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Due to their permanent and close proximity to neurons, glial cells perform essential tasks for the normal physiology of the retina.
Astrocytes and Miiller cells (retinal macroglia) provide physical support to neurons and supplement them with several metabolites
and growth factors. Macroglia are involved in maintaining the homeostasis of extracellular ions and neurotransmitters, are essential
for information processing in neural circuits, participate in retinal glucose metabolism and in removing metabolic waste products,
regulate local blood flow, induce the blood-retinal barrier (BRB), play fundamental roles in local immune response, and protect
neurons from oxidative damage. In response to polyetiological insults, glia cells react with a process called reactive gliosis, seeking
to maintain retinal homeostasis. When malfunctioning, macroglial cells can become primary pathogenic elements. A reactive
gliosis has been described in different retinal pathologies, including age-related macular degeneration (AMD), diabetes, glaucoma,
retinal detachment, or retinitis pigmentosa. A better understanding of the dual, neuroprotective, or cytotoxic effect of macroglial
involvement in retinal pathologies would help in treating the physiopathology of these diseases. The extensive participation of the

macroglia in retinal diseases points to these cells as innovative targets for new drug therapies.

1. Introduction

The macroglial cells of the retina are the astrocytes and
the Miiller cells. Macroglial cells perform various essential
roles for the normal physiology of the retina, maintaining
a close and permanent relationship with the neurons [1].
Under normal conditions, the retinal macroglia provide
trophic and metabolic support to neurons and are responsible
for maintaining the homeostatic environment required for
appropriate neuronal functioning. Furthermore, they are
involved in the formation of the BRB and might even play
arole in the correct transmission of nerve impulses [2]. Glia,
as a population of immune cells residing in the retina and the
optic nerve, are able to respond and become activated rapidly
in the presence of any type of damage, in order to safeguard
the immune privilege of nervous tissue [3]. Reactive gliosis
has a direct neuroprotective effect on the retina. By contrast,
chronic gliosis exacerbates disease progression, increasing

vascular permeability, infiltration of toxic compounds, and
even neovascularization [4].

The aforementioned data underline the importance of
undertaking studies aimed at improving our understanding
of the role of macroglia in the pathogenesis of retinal diseases.
Such knowledge could help to develop novel neuroprotective
therapies for medical treatment of these diseases.

2. Glial Cells

Glial cells have long been considered purely passive elements
within the nervous system. Yet, their proximity to the neurons
and blood vessels involves them in vital tasks that are
essential for neuronal survival [5]. Glial cells are subdivided
into macroglial cells (astrocytes and oligodendrocytes) and
microglial cells. Astrocytes represent the most abundant and
morphologically heterogeneous neuroglial cell, these includ-
ing protoplasmic astrocytes, fibrous astrocytes, and radial glia
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(Bergmann glia of the cerebellum and Miiller cells of the
retina) [6, 7]. Oligodendroglia are responsible for myelination
and metabolic support of the axon, while astrocytes are more
involved as key players in neuronal circuits, information
processing, and maintenance of synaptic integrity [8, 9].

3. Retinal Macroglia

Overall, in the vascular retina of many vertebrates (including
mammals) two basic types of macroglial cells are found:
Miiller cells and astrocytes. The oligodendrocytes are seen
occasionally in the retina, but only when myelinated ganglion
cell axons are present in the nerve-fiber layer [1, 10-15].
Miiller cells are long, radially oriented cells, which span
the width of the neural retina from the outer limiting
membrane (OLM), where their apical ends are located, to
the inner limiting membrane (INL), where their basal end
feet terminate. Miiller cells ensheath all retinal neural somas
and processes. Each of these cells can be considered the core
of a columnar microunit of retinal neurons [16, 17]. Thus,
Miiller cells constitute an anatomical link between the retinal
neurons and the compartments with which these need to
exchange molecules (the retinal blood vessels, vitreous body,
and subretinal space) [18].

Retinal astrocytes are located mainly in the nerve-fiber
layer (NFL) and ganglion cell layer (GCL) in most mammals,
that is, human, rats, and mouse [1, 19, 154]. In rabbits,
astrocytes are confined to the medullary nerve-fiber region,
which is the only vascularized area in the rabbit retina
[13]. Retinal astrocyte morphology differs between species.
In humans, two types of astrocytes can be distinguished:
elongated astrocytes (located in the NFL) and star-shaped
astrocytes (located in the GCL) (Figure 1(a)) [12, 20]. In mice
and rats the astrocytes are star-shaped (Figures 1(b) and 1(c))
(19, 20].

Macroglial cells are permanently in close relationship
with neurons, performing various essential roles for the
normal physiology of the retina [1, 12-14]. Thus, every aspect
of the development, homeostasis, and function of the visual
system involves a neuron-glia partnership. Unlike retinal
ganglion cells (RGCs), astrocytes do not propagate action
potentials along their processes; however, astrocytes and
Miiller cells do exhibit regulated increases in intracellular
calcium concentrations [Ca®*]i that represent a form of
astrocyte excitability [21-24]. Increases in astrocytic [Ca*]i
are of functional significance in astrocyte/astrocyte and
astrocyte/neuron communication.

Astrocytes and Miiller cells participate in the structural
organization of the retina through the creation of nonoverlap-
ping microanatomical domains that integrate into macroglial
syncytia through gap junctions [12]. This organization allows
long-distance communication within glial networks [25].
Macroglial cells insulate neurons, provide physical support
for them, and supplement them with several metabolites and
growth factors (Figure 2). These cells are also important in
axon guidance and in the control of synaptogenesis [26, 27]
and can adopt stem-cell properties [28, 29].

Under normal conditions, astrocytes and Miiller cells
maintain the homeostasis of extracellular ions and other
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metabolites, water, and pH (Figure 2). It has been demon-
strated that a complex glutamatergic-purinergic signaling
cascade enables Miiller cells to maintain their cell volume.
Tight cell-volume regulation is a prerequisite for Miiller
cells to mediate transcellular ion and fluid fluxes from
the extracellular space of the retina to reservoirs such as
the vitreous body or blood vessels, thus in turn enabling
the spatial buffering of potassium and the maintenance of
retinal-fluid homeostasis [7, 30]. In addition, astrocytes and
Miiller cells are involved in maintaining the homeostasis of
neurotransmitters such as glutamate and GABA (Figure 2)
[31]. After the reuptake of neurotransmitters into astrocytes,
the neurotransmitters are metabolized and transformed into
precursors that can be returned to the neurons to be con-
verted into active neurotransmitters. The astrocytes directly
interact with neurons during synaptic activity in a manner
that is essential for information processing in neural circuits.
Such evidence has given rise to the “tripartite synapse”
hypothesis [32-34]. The synapses in the CNS appear to be
constituted by three elements: the perisynaptic astroglial
processes, the presynaptic neuron, and the postsynaptic
one [34]. In this architecture, astrocytes have a dual role.
These cells in fact can sense the transmitter release as they
express many neurotransmitter receptors, and, on the other
hand, astrocytes can modulate the efficacy of the synapse by
releasing gliotransmitters (i.e., glutamate, GABA, ATP, and
D-serine), thus accurately modulating synaptic transmission
[35].

Macroglial cells are also involved in retinal glucose
metabolism (Figure 2), providing retinal neurons with nutri-
ents such as lactate/pyruvate for their oxidative metabolism
[18, 36, 37] and in removing metabolic waste products.
These cells also produce a great quantity of cytokines and
growth factors [38, 39], which may contribute to both
neurotoxic and neuroprotective effects [40]. In addition, they
produce laminin, fibronectin, and tropoelastin, the precursor
of elastin [39]. Astrocytes and Miiller cells have also been
demonstrated to be more resistant to oxidative damage
than neurons; this characteristic protects them against such
damage. This potential is due to the fact that these cells
contain high concentrations of antioxidants such as reduced
glutathione and vitamins (Figure 2) [41]. Reduced glutathione
is provided to neurons [42, 43] and acts as a scavenger of
free radicals and reactive oxygen compounds [18]. Another
way of neuroprotection is the uptake and/or detoxification
of potentially harmful substances and even particles (either
intrinsic or foreign). This involves the phagocytosis of debris
from death neurons or pigment epithelial cells [44-48].
Consequently, depression of these cellular activities could
lead to neuronal dysfunction [49].

Astrocyte and Miiller cells are involved in regulating local
blood flow [29] in response to changes in neuronal activity
[50]. Indeed, a number of molecules, such as prostaglandins
(PGE), nitric oxide (NO), and arachidonic acid (AA), which
increase or decrease CNS blood-vessel diameter and blood
flow, are produced by astrocytes [51, 52]. Astrocytes and
Miiller cells induce the properties of the barriers in the retinal
capillaries, the BRB (Figure 2) [53, 54]. They release sub-
stances that stabilize the tight junctions between endothelial
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FIGURE I: Retinal astrocytes. Retinal whole-mount. Immunoperoxidase ((a) and (b)). Immunofluorescence (c). Astrocytes in the normal
retina of a 58-year-old man. In the ganglion cell layer of the human retina, star-shaped astrocytes form a honeycomb plexus (a). In the rat
(b) and mouse (c) retina star-shaped astrocytes form a plexus distributed throughout the retina. Such plexus is denser in the rat than in the

mouse retina.

vascular cells [54], securing immune privilege to protect neu-
rons from the potential damage of an inflammatory immune
response (Figure 2). In addition, glial cells play fundamental
roles in local immune responses and immunosurveillance
[55, 56].

Finally, Miiller cells act as “light guides.” Their orientation
and low scattering make these cells able, like optical fibers, to
conduct the light into the interior of the retina to fall on the
photoreceptors with less degradation [57].

3.1. Astrocytes and Retinal Diseases. As mentioned above, the
main function of astrocytes is to maintain the homeostasis
of the nervous tissue and to control, protect, and support
neuronal function [58]. Astroglial cells defend the CNS
and therefore the retina from damage through a process
called reactive gliosis. This gliosis is triggered in response to
polyetiological insults [59] such as trauma, ischemic damage,
neuroinflammation, or neurodegeneration. This response
seeks to maintain retinal homeostasis involving both mor-
phological and functional alteration in the glial cells [60];
however, when malfunctioning, astroglia can also constitute
the primary pathogenic element [61].

Reactive astrogliosis is an evolutionarily conserved
defense program, which is disease- and context-specific and
involves the activation of thousands of genes [59, 61]. Thus, at
least 50% of the injury-altered gene expression is injury-type
specific [62].

The hallmarks of reactive astrogliosis are a burst in astro-
cyte number (hyperplasia/proliferation), increased number
and length of astroglial processes, larger cell body size (hyper-
trophy), migration, and upregulation of cytoskeletal compo-
nents such as glial fibrillary acidic protein (GFAP), vimentin,
and nestin [45, 47, 48, 59, 61, 63]. The deletion of GFAP
and vimentin genes in a genetic mice model of Alzheimer’s
disease (AD) in vivo resulted in a complete inhibition of
astroglial activation [64]. The increased expressions of these
intermediate filaments are, however, considered only as broad
markers of this process, because astrogliotic metamorphosis
may produce many different, yet to be fully characterized,
reactive phenotypes specific to different diseases.

A reactive astrogliosis has been reported in different
retinal pathologies. In AMD a large number of reactive and
hypertrophic astrocytes have been found [47]. In experimen-
tal diabetic retinopathy the glial reactivity was manifested by
increased GFAP immunoreactivity and content in astrocytes
[65]. In the final stages of retinitis pigmentosa, when the
ganglion cells disappear, the only cells left are reactive
hyperplasic astrocytes [66]. In both the human glaucomatous
optic nerve head and the retina of different animal models
of glaucoma, greater GFAP expression has been detected
[19, 67, 68]. In a mouse model of laser-induced ocular
hypertension (OHT), both contralateral and OHT eyes have
intensified GFAP immunoreactivity with respect to the naive
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FIGURE 2: Schematic drawing illustrating the functions of the retinal macroglia. Macroglial cells perform various essential roles for the normal
physiology of the retina, maintaining a close and permanent relationship with the neurons. The scheme illustrates the links between the retinal

macroglia, the neurons, and the blood-retinal barrier (from [154]).

animals; the retinal macroglia of contralateral normotensive
eyes exhibited morphological signs of reactivity that differed
from naive and OHT eyes. Astrocytes in contralateral eyes
were more robust and had an increase in GFAP-labeled
retinal area in comparison to naive ones, although astrocytes
in OHT eyes showed fewer secondary processes and a
reduction in the GFAP-labeled retinal area with respect to
contralateral and naive eyes [19]. In addition, it has been
noted that astrocytes proliferated at the optic nerve head and
in the lateral geniculate nucleus and visual cortex in human
glaucoma and animal glaucoma models [69, 70], postulating
that astrocytosis is key in the remodeling of the optic nerve
head during glaucomatous damage [71].

In the processes of a productive gliotic response, astro-
cytes undergo complex remodeling of their biochemistry and
function, which generally leads to neuroprotection (Figure 3)
[59]. A growing group of studies evidence a beneficial role
for activated astrocytes in neuroinflammation associated
with neurodegenerative diseases [72]. Activated astrocytes
stimulate higher metabolic activity, increase the expression of
cytoprotective factors, and restore neurotransmitter balance
and ion and water concentration, among other benefits
[20, 45-47, 63]. This reactive gliosis has been associated with
the upregulation of enzymatic and nonenzymatic antioxidant
defenses that may fortify the ability of the astrocytes to protect
neurons from free radicals (Figure 3) [41]. In an experimental
model of glaucoma in rats the retinal area occupied by
astrocytes in eyes diminished with ocular hypertension; this

trend is stronger in eyes with higher levels of intraocular
pressure [20]. The authors postulate that, in RGC, death
would start when astrocytes fell below a specific level, and
thus a minimal amount of retina covered by astrocytes could
be necessary to protect the RGC [20].

Astrocytes provide neurotrophic factors for RGC sup-
port; this is particularly important in glaucoma in which
blockage in the axonal transport inherent to this pathology
can impair neurotrophin delivery from the visual pathway,
such as the superior colliculus. The loss of astrocytes in
the lamina cribrosa during glaucomatous neurodegeneration
could compromise RGC survival [73].

During the CNS injury, astrocytes become reactive and
migrate to the damage site where they isolate the injured
area and remove pathogens, dying cells, and cellular debris
and then remodel the nerve tissue on resolving the pathology
(Figure 3) [61]. In AMD, hypertrophic and reactive astrocytes
have been observed to phagocytize the residues of ganglion
cells that have died through necrosis or apoptosis [48]. Astro-
cytes in glaucoma have shown an upregulated expression
of the phagocytosis-related gen Mac-2, in the laminar and
orbital region of the optic nerve, suggesting that astrocytes
could participate in the clearance of the RCG axonal debris
[74].

As noted above, reactive gliosis includes the onset of
signaling mechanisms that are primarily protective for retinal
neurons but may proceed uncontrolled to augment neu-
ronal damage [40, 75]. Chronic gliosis is typically injurious,
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FIGURE 3: Diagram summarizing the functions of activated macroglia. Under conditions of tissue stress that might represent a risk to neuronal
survival, glial cells undergo reactive gliosis. The aim of acute gliosis is to protect the nervous tissue by reestablishing the extracellular medium
and by supplementing neurons with factors that promote their survival (in green). An uncontrolled response (in blue), as occurs in most
neurodegenerative diseases, will harm the tissue [BRB: blood-retinal barrier; ET: endothelin; GDNF: glial cell derived neurotrophic factor;
GLAST: glutamate aspartate transporter; MHC: major histocompatibility complex; NO: nitric oxide; RGC: retinal ganglion cell; VEGEF:

vascular endothelium growth factor].

directly and indirectly damaging neurons and the vasculature
while also inhibiting tissue repair [76]. During chronic
diseases such as angiogenic vascular conditions in the eye
(diabetic retinopathy, retinal-vein occlusion, retinopathy of
prematurity, and AMD), reactive astroglia through vascular
endothelial growth factor (VEGF) production exacerbate
disease progression, increasing vascular permeability and
even neovascularization [4]. Also, reactive astroglia produce
molecules that inhibit axon regeneration and repair, trig-
gering neurocytotoxicity or secondary damage in nearby
neurons and glial cells [59, 77, 78]. The absence of GFAP and
vimentin reportedly attenuates retinal-detachment-induced
reactive gliosis and subsequently limits photoreceptor degen-
eration [79]. Moreover, the inhibition of reactive gliosis
prevents apoptotic death of retinal neurons and provides
substantial neuroprotection [80].

Although the microglia cells are the main mediators in the
inflammatory damage of the CNS during neurodegeneration,
astrocytes behave similarly to microglia and together can
act synergistically, promoting chronic neuroinflammation or
fostering neuroprotection [72]. Most inflammatory media-
tors produced by astrocytes may act on microglial cells, thus
facilitating chronic microglial activation and thereby favor-
ing neuronal death [81]. Similarly, inflammatory mediators

produced by microglia may intensify astrocyte activation
[82, 83]. TNF-a promotes the synthesis and release of
glutamate in microglia and glutamate uptake in astrocytes,
both mechanisms augmenting neuronal loss [72, 84]. It has
been shown that high extracellular levels of TNF-a exacer-
bate the inflammation and neurodegeneration mediated by
astrocytes. However, low levels of TNF-« secreted mainly by
astrocytes autocrinely stimulate the secretion of neurotrophic
factors, supporting neuronal survival [85]. In an experimen-
tal model of glaucoma in rats, Lee et al. (2014) suggested that
TNF-« released by activated microglia stimulated macroglial
cells to produce neuroprotective factors, including nerve-
growth factor, in response to a mid-hypertensive glaucoma-
tous injury [86].

In both experimental and human glaucoma, in addition
to TNF-«, astrocytes can produce and/or respond to other
neurotoxic molecules such as NO, IL-6, and endothelins
(ETs) which could directly damage RCG axons (Figure 3)
[87-89]. ETs are potent vasoconstrictive molecules that are
produced by astrocytes and act in a paracrine loop on ET
receptors to trigger astrocyte activation and proliferation and
to impede ocular blood circulation [90]. The expression of
ET-1 receptors (ETA and ETB) has been described both in
human and in experimental glaucoma [91]. In addition, the
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FIGURE 4: Retinal macroglia in the mouse retina. Retinal whole-mount. Double immunostaining for GFAP (red) and MHC-II (green) after 15
days of laser-induced ocular hypertension. (A)-(C): naive eyes; (D)-(F): contralateral eyes; (G)-(I): OHT eyes. In contralateral eyes, MHC-II
immunoreaction of astrocytes (arrow) and Miiller cells (arrowhead) in (E) was increased with respect to naive eyes (arrow) in (B). In OHT
eyes, MHC-II immunoreaction of Miiller cells (arrowhead) in (H) was notably upregulated in comparison with contralateral (E). In OHT eyes
the Miiller cells were GFAP* throughout the retina and appeared as punctate structures between the astrocytes and their radiating processes
(G). Fluorescence microscopy and image acquisition using the ApoTome. GFAP: glial fibrillary acidic protein; MHC: major histocompatibility
complex; OHT: ocular hypertension (from Figure 10 of [19] with permission).

overexpression of ET-1in the optic nerve head correlated with
neural loss in an experimental model of glaucoma [92, 93].
Reactive astrocytes can secrete inflammatory cytokines,
such as IL-1f3, IL-6, and IL-8 (Figure 3) [94]. In diabetic
retinopathy, hyperglycemia boosts astrocyte cytokine expres-
sion, activating NF-«B and intensifying oxidative stress [95].
After experimental retinal detachment, astrocytes become a
major source of IL-1 production in the neural retina [96].

Apart from inflammatory cytokines reactive astrocytes
can secrete chemokines, including CCL2, CCL5, CCL20,
CXCL10, CXCLI12, CXCL1, CXCL2, and CX3CLI (Figure 3)
[97]. These chemokines are involved in the recruitment of
microglia, monocytes/macrophages, T-cells, and dendritic
cells at the inflamed sites of the CNS [72]. Furthermore, the
inflammatory mediators secreted by reactive astrocytes could
affect the properties of the blood-brain barrier (BBB), thereby
facilitating the infiltration of peripheral immune cells within
the brain parenchyma during neurodegenerative diseases [98,

99]. Macroglial dysfunction in rats results in BRB breakdown
of retinal vascular diseases through reduced expression of the
tight-junction protein claudin-5 [100].

Notably, when activated, astrocytes express class II MHC
and costimulatory molecules on the cell surface, thus stim-
ulating T-cell activation in the CNS (Figure 3) [101]. In
an experimental mice model of glaucoma, upregulation of
MHC-II expression was found in retinal macroglia in both
the hypertensive eye and the contralateral normotensive eye
(Figure 4) [19].

Astrocytes and Miiller cells can also produce complement
proteins (Figure 3). In glaucomatous eyes the presence of
Clq in astrocytes and Miiller cells lining the inner limiting
membrane could be an adaptive mechanism for removing
apoptotic RGC [102].

3.2. Miiller Cell in Retinal Diseases. Considering their strate-
gic location, Miiller cells are in position to influence and
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be influenced by neuronal activity throughout the tissue
[15]. Therefore, they are usually one of the first glial cells
to detect retinal damage because of their radial distribution,
providing a rapid response to any alteration of the retinal
microenvironment [75, 103].

Miiller cells are more resistant than retinal neurons to var-
ious forms of injury such as ischemia, anoxia, hypoglycemia,
and elevation in the hydrostatic pressure. This resistance can
be attributed to their peculiar energy metabolism and the
presence of an energy reserve in the form of glycogen, their
high antioxidant content, their capacity to proliferate and
regenerate, and the presence of glutamate transporters and
glutamine synthetase that rapidly detoxify excess glutamate,
among other compounds [75, 103].

In Miiller cells, gliosis is characterized by both nonspe-
cific responses, that is, stereotypic alterations independent of
the causal stimulus: the increased expression of GFAP and
the activation of the extracellular signal-regulated kinases
(ERKs) [18]. The upregulation of GFAP is therefore used as
a common marker for reactive Miiller cells and is so sensitive
that it can be used as an indicator of retinal stress, retinal
injury, and Miiller cell activation [104]. This upregulation of
intermediate filaments (GFAP, vimentin, and nestin) seems
to be a crucial step for the gliotic response involved in
glial scar formation, monocyte infiltration, neurite growth,
neovascularization, and cell integration [18, 79].

Practically all retinal diseases are associated with the
gliosis of Miiller cells. In experimental diabetic retinopathy,
glial reactivity is manifested by increased GFAP immunore-
activity and content in both Miiller cells and astrocytes [105].
Such increment of GFAP has also been reported in the
retinas of patients with nonproliferative diabetic retinopathy
[106].

Miiller cells are among the first to respond following
intraocular pressure increase and it is thought that reactive
Miiller cells in glaucoma could increase the susceptibility of
RGCs to stress signals and contribute to disease progression
[75]. In human glaucomatous eyes and in experimental
and hereditary animal models of glaucoma, more intense
expression of GFAP in Miiller cells has been detected in the
retina [19, 67, 107-109]. In experimental glaucoma, GFAP
upregulation in Miiller cells is not restricted to the hyperten-
sive eye but is also detected in the normotensive contralateral
eye [19, 110, 111]. In AMD, regions of GFAP upregulation
in Miller cells can be involved in drusen formation [112].
Such upregulation can occur early in the course of retinal
detachment [113] or in response to degeneration of the retina
in a rat model of retinitis pigmentosa [114].

Miiller cell gliosis may include the dedifferentiation of
the cells into pluripotent retinal progenitor/stem cells. Such
dedifferentiation represents a precondition for regenerative
processes in the injured retina and for glial-cell prolifer-
ation and migration [115]. It has been reported that after
retinal detachment Miiller cells migrate to the outer retina
and undergo mitosis. Some of these displaced Miiller cells
stop to express Miiller cell marker proteins, a feature that
has been interpreted as dedifferentiation [116]. As a most
important step of this dedifferentiation, the cells reduce the

K" -conductance of their membrane, particularly the Kir4.1-
mediated current, which is generally associated with a mis-
location of the Kir4.1 channels in the Miiller cell membrane
[117]. This mislocation of Kir4.1 protein has been associated
with a greater vulnerability of RGCs to ischemic stress [118],
which will inflict a severe loss of the functions involved
in normal neuron-glia interaction [18]. The alteration of
Kir4.1 channels has been described in retinal tissues after
retinal blue-light injury, after retinal ischemia, in ocular
inflammation, and in diabetic rats [119-122].

In the retina, proliferative gliosis occurs by reentry into
the cell cycle of Muller cells, accompanied by a dramatic
alteration in the expression of trophic factor channels and
transporters as well as the migration of these cells (Figure 5)
[75, 123]. Miiller cells react to retinal injury by establishing a
glial scar that fills retinal breaks or holes, replacing degener-
ated neurons and photoreceptors [124]. Glial scars involve the
expression of inhibitory molecules on the surface of reactive
glial cells, which additionally inhibit regular tissue repair and
neuroregeneration, harming the function and structure of
retinal neurons [18, 75, 125]. A form of glial scar involves
the epiretinal membranes (frequently detected in retinal
detachment), AMD, and proliferative diabetic retinopathy
[126]. In addition, in AMD, glial membranes constituted by
astrocytes and Miiller cells have been reported to be located
between the vitreous humor and internal limiting membrane
of the retina (Figure 5) [48].

Gliosis of Miiller cells has both cytoprotective and cyto-
toxic effects on retinal neurons [127]. After retinal insults,
less severe changes in Miiller cells have been described as
“conservative” or nonproliferative gliosis. In particular, early
after injury, Miiller cell gliosis is neuroprotective, due to
the release of neurotrophic factors and antioxidants which
favor neuronal survival and limit the extent of tissue damage
[42, 75,103, 128-130]. After axotomy, excitotoxicity, or exper-
imental glaucoma, Miiller cells increase the expression of
leukemia inhibitory factor and ciliary neurotrophic factor to
promote RCG survival [129, 131-133]. Both in glaucomatous
donor eyes in humans and in ocular hypertension in rats, an
increased concentration of hypoxia-inducible factor- (HIF-)
la has been detected in Muller cells which induces the
expression of neuroprotective factors such as VEGF or EPO
[134, 135]. In diabetic retinopathy, Miller glia activation may
bolster neuroprotection by releasing angiogenic and neu-
rotrophic factors (Figure 3) in order to protect the retina from
hyperglycemia-induced stress [4] and through a mechanism
involving ERK1/2 activation [136].

However, the most severe insults provoke yet another
level of Miiller cell response described as “massive” or pro-
liferative, in which gliosis becomes detrimental to the retinal
tissue and increases neuronal death [18]. A possible trigger
for the transition from “conservative” to “massive” gliosis is
the breakdown of the BRB, augmenting the retinal and vitreal
contents of growth factors, cytokines, and inflammatory
factors, as well as an infiltration of blood-derived immune
cells (Figure 3) [137]. After laser lesions in rat retina, which
cause a breakdown of the BRB, the extravasated plasma
protein, immunoglobulin G, may further trigger the reactive
gliosis of Miiller cells [138].
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AMD (81 yo)

FIGURE 5: Miiller cell gliosis. Schematic drawing illustrating Miiller cell proliferative gliosis (a). Transmission electron microscopy of a retina
from an 81-year-old patient with age-related macular degeneration (b). Immunoperoxidase anti-GFAP. Retinal whole-mount from a 90-year-
old patient with age-related macular degeneration (c). (a) Miiller cells reenter into the cell cycle and migrate to the subretinal space and
the vitreous humor where they contribute to forming the subretinal membranes and the epiretinal membranes, respectively. (b) Epiretinal
astroglial membrane formed by astrocyte and Miiller cells located in the vitreous humor. The Miiller cells adhere to the vitreous face of
the inner limiting membrane. The inset shows the astrocyte microvilli. (c) Glial membrane at the vitreoretinal interphase showing strongly
GFAP" Miiller cells (arrow). A: astrocyte; BM: basement membrane; M: Miiller cells; v: vitreous (schematic drawing modified from [18]; (b)

and (c) from Figures 8F and 12A of [47] with permission).

Furthermore hypoxia and hyperglycemia induce the
overexpression of angiogenic cytokines and release of matrix
metalloproteinases by Miiller cells. These metalloproteinases
impair the tight junctions via proteolytic degradation of
occludin and claudin on retinal endothelial cells and pigment
epithelial cells [139].

On the other hand, the excessive and/or prolonged
expression of potential protective factors might lead to
detrimental neuronal effects. An example is the expression
of VEGE which is highly induced in Miiller cells following
injury and which has the distinct potential of protecting
retinal neurons against apoptosis [140, 141]. However, the
excessive and prolonged expression of VEGF by Miiller cell
as occurs in diabetic retinopathy can lead to retinal inflam-
mation, neovascularization, vascular leakage, and vascular
lesion (Figure 3) [142].

Quite comparable observations have been reported con-
cerning the release of NO by reactive Miiller glia [75]. High
concentrations of nitric oxide can damage neurons [143-
145], while lower levels may have beneficial effects, such as
the protection of neurons against glutamate excitotoxicity
and the decreased retinal ischemia by its vasodilator effect
[146]. With respect to glutamate, it has been demonstrated
that, in glaucoma, Miiller cells lose their capacity to regu-
late glutamate homeostasis, owing to the reduction in the
biosynthesis of glutamate transporter (Figure 3) (GLAST).
As a consequence, glutamate accumulates in the intercellular
space, provoking neuronal death [147-149].

Another important feature in gliotic Miiller cells is their
intense crosstalk with cells from the immune system [126].
Molecules from inflammatory cells, platelets, and plasma
may activate Miiller cells, and these cells may express a
wide variety of inflammation- and immune-response-related
factors and enzymes such as TNF-«, IL, interferon, and
ICAM-1 (Figure 3) [75]. Miiller cells can mediate direct
cytotoxic effects via an intensified expression of TNF-« or
monocyte chemoattractant protein- (MCP-) 1 [79, 150-152].
Notably, microglial activation induces Miiller responses such
as an increase in Miiller cell-microglia adhesive cell contacts
that may guide the intraretinal mobilization of migratory
microglia in a radial direction using Miiller cell processes as
an adhesive scaffold [153].

Under pathological conditions, for example, oxidative
stress, inflammatory mediators, retinal laser photocoagula-
tion, or increase in the intraocular pressure, Miiller cells show
upregulation of MHC class I molecules by acting as antigen-
presenting cells (Figures 3 and 4) [19, 75]. Moreover, Miiller
cells are also able to produce complement proteins (Figure 3)
(102].

4. Conclusions

In summary, retinal macroglial cells are fundamental for
homeostasis of the retinal neurons. These cells form a
defensive system of the retina through its complex program
of activation termed “the reactive gliosis.” This gliosis can be
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neuroprotective or neurodegenerative and in the latter case
may impair the course of retinal pathologies.
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