• Linsitinib, IGF1R inhibitor

• Omipalisib/GSK2126458, panPI3K/mTOR inhibitor

• PLX4720, B-RAF inhibitor

• Tanespimycin/17-AAG, HSP90 inhibitor

 Evaluating drug sensitivity in MCF 10A spheroids over time—MCF10 A-H2B-

mCherry cells were plated at 200 cells per well into ultra-low attachment coated, flat bottom, 

384-well plates (Corning) with the addition of 2.5% growth factor reduced basement 

membrane matrix Matrigel (Corning) to the growth media. After 48 hours cells were treated 

with a dilution series of omipalisib using a D300 Digital Dispenser (Hewlett-Packard) and 

imaged in an IncuCyte ZOOM live cell imager (Essen Bioscience) for an additional 96 

hours. Drug sensitivity was evaluated by computing GR values every 18 hours over a 10–90 

hour time frame.

 Evaluating drug sensitivity in breast cancer cells plated at different seeding 
densities—MCF 10A, Hs 578T, MDA-MB-231, MCF7, SK-BR-3, and BT-20 were plated 

at densities ranging from 156 to 5000 cells per well in 384-well plates using the Multidrop 

Combi Reagent Dispenser (Thermo Scientific) and grown for 24 hours. Cells were treated 

with a dilution series of the indicated drugs using a D300 Digital Dispenser (Hewlett-

Packard). Cells were stained and fixed for analysis at the time of drug treatment and after 72 

hours of incubation with drug. For these experiments, we used the following drugs:

• Erlotinib, EGFR inhibitor

• Etoposide, Topiosomerase inhibitor

• Lapatinib, EGFR/ErbB2 inhibitor
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• Linsitinib, IGF1R inhibitor

• Methotrexate, dihydrofolate reductase inhibitor

• Omipalisib/GSK2126458, panPI3K/mTOR inhibitor

• Paclitaxel, target microtubules

• Palbociclib, CDK4/6 inhibitor

• PLX4720, B-RAF inhibitor

• TAE684, ALK inhibitor

• Tanespimycin/17-AAG, HSP90 inhibitor

 Investigating density-dependent drug effects—MCF 10A-H2B-mCherry cells 

were plated at densities that ranged from 156 to 5000 cells per well in 384-well plates using 

the Multidrop Combi Reagent Dispenser (Thermo Scientific) and grown for 24 hours. Cells 

were treated with a dilution series of drugs using a D300 Digital Dispenser (Hewlett-

Packard) and imaged after drug addition in an Operetta (Perkin Elmer) for high content 

imaging system equipped with a live-cell chamber over a period of 72 hours.

In the case of methotrexate and oligomycin, 1250 cells were plated in 20–120 µl of media 

per well, treated with a dilution series of drug, and imaged for 72 hours.

In the case of linsitinib, cells were treated with a dilution series of linsitinib either with or 

without 10µM batimastat using a D300 Digital Dispenser and imaged in an IncuCyte ZOOM 

live cell imager (Essen Bioscience) for an additional 72 hours.

In the case of paclitaxel, cells were treated with a dilution series of paclitaxel and 200 nM of 

NucView 488 caspase 3 substrate (Biotium) using a D300 Digital Dispenser (Hewlett-

Packard) and imaged after drug in an IncuCyte ZOOM live cell imager (Essen Bioscience) 

for an additional 72 hours. For immunofluorescence experiments, cells were grown for 24 

hours and then treated with a dilution series of paclitaxel using a D300 Digital Dispenser 

(Hewlett-Packard) and incubated for 3, 6, 12, and 24 hours. Cells were fixed for 30 min in 

3% formaldehyde, permeabilized for 30 min in phosphate buffered saline (PBS) with 0.3% 

Triton X-100 (Sigma-Aldrich), washed twice in PBS with 0.1% Tween 20 (Sigma-Aldrich; 

PBS-T), and blocked for 60 min with Odyssey blocking buffer. Anti-active Caspase-3 

antibody (BD Biosciences) was diluted 1:1000 in Odyssey blocking buffer and incubated for 

16 h at 4°C. Cells were washed three times in PBS-T for 5 min and incubated with Alexa 

Fluor 488 conjugated goat anti-rabbit secondary antibody for 60 min at room. Cells were 

washed two times in PBS-T, once with PBS, and stained for 30 min with whole cell stain 

(Thermo Fisher Scientific) and Hoechst (Thermo Fisher Scientific), and washed three times 

in PBS.

 Fixed-cell endpoint assays—After drug treatment cells were stained at the indicated 

timepoints with 2 µM Hoechst 33342 (Thermo Fisher Scientific) and LIVE/DEAD Far Red 

Dead Cell Stain (Thermo Fisher Scientific) for 30 minutes and fixed with 3% formaldehyde 
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(Sigma Aldrich) for 30 minutes. Fixed cells were imaged using an Operetta microscope and 

analyzed using the Columbus image data storage and analysis system (Perkin Elmer).

 Live-cell time course assays—Cells expressing H2B-mCherry were imaged at the 

indicated timepoints after drug treatment in an Operetta high content imaging system 

equipped with a live-cell chamber or an IncuCyte ZOOM live cell imager. Dead cells were 

identified by counter-staining cells with YOYO-1 or TOTO-3 (Thermo Fisher Scientific) and 

apoptotic cells were identified with the NucView 488 caspase 3 substrate (Biotium). Live, 

dead, or apoptotic cell lines were identified using the Columbus image data storage and 

analysis system or the IncuCyte analysis software. Spheroid growth was estimated by 

measuring the sum of the spheroid area per well using IncuCyte analysis software.

 mRNA analysis—Cells plated at different densities in 384-well plates were harvested at 

the indicated times and RNA was extracted using the RNeasy mini kit (Qiagen). To ensure 

sufficient amounts of RNA, wells having a low number of cells were pooled. Libraries were 

prepared by the Broad Technology Labs (BTL) following the protocol for SCRB-Seq 

described in41. Transcripts were quantified by the BTL computational pipeline using 

Cuffquant version 2.2.142. Analysis of the transcriptional data was performed in MATLAB 

using standard libraries and in-house scripts. Gene set enrichment analysis was performed 

using the GSEA software v2.1.0 from the Broad Institute with the MSigDB v4.0 GO 

biological process set43.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Modeling drug response and the dependence of drug response metrics on division time
(a) Simulation of a simple drug-response model yields relative cell counts across a 

concentration range for a cytostatic drug for a slow- (left), medium- (middle), and fast-

growing cell line (right; Td: division time). Black lines correspond to untreated control 

samples and red lines denote 50% growth inhibition. Black marks show where IC50 and 

Emax are evaluated. (b–d) Methods for evaluating GR value: (b) Conceptual approach based 

on growth rates (k0 and k(c)), (c) fixed interval approach based either on cell number at the 

start (x0) and end of the experiment (xctrl and x(c)), or (d) time-dependent value based on 

cell count before and after a time interval 2 × Δt (x(c, t ± Δt)). (e) Simulated data showing 

relative cell count (green lines) and GR value (purple lines) for a cytostatic drug assayed 

over three days. The darker the line the longer the division time. IC50 and GR50 are 

projected onto the x-axis, Emax and GRmax onto the y-axis. (f) IC50 or Emax (green) and 

GR50 or GRmax (purple) computed from a theoretical three-day assay with cells dividing at 

different rates (AUC and GRAOC values in Supplementary Fig. 1c).
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Figure 2. GR values are independent of both the length of the assay and the division time
(a) Effect of altering division time of hTERT RPE-1 cells on metrics of etoposide sensitivity. 

Relationship between division time (Td) and doxycycline (DOX) concentration (left) to cells 

expressing BRAFV600E under the control of a DOX-regulated promoter. Values for IC50 and 

GR50 (middle), and Emax and GRmax (right) were evaluated at 48 h at different concentration 

of DOX. Large and undefined values for IC50 were set at 30 µM for purposes of illustration. 

(b) Effect of altering division time of MCF 10A cells on metrics of etoposide sensitivity. 

Relationship between division time (Td) and concentration of EGF in a serum-free media 
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(left). Values for IC50 and GR50 (middle), and Emax and GRmax (right) were evaluated at 59 

h at different concentrations of EGF in a serum-free media. Large and undefined values for 

IC50 were set at 30 µM for purposes of illustration. (c) Evaluation of relative cell count (top) 

and GR values (bottom)for a drug concentration close to the GR50 value (left) and computed 

response metrics at different time points (middle and right) as estimated from live-cell 

imaging of MCF 10A cells exposed to one of five drugs with different mechanisms of 

action. (d) Time-dependent GR values estimated over 18 h intervals for MCF 10A cells 

grown as spheroids treated with omipalisib (left panel) and corresponding time-dependent 

GR50 values (right). Dashed line shows the GR50 value evaluated at 90 h. In all panels, the 

data shown derive from one of three biological replicates.
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Figure 3. Evaluation of GR metrics in a high-throughput dataset
(a–b) Fitted dose-response curves for (a) relative cell count and (b) GR values for paclitaxel 

in breast cancer cell lines (3-day assay data from Heiser et al.3). Red denotes cytotoxic 

response and blue denotes cytostatic response; darker curves denote cell lines with fewer 

divisions. Marginal distributions (below and to the right of the dose-response plots) show the 

relation between estimated IC50 or GR50 and Emax or GRmax values and number of divisions 

for that line over three days; ρ values are Spearman’s correlation coefficients. (c) Number of 

divisions over three days for cell lines in the dataset grouped by subtype: HER2-amplified 

(HER2amp), triple-negative breast cancer (TNBC), hormone receptor-positive (HR+), and 

non-malignant (NM). (d–e) Distribution of IC50 (green) and GR50 (purple) for all drugs in 

Heiser et al.3 (d) or for ErbB2 inhibitors only (e) grouped by clinical subtype. P-values were 

derived from a ranksum test for IC50 or GR50 values for NM cells (e) or for HER2amp cells 

(f) lines versus all other subtypes.
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Figure 4. Plating density affects division rate and drug sensitivity
(a) Spearman’s correlation between estimated values for IC50, Emax, GR50, and GRmax and 

seeding number for the six breast cancer cell lines shown. Data derive from an experiment in 

which cells were plated at a range of six densities and treated with eleven drugs having 

diverse mechanisms of action (see Online Methods and data 2). Significance: * for p<0.05, 

** for p<0.01, and *** for p<0.001. (b) Relationship between seeding number and the 

number of divisions after 3 days. Error bars are the SEM of three biological replicates.
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Figure 5. Time-dependent GR metrics reveal diverse mechanisms of drug sensitivity and 
resistance
Evaluation of three selected drugs for which seeding density had a significant effect on GR 

values in MCF 10A cells based on data summarized in Fig. 4. (a) Influence of ratio of cell 

number to media volume for drugs related to metabolism. Time-dependent GR values for 

MCF 10A cells at different seeding numbers following exposure to 0.1 µM methotrexate 

(MTX) (left). Time-dependent GR50 values for MCF 10A cells for MTX or oligomycin 

(middle); values are capped at 30 µM for illustration purposes. GR dose-response curves at 3 

days for MCF 10A treated with MTX with a constant number of seeded cells but in different 
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volumes of media (right). Data shown derive from one of two biological replicates. (b) 

Media conditioning and adaptive resistance to linsitinib, an IGF1R inhibitor. GR dose-

response curves at 3 days for MCF 10A treated with linsitinib at different cell densities 

(left). Error bars are the SEM of three biological replicates. Time-dependent GR values for 

MCF 10A at different seeding numbers following exposure to 20 µM linsitinib in the 

absence (middle) or presence (right) of 10 µM batimastat, a matrix metalloproteinase 

inhibitor. Data shown are from one of three biological replicates. (c) Paclitaxel-induced 

cytostasis at low cell density and apoptosis at high density. GR values for MCF 10A cells 

seeded at different densities and treated with paclitaxel for 3 days (left). Error bars are the 

SEM of three biological replicates. Fraction of MCF 10A cells positive for cleaved caspase 3 

at different time points and cell densities following exposure to 0.03 µM paclitaxel (middle). 

Time-dependent GRmax values for paclitaxel in MCF 10A cells seeded at different densities 

(right). Data shown are from one of two biological replicates.
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