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In the big data era, voluminous datasets are routinely acquired, stored and analyzed with the aim to inform
biomedical discoveries and validate hypotheses. No doubt, data volume and diversity have dramatically in-
creased by the advent of new technologies and open data initiatives. Big data are used across the whole drug dis-
covery pipeline from target identification and mechanism of action to identification of novel leads and drug
candidates. Such methods are depicted and discussed, with the aim to provide a general view of computational
tools and databases available. We feel that big data leveraging needs to be cost-effective and focus on personal-
izedmedicine. For this,we propose the interplay of information technologies and (chemo)informatic tools on the
basis of their synergy.
© 2016 Katsila et al.. Published by Elsevier B.V. on behalf of the Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Current trends in drug discovery focus on disease mechanisms and
their understanding, followed by target identification and lead com-
pound discovery. In the era of personalized medicine and better-
informed cost-effective public health outcomes, a system of personal-
ized medicine that is based on molecular states (and changes, from
DNA to RNA to protein) have become fundamental in drug discovery
[1,2]. To build such a system, the molecular characterization of disease
is necessary, while environmental influences and the gut microbiome
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needs to be also considered [3,4]. At the same time, regulatory require-
ments of safety are increasing [5].

To address the above-mentioned interplay in high-throughput
formats, we feel that information technologies and chemoinformatic
tools need to be employed on the basis of a synergy that even extends
to artificial and human intelligence interplay - humans can detect pat-
terns, which computer algorithms may fail to do so, whereas data-
intensive and cognitively complex settings and processes limit human
ability [6]. We propose that this synergy will (i) facilitate collaborative
data analysis and (ii) guide sense- and decision-making towards rapid
and efficient data output. Big and diverse data demand strict filtering
and thorough analysis and interpretation. At the same time, biomedi-
cine scientists need to efficiently and effectively collaborate and make
decisions. For this, large-scale volumes of complex multi-faceted data
need to be meaningfully assembled, mined and analyzed [7]. In such a
context, reliable target identification and validation in cooperation
Computational and Structural Biotechnology. This is an open access article under theCCBY
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Table 1
Drug targets and computational methods used for compound identification and interaction prediction.

Drug target Computational approach Reference

p38α MAP kinase Ligand-based interaction fingerprint (LIFt) [14]
GPR17 Protein ligand interaction fingerprints (PLIF) method [15]
Transforming growth factor-b 1 receptor kinase (TGFβ) Shape-based screening (CatShape, Catalyst) [49]
T-type calcium channel (CaV) Bidimensional pharmacophoric fingerprints (ChemAxon and CCG's GpiDAPH3 fingerprints) [68]
Metabotropic glutamate receptor 5 (mGlu5) Artificial neural network (ANN) quantitative structure–activity relationship (QSAR) [72]
prostaglandin D2 receptor 2 (CRTH2) Proteochemometrics modeling (PCM) [76]
HUMAN immunodeficiency virus 1 reverse transcriptase (HIV-1 RT) Molecular mechanics energies combined with the Poisson-Boltzmann surface area (MM-PBS) [84]
Biotin Molecular dynamics/free energy perturbation (FEP) [85]
β-Secretase (BACE) Linear interaction energy (LIE) [86]
Chemo-attractant receptor (OXE-R) Docking virtual screening (PyPx and AutoDock Vina) [90]
Angiotensin II receptor type 1 (AT1) Ligand based pharmacophore modeling (Catalyst) [91]
Pim-1 kinase Docking virtual screening (Glide) [104]
Epidermal growth factor receptor (EGFR)/Bromodomain-containing
protein 4 (BRD4)

Docking virtual screening (Glide) [105]

Calcineurin Structure based pharmacophore virtual screening (Discovery Studio) [106]

Table 2
Web-accessible databases for drug target identification.

Utility Url

Human metabolome data http://www.hmdb.ca
In silico target identification http://www.dddc.ac.cn/pdtd/

Pathway analysis

http://www.genome.jp/kegg/
http://www.geneontology.org
http://www.reactome.org
http://www.pantherdb.org
http://www.biocarta.com
http://www.ingenuity.com/

Chemogenomic data
http://www.ebi.ac.uk/chembldb
http://pubchem.ncbi.nlm.nih.gov

Drug target database http://www.drugbank.ca
Protein data bank http://www.pdb.org
Disease specific target database http://thomsonreuters.com/metacore
Pharmacogenomic data http://www.pharmgkb.org
Multi-level drug data http://r2d2drug.org/DMC.aspx
Comparative toxicogenomic database http://ctdbase.org
Target-toxin database http://www.t3db.org
Protein expression information http://www.proteinatlas.org
Therapeutics target database http://bidd.nus.edu.sg/group/cjttd/
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with drug discovery methods will pave the way to more efficient
computer aided drug discovery. Moreover, new network-based compu-
tational models and systems biology integrate omics databases and op-
timize combinational regimens of drug development.

2. Target identification

Chemoinformatic tools present a tremendous potential to advance
in silico drug design and discovery, as they serve the integration of infor-
mation in several levels to enhance the reliability of data outcomes. To
name a few, chemical structure similarity searching [8], data mining/
machine learning [9], panel docking [10], and bioactivity spectra based
algorithms [11] have been routinely and successfully implemented
[12,13]. Some examples are the ligand-based interaction fingerprint
(LIFt) approach [14] in predicting potential targets for small-molecule
drugs using physics-based docking and samplingmethods and the pro-
tein ligand interaction fingerprints (PLIF) method [15] for summarizing
interactions between ligands and proteins using a fingerprint scheme.
In both cases, compounds were identified for the p38α MAP kinase
and GPR17, respectively (Table 1).

Target identification can also be studied through network-based
drug discovery, a field integrating different levels of information in
drug-protein and protein-disease networks. This approach involves a
highly collaborative scheme between databases and correlations across
genomics, transcriptomics, proteomics, metabolomics, microbiome,
pharmacogenomics, which highly depends on the development of rele-
vant computational and systems biology tools for such data interpreta-
tion [16,17]. Such approaches, for example relating pharmacological
and genomic spaces can be used to develop computational frameworks
for drug target identification [18]. Another recent network-based applica-
tionwas the integrationof large-scale structural genomics anddisease as-
sociation studies, to generate three-dimensional human interactome,
that resulted in the identification of candidate genes for unknown
disease-to-gene associations with proposed molecular mechanisms [19].

To facilitate gaining in-depth knowledge of disease mechanisms
and/or phenotypes information technologies are greatly needed today
more than ever [20]. Indeed, the study of disease mechanisms and/or
phenotypes has turned from investigating a particular gene or protein
into the analysis of entire sets of biomolecules [21]. The advent of
omics technologies further complicates storing, visualizing and analyz-
ing voluminous biological data. For this, information technologies pro-
vide the means towards extensive data processing and interpretation.
Tools such as the humanmetabolome database [22] andMetaboAnalyst
[23] support integrative omics pathway analysis. The human metabo-
lome database contains metabolite entries linked with chemical,
clinical, andmolecular biology data, that can assist applications inmeta-
bolomics, clinical chemistry and biomarker discovery. Metaboanalyst is
a web-based analytical pipeline for high-throughput metabolomics
studies, which offers a variety of procedures for metabolomic data pro-
cessing and integrates biomarker and pathway analysis. MAGENTA
(http://www.broadinstitute.org/mpg/magenta/) and Ingenuity (http://
www.ingenuity.com/) users can further exploit several curated biologi-
cal pathways. Databases play a key role and no doubt, an extremely rich
repertoire is available today (Table 2). When kinome is of interest, a
computational platform ReKINect has been recently reported to identify
network-attacking mutations and validated with the interpretation of
exomes and quantitative proteomes of ovarian cancer cell lines and
the global cancer genome repository [24]. Another useful approach
helping to identify functional connections between diseases, genes
and drugs is the Connectivity Map [25]. Connectivity Map is a collection
of genome-wide transcriptional expression data from cultured human
cells treated with bioactive small molecules and simple pattern-
matching algorithms that together enable the discovery of functional
connections between drugs, genes and diseases through the transitory
feature of common gene-expression changes [26]. Other computational
methods have been also applied to reconstruct biological networks and
extract information from them, such as Bayesian [27] and Boolean net-
works [28] and graph based models [29].

Furthermore, applications and web services, enable sharing of data
and resources for visualization and analysis purposes. The Biological
General Repository for Interaction Datasets (BioGRID) [30] is an interac-
tion repository with compiled biological data freely available in stan-
dardized formats, linked with software platforms for visualization of
complex interaction networks such as Osprey [31] and Cytoscape [32].
BioMart, is a community-driven project, which call for scientists to
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share data and provides free software and data services to the scientific
community in order to facilitate scientific collaborations and the scien-
tific discovery process [33]. Oncomine, is a cancer microarray database
and web-based data-mining platform aimed at facilitating discovery
fromgenome-wide expression analyses, providingwith query and visu-
alization tools for selected ormultiple genes across all analyses [34]. The
online Cancer-Related Analysis of Variants Toolkit (CRAVAT) can assist
the high-throughput assessment and prioritization of genes and
missense alterations important for cancer tumorigenesis, by providing
predictive scores for germline variants, somatic mutations and relative
gene importance [35]. The Sorting Intolerant from Tolerant (SIFT) algo-
rithm predicts the effect of coding variants on protein function through
a web server. It provides users with predictions on their variants and
is widely used for characterizing missense variations [36]. PROVEAN
(Protein Variation Effect Analyzer) is a software tool which predicts
whether an amino acid substitution or indel has an impact on the bio-
logical function of a protein [37] and GenePattern provides with analyt-
ical tools for the analysis of gene expression, sequence variation
and network analysis. MetaMapR, an open source software integrates
enzymatic transformations with metabolite structural similarity, mass
spectral similarity and empirical associations to generate connected
metabolic networks [38]. Protein and DNA visualization software such
as VMD [39] and Chimera [40] are widely used in the 3D analysis of
biomolecules and drug interactions. Several networks (caBIG, http://
cabig.cancer.gov; BIRN, http://www.nbirn.net) and projects (Geno-
type-Tissue Expression Project [41]; RD-Connect [42]) have been initi-
ated towards data exchange for target identification.

Another importantfield in information technologies is the semantics
field, which could give insights to associations between heterogeneous
data of diseases and drug targets. Such network-based computational
approaches have gained popularity recently, proposing novel therapeu-
tic targets and deciphering disease mechanisms. However, little effort
has been devoted to investigating associations among drugs, diseases,
and genes in an integrative manner. In such a study, Zhang et al., con-
structed an association network by extractingpair-wise associations be-
tween diseases, drugs and genes in Semantic MEDLINE and applied a
network-based approach to mine the local network structure [43].
This could result in the formulization of novel research hypotheses,
which is critical for translational medicine research and personalized
medicine.

3. Target validation

Target validation is a time-consuming and costly process that dem-
onstrates relevance – is the identified target of relevance to a particular
biological pathway, molecular process or disease? We agree that target
validation efficiency can be greatly improved when combined to strict
data filtering and statistics, as high throughput screening sheds light
to cellular responses in disease models of interest. Network validation
can be performed by comparing the network of interest to 100 random
networks generated using random shuffling of the graph with degrees
preserved as implemented in the Randomized network plugin in
Cytoscape2.6.3 [32]. Gene function and/or gene regulatory networks
can be validated via genome-wide approaches [44] and functional
screens, such as RNAi and CRISPR-Cas9 [45]. Inter-individual variability
upon drug administration/ intervention can be tracked and analyzed re-
cently, as electronicmedical records and clinical trial data become avail-
able. In addition to the molecular and clinical data, free-text data
presented in literature are also useful in drug discovery via extensive
data mining processes [46].

4. Computer-aided drug design

Once a target has been identified, there are several in silico tools to
initiate a drug design process. The use of these methods depends on
the nature of the target and the available information on the system.
In the past decade, computer aided drug design (CADD) has offered
valuable tools in the identification of compounds, minimizing the risk
of later rejection of lead compounds. Even though high throughput
screening (HTS) usually offers several hit compounds, success rates
are often very low and many of the identified compounds are later
rejected due to their physicochemical properties. CADD plays a signifi-
cant role in high success rates of hit compound identification [47], as
well as the prioritization of HTS active compounds. One of many exam-
ples of the importance of CADD compared to HTS, was the identification
of inhibitors against the transforming growth factor-b 1 receptor kinase.
While the HTS for compound identification at Eli Lilly resulted in a
potent lead compound [48], at the same time, a fully computational
approach by Biogen Idec [49], resulted in the identification of 87 hits,
the best one being Eli Lilly's initial lead compound [50]. In this case, a
fully computational work was able to produce the same result as a wet
lab approach, which traditionally is more costly and time consuming.

There are generally two distinctmethods for computational drug de-
sign, structure based and ligand based (Fig. 1). These dependon the avail-
able information on the identified target. Most of them are analyzed in
detail elsewhere [51,52], however the scope of this mini-review is to
highlight and review the most commonly used.When there is no infor-
mation on the structure of the target, computational methods for new
molecules are based on information of known active or inactive com-
pounds against it. This is the ligand based CADD approach, where
tools such as ligand chemical similarity or pharmacophore mapping
can be very useful. Generally, the most commonly used methods in hit
compound identification rely on virtual screening techniques on the tar-
gets' binding site. These methods mostly rely on docking large libraries
of small molecules such as ZINC [53], or chemical information on known
compounds such as Pubchem [54] using docking or pharmacophore
modeling tools. The use of such libraries, however, is expensive from a
computational perspective. If no adequate computational resources
are available, cascade virtual screening protocols are applied in a way
that databases arefiltered based on physicochemical or other properties
of the compounds to avoid using databases as a whole [55,56].

There are studies in which ligand similarity-based virtual screening
and structure based virtual screening results for the same targets and
compound sets have been compared. For example, in a study comparing
these two methods in several drug targets (CDK2, COX2, estrogen re-
ceptor, neuraminidase, HIV-1 protease, p38MAP kinase and thrombin),
the ligand-based virtual screeningmethods performed better inmost of
the cases [57]. In another example, the comparison between ligand-
based and structure-based methods (vROCS and FRED) demonstrated
that the ligand based method performed in a better predictive matter
[58].

The combination of ligand and structure based molecular modeling
methods, however, has become a common approach in virtual screen-
ing through sequential, parallel or hybrid approaches [59]. For example,
hybrid protein–ligand pharmacophore methods have been successfully
applied in virtual screening [60] as well as ligand profiling studies [61].
These methods can also be integrated in network-based approaches to-
wards drug discovery [16,62]. Furthermore, other combinatorial tools
can be implemented for the aim of multi-targeted drug design [63].
Such drugs, produced with one single chemical or with a composition
of several chemicals, should be able to target the characteristic patho-
logical network of a disease. A characteristic example, combination
of dasatinib, a ABL/T315I inhibitor in combination with imatinib, a
tyrosine-kinase inhibitor are proposed to treat chronic myelogenous
leukemia (CML) by targeting BCR–ABL fusion proteins [64].

4.1. Ligand-based CADD

Ligand based CADDmethods take advantage of information of small
molecules interacting with the target in question in order to identify
new, more potent compounds. This information includes binding affin-
ities, chemical structure, physicochemical properties etc. Thesemethods



Fig. 1.General computer aided techniques for drug design. The usage largely relies on the available structural information on the drug target to be assessed. No structural information leads
to ligand based drug design methods, where known active compounds are used for the discovery of similar, more potent drug candidates.
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are considered in some casesmore successful than structure based tech-
niques [65].

One ligand-based approach is the selection of new compounds
based on chemical similarity of known active ones. This can be done
using several fingerprint methods, which allow the representation of a
molecule in a way that can be effectively compared against other mole-
cules. These methods rely on the chemical information of compounds,
giving a highly qualitative approach in the search of new more potent
ligands [66]. A representative example of identifying T-type calcium
channel blockers, which are implicated in epilepsy and neuropathic
pain [67] is the work reported by Ijjaali and co-workers [68]. In this
work, a ligand based virtual screening was made on a twomillion com-
pounddatabase using ChemAxon's PF and CCG's GpiDAPH3 fingerprints
to test 38molecules for their ability to affect the functional activity of re-
combinant human CaV3.2 (Table 1). Sixteen out of the 38 molecules
were active hits as they showed more than 50% blockade of the CaV3.2
mediated T-type current.

Another significant approach is the quantitative structure–activity
relationship (QSAR), where a QSAR model is able to describe a correla-
tion between structures of a set of molecules and their target response
[69]. The general QSAR workflow consists of the gathering of a set of
active and inactive molecules against a target and production of the de-
scriptors describing their structural and physicochemical properties.
The model can then be used to correlate these descriptors and the
experimental activity, resulting in a predictive tool for new molecular
entities [69]. QSAR algorithms are continuously evolving, involving the
implementation of several 2D and 3D descriptors, which can be struc-
tural or physicochemical (e.g. molecular weight, volume, rotatable
bonds, interatomic distances, atom types, molecular walk counts, elec-
tronegativity, atom distribution, aromaticity, solvation properties) and
can be described on multiple levels of increasing complexity. A recent
work, highlighted the success of such a method, being able to identify
hit compounds that act as allosteric modulators of mGlu5. mGlu5 is a
well established pharmaceutical target against anxiety, Parkinson's dis-
ease, and schizophrenia [70]. Building a QSAR model, with information
from a previous HTS screen on mGlu5 [71] Mueller and co-workers
were able to identify 27 active compounds that modulates the signaling
of the protein [72]. The overall success of the QSARmodelwas a 3.6% hit
rate [72] compared to the 0.2% hit rate of the HTS [71].

Another field gaining ground in the computational drug discovey set-
ting is proteochemometrics and polypharmacology modeling [73].
Proteochemometrics (PCM)modeling combines both ligand information
and target information within a single predictive model in order to pre-
dict an output variable of interest [74,75]. Ligand information of the sys-
tem is accompanied by information for its biological effect. Merging
data from ligand and target sources into the frame of a single machine
learningmodel allows the prediction of themost suitable pharmacolog-
ical treatment for a given genotype (personalized medicine), which
ligand-only and protein-only approaches are not able to perform [74,
75]. Using PCMmethods, Frimurer at almanaged to identify ~60 ligands
for the prostaglandin D2 receptor 2 (CRTH2), after screening of a library
of 1.2 million compounds [76].

4.2. Structure-based CADD

3D information on proteins and DNA started being used for drug de-
sign almost three decades ago. The protein databank (PDB) is the largest
depository of biomolecule structure information determined mostly by
X-ray crystallography and NMR techniques. In 1998, 2058 structures
had been deposited in the protein data bank. Since then, each year
there has been a ~ 7.5% increase in depositions, resulting in a total of
105,465 structures in 2014. The use of this abundant structural informa-
tion has been the cornerstone for structure based drug design for the
past years in academia, as well as the pharmaceutical industry.

Proteins, by nature are dynamic macromolecules. Thus, a structural
snapshot is not enough to study a protein's interaction with a small
molecule, or even identify its binding site. One of themost important as-
pects of studying the behavior of proteins is called molecular dynamics
(MD) simulations. Based on Newtonian mechanics and using force
fields such as Amber [77] or CHARMm [78], molecular dynamics simu-
lations can calculate a trajectory of conformations as a function of
time. InMD simulations, chemical bonds and atomic angles aremodeled
using simple virtual springs, and dihedral angles are modeled using a
sinusoidal function. Non-bonded forces occur as van der Waals interac-
tions, as the Lennard-Jones 6–12 potential and Coulomb's law are used
to calculate hydrophobic and electrostatic interactions. These simula-
tions, coupled with experimental data have a significant impact on the
drug discovery field.

Traditionally these calculations have been performed in cpu clusters
with software able to parallelize the processes of simulation complex
systems. In the recent years, calculations required for these simulations
have been developed to be performed by video-game and computer-
graphics applications. Eventually the graphics-processing-units (GPUs)
designed to speed up video games have began to be used to speed up

Image of Fig. 1
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molecular dynamics simulations as well, usually by an order of magni-
tude [79,80].

Several MD applications are used for free energy calculations in
order to correlate experimental binding affinities of small molecules to
a protein with calculated, such as molecular mechanics Poisson–
Boltzmann surface area (MM/PBSA) [81], linear interaction energy
(LIE) [82], and free energy perturbation methods (FEP) [83]. They can
then be used for the prediction of binding affinities in silico. Some exam-
ples of the use of suchmethods are the reproduction of binding free en-
ergies TIBO derivatives to HIV-1 RT and prediction of the binding mode
of efavirenz to HIV-1 RT byMM-PBSA [84], the relative binding free en-
ergy calculations of the interaction of biotin and its analogs with
streptavidin using FEP approaches [85] and LIE models for predicting
the binding mode of β-secretase (BACE) inhibitors [86].

In some cases, the structure of a protein target for a drug design pro-
ject may not be yet solved. In this case, there are predictive tools for
building comparative models. Comparative modeling is used to predict
the structure of a protein based on a structural template with a similar
sequence, with the general view that proteins with similar sequences
have similar structures. Homology modeling is themost used computa-
tional technique towards this goal and is used to construct a protein
model after identification of a structural template protein with similar
sequence, alignment of their sequences, using coordinates of aligned
regions, prediction of missing atom coordinates of the target, model
building and refinement. Some of themostwidely used software for ho-
mology modeling are MODELER [87] and SWISS-MODEL [88]. There are
several examples of the use of homology modeling in drug design, one
of which the model of chemo-attractant receptor OXE-R based on the
crystal structure of CXCR4 [89] as a template. Consecutively, using virtu-
al screening techniques a small-molecule modulator Gue1654 was
identified, which inhibits a specific GPCR signaling pathway [90]. In
another example, the binding mode of antihypertensive drugs to the
angiotensin II receptor type 1 (AT1) was predicted [91]. A homology
model of the receptor and analysis of binding mode of active com-
pounds using MD and pharmacophore modeling was later validated
when the crystal structure was determined (Fig. 2) [92].

Docking methods are used to predict the preferred orientation of
one molecule to a protein when bound to each other to form a stable
complex. Depending on the method, there are different considerations
of the flexibility of either the ligand or the protein during the docking
process [93]. The most commonly used method considers the ligand
flexible, while the protein docking site is held rigid, usually pre-
treatedwithmolecular dynamics forcefields. Several software packages
Fig. 2. Predicted homology model of the angiotensin II type 1 receptor (deep blue) with com
co-crystallized with ZD7155 (white). Hydrogen bonds are depicted in yellow dashed lines.
are available for docking, such as Gold [94], Autodock [95], AutoDock
Vina [96], DOCK [97], GLIDE [98], SURFLEX [99] and others. The docking
score is an evaluation of the energetic affinity of the complex, calculated
by scoring functions. These scoring functions can be molecular
mechanics-based, empirical, knowledge-based, or consensus-based
functions. For example, DOCK uses the AMBER [77] force field for eval-
uating the energetics of binding, while SURFLEX uses an empirical func-
tion. Consensus scoring is a method whereby the binding affinities of
compounds for a particular target are predicted by using more than
one scoring algorithm and is a frequently studied method [100]. In
such a study, Tuchinardi et al. evaluated the consensus docking and
scoring of several different algorithms along 83 ligand-receptor X-ray
structures [101].

Another widely usedmethod for evaluating the probability of mole-
cule binding to protein binding sites is pharmacophore modeling. A
pharmacophore is the ensemble of steric and electronic features that
is necessary to ensure the optimal supramolecular interactions with a
specific biological target structure. By mapping the interaction of an ac-
tive compound bound to its target protein, a pharmacophore can repre-
sent the geometrical and chemical properties using pharmacophore
features, which include hydrogen bond acceptors and donors, basic
and acidic groups, partial charge, aliphatic and aromatic hydrophobic
moieties. This representation can be used for virtual screening projects,
in order to identify potential binders based on this interaction. Several
software packages have been developed towards pharmacophore
modeling, Ligandscout [102] and The Pocket v.2 [103] use algorithms
in protein-ligand complex data to map interactions between ligand
and target.

Docking and pharmacophore modeling have been widely used in
virtual screening studies to identify novel compounds against drug tar-
gets. There are several successful examples of hit compounds that later
on proceeded to a hit to lead process. Human Pim-1 kinase, a highly
conserved serine–threonine kinase is a valuable anticancer drug target.
In a virtual screening study using docking methods and a database of
700,000 commercially available compounds, four compounds were
identified, having affinity in the micromolar range [104]. In another
study, using a docking screening approach to identify novel dual kinase
(EGFR)/bromodomain (BRD4) inhibitors from six million commercially
available small molecules, Allen and co-workers selected and tested 24
compounds [105]. The result was the identification of several novel
BRD4 binders and one novel dual EGFR-BRD4 inhibitor (2870), a first
in class compound that could target multiple cancer promoting path-
ways. The use of pharmacophore modeling in high throughput virtual
pound EXP3174 docked (cyan) superimposed with the crystal structure of AT1 (orange)

Image of Fig. 2


Fig. 3. Four pharmacophore model hit compounds (shown in yellow stick representation), which were identified through a virtual screening lead compound identification process to
target Calcineurin (in white ribbon and stick representation). The pharmacophore model is shown in colored spheres (cyan for hydrophobic, magenta for hydrogen bond donor and
green for hydrogen bond acceptor features).
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screening has also proven valuable in identifying novel active com-
pounds. In a study to identify Calcineurin inhibitors that could be
further developed into novel immunosuppressant agents, a fifteen mil-
lion database of purchasable compounds from ZINC was screened on a
pharmacophore model mapping a protein–protein interaction. Out of
the 32 compounds tested, seven showed micromolar affinity, with
four of themhaving the ability to inhibit the expression of nuclear factor
of activated T cells (NFATc) dependent genes, cytokine production, and
cell proliferation, suggesting that these may have therapeutic potential
as immunosuppressive agents (Fig. 3) [106].

Once a computational hit identification method has produced com-
pounds of usually low affinity, fragment-based drug discovery (FBDD)
is utilized for finding lead compounds as part of the drug discovery
process. Commercial databases of compounds have the limitation of
representing only a small amount of the available chemical space. It
has been estimated that the Lipinski virtual chemical space might con-
tain asmany as 1060 compounds [107]. This is where FBDD comes to en-
rich hit compounds and produce more potent lead compounds [108].
The two commonly used approaches for the optimization of fragment
hits into lead-like compounds are Fragment growing and Fragment
linking. The first is the addition of functional groups to the active frag-
ment core in order to optimize interactions with the binding site,
while the second is a less commonly used method, which links frag-
ments that bind in adjacent sites of a target protein to turn low affinity
fragments into high affinity leads. Successful examples of hit optimiza-
tion are well documented, such as the discovery of Beta-site amyloid
precursor protein cleaving enzyme1 (BACE1) by Amgen towards inhib-
itors against Alzheimer's disease [109]. Another example is the frag-
ment based discovery of inhibitors against the phosphatidylinositol-3
kinases (PI3Ks) [110] which are involved in cancer, rheumatoid arthri-
tis, cardiovascular disease and respiratory disease.
5. Summary and outlook

Computationalmethods have provided a powerful toolbox for target
identification, discovery and optimization of drug candidate molecules.
Information technologies coupled to statistics and chemoinformatic
tools shed light to disease mechanisms and phenotypes revealing po-
tential drug targets to be further validated byhigh throughput screening
technologies.
Consecutively, multiple methods allow for the prediction and char-
acterization of binding sites, studying the dynamic nature of drug
targets, identifying new active molecular entities and their optimiza-
tion. Nowadays, large databases of readily commercially available com-
pounds and ligand chemical space exploration offer drug discovery
scientists with enormous data to handle. Different methods, based on
readily available information on the biological system under study are
evolving to assist themanipulation and handling of this data. Moreover,
integration of ‘-omics’ technologies and databases may facilitate the
identification of novel drug targets or the design of network-based
multi-target drugs. Structure and ligand based methods are the most
commonly used in the drug discovery field, however, emerging combi-
natorial techniques such as proteochemometrics are emerging.

All the computational methods mentioned in this review, either
towards target identification, either towards novel ligand discovery
continue to evolve and their synergy is what we envisage that will facil-
itate cost-effective and reliable outcomes in an era of big data demands.
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