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Abstract

From embryonic development to cancer metastasis, cell migration plays a central role in health 

and disease. It is increasingly becoming apparent that cells migrating in three-dimensional (3-D) 

environments exhibit some striking differences compared with their well-established 2-D 

counterparts. One key finding is the significant role the nucleus plays during 3-D migration: when 

cells move in confined spaces, the cell body and nucleus must deform to squeeze through available 

spaces, and the deformability of the large and relatively rigid nucleus can become rate-limiting. In 

this review, we highlight recent findings regarding the role of nuclear mechanics in 3-D migration, 

including factors that govern nuclear deformability, and emerging mechanisms by which cells 

apply cytoskeletal forces to the nucleus to facilitate nuclear translocation. Intriguingly, the 

‘physical barrier’ imposed by the nucleus also impacts cytoplasmic dynamics that affect cell 

migration and signaling, and changes in nuclear structure resulting from the mechanical forces 

acting on the nucleus during 3-D migration could further alter cellular function. These findings 

have broad relevance to the migration of both normal and cancerous cells inside living tissues, and 

motivate further research into the molecular details by which cells move their nuclei, as well as the 

consequences of the mechanical stress on the nucleus.

Introduction

In multicellular organisms, cell migration is essential in the development, maintenance and 

repair of various tissues [1]; it also enables immune cells to survey tissues and to respond to 

local challenges [2]. At the same time, cell migration drives the tissue invasion and 

metastasis of cancer cells, which is responsible for the vast majority of cancer deaths [3]. 

While much of our current knowledge regarding the molecular and biophysical principles of 
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cell migration stems from studying cells moving on 2-D substrates [4], it is now becoming 

evident that cells migrating in 3-D environments encounter distinct physical challenges. 

During in vivo migration/invasion, cells must navigate many microstructural obstacles, 

including extracellular matrix (ECM) networks and neighboring cells. The pore sizes 

encountered in the interstitial space range from 0.1 to 30 µm in diameter, i.e., comparable to 

or significantly smaller than the size of the migrating cell [5–7]. Cells have two strategies to 

penetrate such confining environments: (i) expanding the openings via physical remodeling 

and/or proteolytic degradation of the ECM [8], or (ii) contorting their shape to accommodate 

the available spaces [9]. The cell membrane and cytoplasm are able to quickly deform and 

remodel to penetrate openings less than 1 µm in diameter [10]. In contrast, deformation of 

the nucleus, the largest and stiffest organelle, presents a more formidable challenge. Here we 

discuss emerging insights into the intracellular biomechanics and molecular processes 

involved in translocating the nucleus through tight spaces, including implications on 

migration efficiency and other biological functions.

The size and rigidity of the nucleus: a physical barrier for cell migration

The nucleus is the largest organelle in the cell, with a diameter between 3–15 µm [11,12], 

making it substantially larger than many pores encountered during migration in 

physiological tissues. Furthermore, biophysical measurements of isolated nuclei and intact 

cells reveal that the nucleus is typically 2- to 10-times stiffer than the surrounding cytoplasm 

[11]. This combination of large size and relative rigidity of the nucleus led to the hypothesis 

that the nucleus can impact the cells’ ability to migrate [13]. Early support for this 

hypothesis came from work on tumor cells migrating through microfabricated channels with 

precisely defined constrictions [14–16] (see Box 1 for more information on such devices). 

While moderate confinement results in increased migration speed by allowing cells to 

employ faster migration modes (e.g., ‘amoeboid migration’ and ‘chimneying’) than during 

2-D migration [17], constrictions below approximately 5 µm in diameter require substantial 

nuclear deformation and result in reduced migration speeds [14–16,18–20]. A seminal study 

by Friedl, Wolf, and colleagues using a range of cell types demonstrated that nuclear 

deformability presents a physical limit for the migration through collagen matrices with 

varying pore sizes [10]. When inhibiting matrix metalloprotease (MMP) activity required to 

degrade ECM, migration speed declined with decreasing pore size as nuclei had to undergo 

increasing deformation [10]. At pore sizes smaller than 10% of the non-deformed cross-

section of the nucleus, cells reached a ‘nuclear deformation limit’ resulting in complete 

migration arrest, despite continued protrusion of the cytoplasm [10]. Subsequent studies 

using a variety of cell lines and experimental assays ranging from microfluidic devices, 

membranes with defined pores, ECM matrices, and in vivo xenografts have painted a similar 

picture, in which the deformability of the nucleus limits the cell’s ability to pass through 

tight spaces, reducing or even stalling migration as the pore size decreases below the cross-

section of the nucleus [18–26]. Assessing the role of specific physical factors on cell 

migration in confined environments, Lautscham and colleagues [20] found that increased 

nuclear (but not cytoplasmic) volume, increased nuclear stiffness, reduced cell adhesion and 

lower cell contractility impaired migration through microfluidic constrictions. While the 

above findings prove common to a large variety of cell lines, including neutrophils, 
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fibroblasts, and tumor cells, the exact degree of confinement necessary to elicit such effects, 

and the magnitude of the effect, varies with cell type. These differences indicate that 

variation in nuclear deformability, or the cytoskeletal forces applied to the nucleus, may be 

important modulators of the ‘nuclear barrier’ effect.

Lamins determine nuclear deformability and migration through confined environments

The deformability of the nucleus is largely determined by two components, the nuclear 

lamin network and chromatin [27,28]. Lamins are type V nuclear intermediate filaments that 

can be divided into two sub-types, A-type (A, C, C2) and B-type (B1-3) lamins [29–36]. The 

different lamin subtypes form separate but interdigitating fibrillar networks at the nuclear 

periphery [37,38]. In addition to regulating nuclear shape and stiffness [27,39–42], they play 

important roles in chromatin organization, DNA damage repair, and transcriptional 

regulation [37,43,44]. Cell-stretching and micropipette aspiration experiments indicate that 

A-type lamins have a larger impact on nuclear stiffness than B-type lamins—nuclear 

stiffness strongly scales with expression of lamins A/C [39–42], although increased 

expression of lamin B1 can also increase nuclear rigidity [45]. Consistent with the ‘nuclear 

barrier’ hypothesis, recent studies found that cells with reduced levels of lamins A/C have 

more deformable nuclei and migrate faster through tight spaces than control cells with 

normal lamin A/C levels [18,46]. Conversely, increased expression of lamin A, or expression 

of a mutant lamin (progerin) that increases nuclear stiffness, impaired transit through narrow 

constrictions [21,25]. Loss of lamin A/C promotes cell migration through small constrictions 

by allowing larger nuclear deformation, rather than increased nuclear compression, as the 

nuclear volume does not decrease during nuclear translocation [19]. These findings have 

direct physiological and clinical relevance, since downregulation of lamins A/C during 

granulopoiesis is critical for the ability of neutrophils to pass through micron-sized 

constrictions [21], and misregulation of lamins is common to many cancers [47] (see Box 2 

for more information). Less is known about the role of B-type lamins in 3-D migration. Loss 

of B-type lamins impairs migration of neurons, which lack A-type lamins, in the developing 

brain, and this effect is thought to be caused by defects connecting the nuclear interior and 

cytoplasm [48,49]. Given recent reports that lamin A/C levels and organization can vary in 

response to substrate stiffness and cytoskeletal tension [41,50,51], it is intriguing to 

speculate that cells could also dynamically adjust their nuclear stiffness during migration.

The role of chromatin in nuclear deformability and migration

Chromatin, consisting of DNA wrapped around histone octamers, occupies most of the 

nuclear interior and contributes to the viscoelastic response of nuclear deformation [28,52]. 

Chromatin exists in two configurations: (i) open ‘euchromatin’, which is typically 

transcriptionally active, and (ii) closed, more compact ‘heterochromatin’, which is 

associated with inactive genes [53]. Promoting euchromatin over heterochromatin 

organization, for example by treatment with the deacetylase inhibitor trichostatin A (TSA), 

results in softer and more deformable nuclei [52]. Interestingly, treatment with 5′-deoxy-5′-

methylthioadenosine (MTA), a methyltransferase inhibitor that cause de-condensation of 

chromatin, impairs the migration of the cells through microchannels [15]. It remains unclear 

whether this counterintuitive effect was due to the increase in nuclear size resulting from 

chromatin de-condensation, which may counteract reduced nuclear stiffness [20], or due to 
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altered transcriptional regulation, motivating future research on the role of chromatin 

organization in cell migration through confining constrictions.

Cytoskeletal forces pulling or pushing on the nucleus

Recent studies have shed light onto the molecular components physically connecting the 

nucleus and cytoskeleton (Fig. 1A), revealing that the linker of nucleoskeleton and 

cytoskeleton (LINC) complex is the ‘clutch’ that enables transmission of mechanical force 

across the nuclear envelope [54]. We refer the reader to excellent recent reviews [55,56] and 

the article by Burridge et al. in this issue for more details on LINC complex function. 

However, the mechanism by which cells move the nucleus through confining constrictions, 

including whether cells predominantly pull or push on the nucleus (Fig. 1B), remains 

incompletely understood. It is likely that cells apply a varying combination of both 

mechanisms, depending on the specific conditions.

Pulling the nucleus forward

In most migrating cells, the nucleus is positioned rearward, i.e., in the back of the cell [55]. 

Recent studies indicate that actomyosin contractility, possibly in combination with 

intermediate filaments [57,58], physically pull the nucleus forward during 2-D and 3-D 

migration [10,59]. In 3-D lamellipodial-based migration, actomyosin contractility and 

integrin-mediated traction at the leading edge are required to translocate the nucleus through 

narrow constrictions [10]. During 3-D lobopodial-based migration, non-muscle myosin IIA 

(NMIIA)-containing actomyosin bundles work with vimentin filaments to pull the nucleus 

forward by binding to nesprin-3α of the LINC complex via plectin [58,60]. Whereas 

microtubule associated motors are dispensable for nuclear translocation in 2-D migration 

[59], the microtubule-associated motors dynein/kinesin, which can directly bind to LINC 

complex proteins [56], are essential for interkinetic nuclear migration in neurons [61]. 

Dynein and kinesis are also required for nuclear positioning in multinucleated myotubes, 

where nuclei are squeezed, rotated and translocated to form proper myotube structure [62]. 

Thus, it is possible that microtubule-associated motors also participate in nuclear 

translocation during 3D cell migration.

Pushing the nucleus forward

Actomyosin contraction at the back of the cell is required for squeezing the leukocyte 

nucleus through narrow pores [63]. In breast and brain cancer cells, non-muscle myosin IIB 

(NMIIB) is recruited to the perinuclear cytoskeleton and posterior of the cell, possibly via 

nesprin-2, where it applies pushing forces to the nucleus to facilitate nuclear translocation 

through confining 3-D environments [64,65]. Depletion of NMIIB, but not NMIIA, impairs 

migration of breast cancer cells through microfluidic constrictions and dense collagen 

matrices [64], suggesting a specific role of perinuclear NMIIB actin networks in squeezing 

the nucleus through constrictions. Nonetheless, further studies are required to determine 

whether NMIIB-dependent actomyosin contraction constitutes a general mechanism for 

nuclear translocation, whether it also involves nesprin-3α and vimentin filaments, and 

whether increased pulling forces can compensate for impaired pushing forces and vice versa.
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Physical compartmentalization by the nucleus

During migration through confined spaces, the nucleus takes up most of the space within the 

constriction, thus leaving little or no room for cytoplasmic transport around the nucleus and 

effectively dividing the cytoplasm into “front” and “back” compartments (Fig. 1B). This 

intracellular compartmentalization plays an important role in two mechanisms: osmotic 

pressure difference caused by water permeation, and intracellular pressure generated by the 

nucleus as an active ‘piston’ [60,66]. Polarized distribution of Na+/H+ pumps and 

aquaporins on the plasma membrane at the front and back of the cell alters water permeation 

and can drive migration and nuclear translocation, even when actin polymerization is 

inhibited [66]. However, since this osmotic pressure-based mechanism has only been 

described in tube-like microchannels that restrict fluid flow to the front and back of the cells, 

its relevance in more physiological environments still needs to be examined. Work by the 

Yamada group [60] reveals that during lobopodial-based migration, actomyosin-mediated 

pulling of the nucleus compresses the front of the cell, similar to a piston in a cylinder, 

building up higher intracellular pressure within this compartment and driving the formation 

of new lobopodial protrusions at the leading edge. The nucleus may similarly serve as a 

counterbalance for the directional protrusion of invadopodia, causing visible indentation of 

the basal nuclear surface [67]. Taken together, these studies illustrate how cells can take 

advantage of the large and rigid nucleus to promote cell migration in 3-D environments.

Biological consequences of nuclear deformation during 3-D cell migration

The nucleus is not only a passive mechanical element, but also houses the cell’s genomic 

information and is the site of DNA replication, transcription, and RNA processing. Thus, the 

substantial mechanical forces and deformation incurred during migration through tight 

spaces may have severe biological consequences that impact cellular function and viability.

Influences on cell survival and genomic stability

Recent studies have produced conflicting results on the effect of cell migration through tight 

spaces on cell viability. Whereas one study found increased apoptosis after migration 

through small (3 µm) pores, particularly in lamin A/C-deficient cells [46], others reported no 

noticeable increase in cell death during confinement [17–19,21]. These apparent differences 

may reflect differences in cell type or mechanical confinement (e.g., porous membranes vs. 

microfluidic devices and collagen matrices). Interestingly, pharmacological inhibition of the 

heat shock protein 90 (HSP90), which facilitates DNA damage repair [68], results in 

increased cell death after passage through 3-µm diameter pores, suggesting that cells may 

have suffered DNA damage during migration that causes apoptosis when not adequately 

repaired [46]. Mechanical stress alone can induce DNA damage [69], but it remains to be 

seen whether the mechanical stress incurred during 3-D cell migration is sufficient to cause 

DNA damage.

Influences on mechanotransduction signaling and gene expression

Mechanical stress on the nucleus during migration may also trigger non-lethal changes, 

which could further affect cell migration and cellular function. Recent studies in which 

McGregor et al. Page 5

Curr Opin Cell Biol. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



isolated nuclei were subjected to mechanical stress suggest that the nucleus itself can act as a 

mechanosensitive element. Force application via the LINC complex induces rapid 

phosphorylation of the inner nuclear membrane protein emerin, leading to recruitment of 

lamin A/C to the nuclear envelope and nuclear stiffening [70]. Shearing isolated nuclei 

causes partial unfolding of lamin A/C, exposing cryptic binding sites that could initiate 

mechanotransduction events [41]. Furthermore, changes in the mechanical 

microenvironment and force application to intact cells can induce chromatin remodeling 

[71,72] and dissociation of nuclear protein complexes [73], which could affect both nuclear 

deformability and gene expression (see [74] and [75] for a detailed discussion of nuclear 

mechanotransduction). While these reports suggest that nuclear deformation during 3-D 

migration could impact nuclear organization, chromatin remodeling, and gene expression, 

direct experimental evidence for this hypothesis is still missing.

Conclusions and Outlook

The nucleus has long been recognized as a central hub for genomic information and its 

processing. Work published over the last few years makes it clear that one has to also 

consider the physical impact of the nucleus on cellular function, particularly during 

migration in 3-D environments. The nucleus, with its large volume and relative rigidity, acts 

as physical barrier when cells encounter pore sizes smaller than the nuclear diameter, 

resulting in reduced migration efficiency or even complete migration arrest. The extent of 

this nuclear barrier effect is largely driven by the nuclear size and stiffness, which is 

governed by the levels of the nuclear envelope proteins lamin A/C and chromatin 

organization. These findings are particularly relevant to immune cells and to invading cancer 

cells, which move through tissues with pore sizes smaller than the size of the nucleus and 

often have altered expression of lamins and other nuclear envelope proteins. Despite recent 

advances, many open questions remain. For example, can cells dynamically adjust their 

nuclear stiffness to facilitate cell migration through tight spaces, possibly by 

phosphorylation and/or degradation of nuclear lamins? Are some cells particularly well-

suited for 3-D migration, either by having more deformable nuclei or by pulling/pushing 

harder on the nucleus? What are the precise molecular mechanisms by which cells 

translocate the nucleus through tight constrictions? And what are the biological 

consequences resulting from the large nuclear deformations, which could include changes in 

chromatin organization, DNA damage, and altered gene expression? Such mechanically 

induced events could not only affect migration itself, e.g., by altering nuclear stiffness and 

cytoskeletal dynamics, but also impact various other cellular functions and even viability. To 

drive new discoveries, it will be crucial to combine new imaging tools, such as fluorescence 

resonance energy transfer (FRET)-based intracellular force probes [76], with 

microfabricated environments that mimic physiological environments while providing 

defined geometries and enhanced live-cell imaging conditions, as well as single cell based 

assays to measure cell viability, gene expression, and epigenetic modification. Further 

insights into the role of the nucleus in 3-D migration will not only improve our 

understanding of the physical constraints during migration in physiological environments, 

but may ultimately lead to new strategies to better target invasive cancer cells and to reduce 

or eliminate metastatic spreading.
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Box 1

Development of tools to study migration in confined environments

Microfabrication techniques are finding increased application to study cell migration in 

confined environments, complementing existing approaches such as transwell plates and 

collagen invasion assays [10,46,77,78]. Besides micropillars, polymer scaffolds, and 

electrospun matrices [25,26,79,80], microfluidic devices made from 

polydimethylsiloxane (PDMS) by soft lithography [81,82] have proven particularly 

powerful in investigating cell migration through tight spaces by providing precisely 

defined microscale structures and constrictions with cross-sections from 100 µm2 to less 

than 5 µm2 [15–21,23,24,64,66,83]. These devices, which often include features to apply 

stable chemotactic gradients [14–16,18,19,24], allow for user defined geometries ranging 

from simple straight channels [15,16,24,66] to more intricate designs mimicking 

physiological environments [18–21,23,83]. The migration devices can be functionalized 

with a variety of ECM proteins to control cell adhesion. Since the devices are made of 

transparent PDMS and mounted on thin coverslips, they provide superb imaging 

conditions for live-cell imaging with high spatial and temporal resolution [81,82].
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Box 2

Lamins, nuclear shape, and disease

Mutations in lamins cause a large spectrum of human diseases, ranging from muscular 

dystrophy and dilated cardiomyopathy to premature aging [84,85]. Increasing reports 

indicate that altered lamin expression (rather than mutations) is found in many cancers, 

and often correlates with negative clinical outcomes [47,86,87]. For example, reduced 

expression of lamin A/C has been reported in breast [88,89] and cervical cancer [90], and 

is correlated with an increased recurrence of stage II and III colon cancer [91] and 

reduced disease free survival in breast cancer [89]. However, in other cases, increased A-

type lamin expression is associated with disease progression, specifically in prostate, 

colon and ovarian cancers [92,93]. Given the multiple function of lamins, changes in their 

expression are expected to have pleiotropic effects, affecting not only nuclear stiffness 

but also proliferation, survival, and gene expression [47,86,87,93,94]. Nonetheless, it is 

intriguing that more invasive breast cancer cell lines such as Hs578T and MDA-MB-231 

are capable of more extensive nuclear deformation than normal and non-malignant 

controls [95], and move faster through migration devices designed to mimic tight spaces 

inside the body [15]. Future studies should be directed at characterizing the effects of 

altered lamin levels on cell migration, as well as other cellular functions, in more detail.
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Figure 1. Schematic overview of the physical connections between the nucleus and cytoskeleton, 
and their roles in moving the nucleus through confined spaces
(A) At the nuclear periphery, chromatin interacts with lamins at lamina-associated domains 

(LADs). SUN domain proteins (SUN1 and SUN2) are anchored to the nuclear lamina and 

other components of the nuclear interior by their C-terminus. The N-terminal luminal long 

stalks and SUN domains of SUN1/2 form trimers that interact with KASH domain proteins 

located in the outer nuclear membrane (nesprin-1/-2/-3, along with the cell-type specific 

nesprin-4 and KASH5), forming the LINC complex [101]. The strong interaction between 

SUN domain trimers and the KASH domains provide the basis to mechanically couple the 
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nuclear interior with the cytoskeleton—nesprins interact directly with actomyosin bundles, 

or indirectly with microtubules and intermediate filaments via intermediary proteins (such as 

kinesin, dynein, plectin) [55]. Mechanical force transmission via nucleo-cytoskeletal 

coupling may also trigger mechanotransduction events, ranging from the recruitment of 

lamins to the LINC complex to changes in chromatin organization and gene expression, 

which may further impact cell migration processes. (B) Cytoskeletal organization and 

dynamics during migration in confined 3-D environments. As the cell passes through narrow 

pores, the nucleus separates the cell into front and back ends. The insets depict proposed 

mechanisms by which the cytoskeleton translocates the nucleus through confined spaces, 

including pushing via actomyosin contraction at the posterior of the nucleus (1), pulling via 

actomyosin contraction facilitated by intermediate filaments (2), pulling via microtubule-

associated motors (3), and rotation via microtubule-associated motors (4).
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Table 1

Overview of relevant molecular components involved in nuclear mechanics and migration in confining 

environments.

Components Functions References

Lamins 1 Major components of the nuclear lamina; determine nuclear shape and 
size; A-type lamins in particular are major contributors to nuclear stiffness.

2 Contribute to anchoring LINC complex at the nuclear envelope

3 Bind to chromatin, particularly at lamin-associated domains (LADs) at the 
nuclear periphery; also interact with transcriptional regulators and DNA 
damage response proteins.

[25] [37] [39] [40] 

[54]

Chromatin 1 Contributes to nuclear stiffness

2 Rearrangement can regulate gene expression in response to nuclear 
deformation

[28] [52] [96] [97]

LINC complexes 1 Physically connect the cytoskeleton and the nucleus, enabling force 
application and relaying of mechanical signal to the nucleus

[54] [55] [56]

Actomyosin bundles and 
non-muscle myosin II 
(NMII)

1 Actomyosin contraction is the major player of both actively pulling and 
pushing the nucleus

2 Actomyosin contraction is crucial for relaying mechanical signal to the 
nucleus

3 Non-muscle myosin IIA participates in actomyosin contraction at cell 
anterior to pull the nucleus.

4 Non-muscle myosin IIB participates in actomyosin contraction at cell 
posterior to push the nucleus.

[10] [57] [60] [63] 

[64]

Intermediate filaments 1 Vimentin filaments interact with actomyosin (NMIIA) bundles to facilitate 
pulling of the nucleus

2 Have the highest resistance to tensile force among the cytoskeleton, 
providing the strength needed for pulling the nucleus

[60] [98]

Integrins 1 Form focal adhesion at the leading edge of the cell, mediating traction 
forces needed for cell movement and nuclear translocation

[10] [99]

Microtubules and dynein/
kinesin motor proteins

1 Participate in nuclear rotation during 2D migration and in myotubes

2 Possible role in nuclear rotation and pulling in 3D migration

[55] [62] [100]
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