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Epigenetic marks change during fetal development, adult life, and aging. Some changes play an important role in the establishment
and regulation of gene programs, but others seem to occur without any apparent physiological role. An important future challenge
in the field of epigenetics will be to describe how the environment affects both of these types of epigenetic change and to learn
if interaction between them can determine healthy and disease phenotypes during lifetime. Here we discuss how chemical and
physical environmental stressors, diet, life habits, and pharmacological treatments can affect the epigenome during lifetime and the
possible impact of these epigenetic changes on pathophysiological processes.

1. Introduction

Themeaning of the term epigenetics has evolved considerably
over time. Conrad Hal Waddington coined the term in the
1940s to describe the “causal mechanisms” that give rise to
phenotypes from genotypes in the developmental and differ-
entiation processes [1]. Nowadays, the term is used to explain
stable heritable chemical modifications to DNA and histones
that affect gene expression without altering nucleotide
sequence [2].This new concept has allowed the consideration
of a new perspective from which the complexity of many
cellular processes such as genetic regulation, cellular develop-
ment and differentiation, genomic imprinting, embryology,
aging and cancer, and other diseases is understood. What
is more, epigenetic alterations may occur due to chance or
under environmental influence [3]. In the latter case, epige-
netics moderates the genetic expression of a trait depending
on the prevailing environmental conditions, a phenomenon
which could confer an organism with the necessary plasticity
to adapt to its environment and the capacity to induce

alternative phenotypes from the same genotype through the
regulation of gene expression patterns [4].

Environmental epigenetics emerges from the idea that
the interaction between the environment and the epigenome
may alter the phenotype and might be related to disease sus-
ceptibility. And most importantly, these alterations could be
transmitted down through generations [5, 6].The epigenome
is at risk of changes and alterations over time, and it will be
dependent on internal, external, and/or stochastic factors [7].
In this review we will describe how external factors affect the
epigenome and the consequences for health and disease dur-
ing lifetime. We will discuss recent works on how epigenetic
mechanisms, such as DNA methylation, histone posttrans-
lational modifications, and noncoding RNAs, particularly
microRNAs, are affected by environmental aspects, such
as different chemical and physical environmental stressors,
diet, unhealthy habits, and pharmacological treatments. The
principal epigenetic mechanisms will be described and we
will also discuss how epigenetic alterations caused by external
factors could mediate the appearance of disease phenotypes.
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Figure 1: Summary of methods for DNAmethylation and histonemodification analysis. Different approaches, depending on whether global,
locus-specific, or genome-wide analyses, are performed. HPCE: high-performance capillary electrophoresis; HPLC: high-performance liquid
chromatography; MS: mass spectrometry; BP: bisulfite pyrosequencing; MSP: methylation-specific PCR; BS: bisulfite sequencing; MeDIP-
seq: methylated DNA immunoprecipitation sequencing; RRBS: reduced representation bisulfite sequencing; WGBS: whole genome bisulfite
sequencing; RP-HPLC: reversed-phase high-performance liquid chromatography (RP-HPLC); ChIP: chromatin immunoprecipitation; ISH-
PLA: in situ hybridization and proximity ligation assay.

2. Epigenetic Mechanisms

Chromatin is a highly regulated complex of macromolecules
in the nucleus formed by DNA, histone proteins, and RNA.
The nucleosome is the basic repetitive unit of chromatin and
consists of 147 base pairs around an octamer of the four core
histones (H2A, H2B, H3, and H4) [8]. Differences in the
degree of compaction determine its structure and complexity
which in turn facilitate its differentiation into two functional
states: euchromatin or heterochromatin, which are the tran-
scriptionally active and inactive forms, respectively [9]. Epi-
genetic mechanisms such as DNA methylation and histone
modifications participate in the remodeling of chromatin.
These changes in chromatin structure are able to modify
the accessibility of genes to transcriptional machinery, regu-
late gene expression during development and differentiation
stages, and determine which genes are transcribed [10]. Aber-
rant profiles of these epigenetic processes may result in mis-
matches in important signaling pathways that alter various
cell functions and may lead to the development of different
diseases such as cancer [11].

DNA methylation is the best-known epigenetic mecha-
nism in mammals, not only because it was the first discov-
ered, but because it is also easier tomeasure [12, 13] (Figure 1).
It is in fact one of the principal epigenetic events in the human
genome and an important regulator of transcriptional activ-
ity, genomic imprinting, development, and tumorigenesis
[14–16]. Methylation consists in the addition of a methyl
group at the carbon 5 position of the cytosine ring to obtain
5-methylcytosine. It is a postreplication modification that
appears nonuniformly in the human genome, which contains
unmethylated areas intercalated by methylated regions [17,
18]. Methylation occurs predominantly in cytosines of CpG
dinucleotides. In vertebrates, around 70–80% of all CpGs

are methylated, specifically in repressive heterochromatin
regions and in repetitive sequences, such as retrotransposable
elements [19, 20].These CpGs are asymmetrically distributed
into CpG-poor regions and CpG-dense regions called “CpG
islands” which are located in the promoter regions in approx-
imately 60% of genes and are usually nonmethylated [21, 22].

In general, CpG island methylation is related to gene
silencing. DNA methylation promotes the binding of methyl
binding proteins (MBPs), which mediate the recruitment of
transcriptional repressors [23]. When this epigenetic change
occurs in CpG islands located in promoter regions, the
silencing can affect important cellular pathways involved in
the development of multiple diseases such as cancer [24].
However, it is known that methylation is more dynamic in
CpG shores, the genomic regions that are delimited as the
2Kb regions flanking CpG islands, and in CpG shelf regions,
that is, those beyond theCpG shores, 2–4Kb beyond theCpG
islands. Silencing byDNAmethylation can also occur in these
adjacent regions, where differences in methylation patterns
have been found which are related to tissue specific differen-
tiation and cancer [25–28]. Methylation can be catalyzed by
two important groups of DNA methyltransferases (DNMTs)
[29]: in the first group is DNMT1, which is essential in cell
proliferation and ensures the maintenance of DNA-methyla-
tion patterns during DNA replication through the methy-
lation of hemimethylated CpGs [30]. The second group
includes DNMT3a and DNMT3b, which are required for de
novo methylation and for establishing methylation patterns
in early embryos and during development [31]. Their activity
is also known to be necessary for the maintenance of
methylation patterns in somatic cells [32].

DNA methylation is crucial for physiological develop-
ment, playing a fundamental role in gene expression pro-
grams during cell fate differentiation [33, 34]. Several studies
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have identified global DNA hypomethylation related to aging
as well as tumoral processes [35–37]. This global decline of
methylation levels has also been described as being associated
with gene-specific hypermethylation [38, 39]. An illustration
of these similar methylation patterns observed in both cancer
and aging processes can be seen in relation to the promoter
region of the estrogen receptor gene (ER), which is specif-
ically hypermethylated in colon cancer and old individuals
compared to normal patients and young people, respectively
[39]. DNAmethylation is also related to genomic imprinting,
X chromosome inactivation mechanisms in females, and the
silencing of foreign nucleic acids [40].

Histone modifications are another epigenetic mechanism
that has been well studied and linked to development proc-
esses and aging [41, 42]. Chemical changes in histone protein
residues are known as posttranslational modifications
(PTMs). These variations usually affect protein functions or
gene expression, ultimately impacting on biological processes
[43]. PTMs involve reversible modifications commonly
located in theN-terminal tails of histones, such as acetylation,
methylation, phosphorylation, and ubiquitylation [44, 45].
These marks taken in combination form a “histone code,”
which establishes a regulatory mechanism of chromatin
dynamics which affects affinity in protein interactions,
protein-DNA binding, and gene transcription [46, 47]. They
also play an important role in DNA repair [48], DNA replica-
tion, and chromatin compaction [43]. These PTMs are “writ-
ten” by different families of enzymes; for example, histone-
acetyltransferases (HATs) and deacetylases (HDACs) are
involved in histone acetylation, while histone methyltrans-
ferases (HMTs) catalyze the transference of up to threemethyl
groups onto the lysine and arginine amino acids on histones,
predominantlyH3 andH4 [49].Themost common PTMs are
in fact the acetylation and methylation of lysines on histone
tails [46, 50]. Acetylation of lysine by its corresponding
enzymes is linked to transcription activity [51]. However,
histone methylation can be related to either gene activation
or repression depending on which residues are affected;
for example, H3K4me3 and H3K36me3 are active markers
while H3K27me3 and H3K9me3 are both related to gene
repression and heterochromatin [43, 46, 50, 52, 53].

Apart from the groups of enzymes above, there also exist
proteins with specific domains that are able to identify these
combinatorial PTMs. For example, proteins with bromodo-
mains or chromodomains recognize and bind to acetylated
lysines and methylated lysines, respectively [54, 55]. These
effector proteins read and interpret histone marks [46, 56]
and are involved in the regulation of transcriptional response.
Greater knowledge of these protein functions has increased
interest in their study as a promising new class of drug targets
for a wide range of human diseases and for therapeutic devel-
opment. For example, the development of BET (bromod-
omain and extraterminal) inhibitors selectively modulates
the expression of genes involved in cell growth and invasion
and antiapoptotic activity [57–59] associated with tumoral
progression.

In some cases these epigeneticmodifications are the result
of environmental factors andmay have important roles in the
development of normal and pathological processes [60, 61].

In cancer disease, studies have identified PTMs associated
with carcinogenesis. For example, loss of acetylation at Lys16
and trimethylation at Lys20 of histone H4 were found to be
related to neoplastic processes [62]. Alterations in histone-
modifying enzymes have been identified as the main cause
of these changes in many cases [63–66] and as a result they
have started to gain importance as a therapeutic target in
recent years [67–69]. Histone PTMs are implicated not only
in cancer, but also in a wide range of pathologies related
to chronic diseases, such as diabetes and obesity [70], renal
disease [71], and neuropathologies [72].

Although ncRNAs are not as well studied as DNAmethy-
lation or histone PTMs, they are attracting attention because
of their important role for normal cell development and func-
tion, as well as in relation to disease. ncRNAs can be divided
into short, intermediate, and heterogeneous group of long
RNAs [73, 74]. ncRNAs such as micro (miRNAs) or long
antisense noncoding RNAs (lncRNAs) have recently been
acknowledged to play a role in epigenetics, and furthermore,
they may be affected by certain environmental factors [75,
76]. An miRNA is a single-stranded RNA molecule, 21-22
nucleotides long, which has a completely different func-
tion compared to the most frequent single stranded RNA
molecules such as messenger RNA (mRNA). In addition,
miRNAs are not translated into protein and they are in part
complementary to various mRNA molecules, to which they
are able to bind to facilitate their elimination and subse-
quent gene expression [73]. lncRNAs are considered another
epigenetic regulation mechanism of protein-coding gene
expression, and they recruit histones and chromatin related
proteins to specific sites [77, 78]. Loss of their activity may
interfere with the transcription of various genes [79] and the
aberrant functioning of lncRNA causes the deregulation of
genes that are involved in a number of diseases [80]. When
silencing affects tumor suppressor genes, it can contribute to
cancer progress. One example is ANRIL, an lncRNA involved
in the silencing of different tumor suppressor genes, such as
NK4n/ARF/INK4a, p16/CDKN2A, and p15/CDKN2B, which
are related to cell cycle and senescence [81, 82].

The epigenetic mechanisms described above are con-
nected and integrated to regulate gene expression and cell fate
through a complex scenario whereby the functions that they
regulate interact [83]. For instance, the expression ofmiRNAs
is usually controlled by DNA methylation, and epigenetic
alterations can lead to disease phenotypes [84, 85].

3. Causes of Epigenetic Changes during
Development, Adult Life and Aging

Epigenetic marks constantly change throughout life. Some of
these changes are programed and play important roles in the
different stages of development, but themechanisms involved
are still not fully understood [86–88]. Intrinsic, or genetic,
factors are of great importance in regulating certain epige-
netic changes which occur over time. In support of this, the
epigenomes ofmonozygotic twins are known to bemore sim-
ilar than those of dizygotic twins [89]. One important exam-
ple of an intrinsic epigenetic mechanism which is programed
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during life is female puberty, which is initiated by the secre-
tion of gonadotrophin-releasing hormone (GnRH) and the
activation of the hypothalamic-pituitary-gonadal (HPG) axis
[90]. Currently a few studies have related epigenetic mech-
anisms to female puberty regulation, supporting the notion
that the activation of neuroendocrine pubertal components
is mediated, at least in part, by epigenetic mechanisms [90].

Besides the intrinsic epigenetic changes, there are some
epigenetic alterations that take place apparently by chance,
without evident biological function [7, 91]. The distinc-
tion between stochastic changes and environment-mediated
changes is sometimes very difficult to establish as stochastic
changes can potentially be modulated by both intrinsic
and extrinsic (environmental) factors [7, 87]. Although this
influence of environmental factors has been widely reported
[92], the manner of the interplay between the environment
and the epigenome remains largely unknown. Apart from
intrinsic and stochastic factors that may activate epigenetic
mechanisms, the main factors modulating these mechanisms
are extrinsic factors like environmental situation. Many stud-
ies have provided support for the theory that environmental
pressure during the developmental stages of early life (both
prenatal and in childhood), such as nutritional status or expo-
sure to toxic compounds, can affect epigenetic developmental
programing. This has given rise to the term “developmental
origin of health and disease” (DOHaD), which proposes
a broad range of environmental phenomena in the early
stages of life that may increase disease susceptibility during
adult life [93]. Consequently, when studying the influence
of the environment, it is necessary to take into account
two dissimilar scenarios where the environment has an
impact: embryonic development andduring lifetime.Thefirst
scenario is the most susceptible to any external influence due
to the high number of cell division events and the critical
epigenetic changes that take place during cell differentiation
[94]. Furthermore, the effect of any epigenetic change in
an undifferentiated cell can be transmitted and amplified to
future cell populations.

During embryonic development, environmental condi-
tions can be modulated by two different principal factors:
the lifestyle of the mother, which necessarily implies embryo
exposures, and the anatomical/phenotypic circumstances of
the mother, such as size of the uterus and placenta. It is a
period where nutrient supply and chemical exposure have a
critical influence on the epigenome [88] and any resulting
epigenetic dysregulation could lead to disease development
during adult life. As well as mother influence, studies in rats
andmice have associated paternal obesity with a reduction in
the implantation rate of the blastocyst [95–97].

In relation to the adult epigenome andhow it is affected by
the environment, despite an ample literature in the field, the
molecularmechanisms implicated are still only poorly under-
stood [94]. What is well known, though, is that the influence
of external factors on the genome depends on the tissue type
involved. For instance, it is easy to see thatUV radiation could
have a harmful effect on the skin, but rather less obvious to
see that muscle can also be affected. In addition, when an
alteration affects adult stem cells the consequences are likely
to be more serious than when differentiated cells are involved

[88]. Andmost importantly, if the germline is affected, repro-
ductive disorders might result and even the possibility of
transgenerational inheritance of the epigenetic alterations [5].

For the purposes of this review we will only consider
those external factorswhich can affect the epigenome.Wewill
discuss how chemical and physical environmental stressors,
diet, life habits, and pharmacological treatments can alter
the epigenome during lifetime and how these alterations can
determine healthy and disease phenotypes.

3.1. Chemical and Physical Environmental Stressors. Epige-
netic marks can be affected by exposure to metals, air
pollution, benzene, organic pollutants, and electromagnetic
radiation [98]. Chemical and xenobiotic compounds in water
or the atmosphere are other potential environmental stressors
capable of changing epigenetic status. During embryonic
development, the effect of exposure to environmental pol-
lutants seems to have an even more crucial effect on the
epigenome and increases the risk of developing disease in the
F
1
, F
2
, and F

3
generations [99]. In this sectionwewill describe

several studies showing how several stressors such as metals
and air pollutants can affect the epigenome, which in turn is
related to the appearance of certain diseases.

It is known that environmental exposure to a variety of
metals, such as arsenic, mercury, nickel, lead, and cadmium,
has several impacts on human healthy. Many recent studies
suggest that alterations in epigenetic mechanisms could play
a key role in the molecular mechanisms involved in the
metal exposure-related diseases. Arsenic (As) is considered
themost widespreadmetal in the environment. It is present in
rocks, soil, water, insecticides, and airborne particles, among
other things [100, 101]. Chronic arsenic exposure is related
to many health problems such as skin lesions, neuropathy,
depression, cardiovascular diseases, and various kinds of
cancers [102–106]. Experimental analyses have found DNA
methylation changes after arsenic exposure, both global [107,
108] and gene-specific [109]. In addition, arsenic exposure
is capable of inducing H3K4me3 and H3k9ac enrichment
[110–113] and H3K27me3 decrease due to alterations in
histone-modifying enzymes [113]. During human develop-
ment, arsenic exposure has also been associated with changes
in DNA methylation patterns of cord bloods during the
prenatal period [114, 115] and with gene-specific DNAmethy-
lation changes in white blood cells [116] and in the placenta
[117]. In adults, arsenic concentrations have been associated
with LINE-1 DNA hypomethylation in different population-
based studies [118, 119]. Furthermore, it has been found that it
is able to induce DNAmethylation changes in a gene-specific
way. For instance, high arsenic exposure was found to be
related to DNA hypermethylation of the tumor suppressor
genes p16 [120] and RASSF1A [121]. In Bangladeshi adults,
a link was found between arsenic exposure and global PTM
changes, positively correlated with H3K9me2 and inversely
with H3K9ac [122]. The relationship between arsenic expo-
sure and epigenetic alterations remains unclear, but an in vitro
study has pointed to chronic arsenic exposure inducing loss
of DNA methylation through SAM depletion [123].

Cadmium (Cd) is a chemical elementwhich iswidespread
in the environment, in byproducts of industrial processes,
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contaminated water, or soil, and it also has many common
industrial uses, as a component in battery production, for
example. Furthermore, cadmium exposure is mainly the
result of diet, principally through cereals and vegetables,
and also smoking. It causes many health problems, such
as cancer, increased risk of bone fracture, kidney damage,
and probably impaired early-life development [124, 125].
Epigenetic alterations could be implicated in cadmium
toxicity mechanisms during embryonic development and
lifetime. For instance, a set of genes related to transcriptional
regulation control and apoptosis showed DNA methylation
changes associated with maternal cadmium concentrations
[126]. In adults, urinary cadmium concentrations of women
were inversely associated with LINE-1 methylation and also
negatively associated with DNMT3B expression [127].

Lead (Pb) is a poisonous heavy metal used in building
construction, batteries, and consumer products, among other
uses [128]. Exposure to lead is a great risk for human health,
affecting a variety of fundamental molecular processes [129].
For instance, maternal exposure was shown to result in
neurodevelopmental deficit [130] and reduced intelligence of
the child [131], and in vitro Pb exposure of hESCs induced
changes in the methylation status of genes involved in
neurogenetic signaling pathways [132]. In humans, LINE-1
and Alu repeat DNA hypomethylation were correlated with
Pb levels in umbilical cord blood [133, 134], and it was shown
that early-life Pb exposure caused gender-specific changes in
DNA methylation in dried blood spots [135]. In adults, male
Pb levels were related to LINE-1 DNA hypomethylation [134,
136]. Another study, in women, has shownCOL1A2 promoter
DNA hypomethylation with high exposure to lead [137].

Mercury (Hg) is a reactive metal whose physiological
activity is unknown. Products containing mercury include
batteries, fluorescent bulbs, medical products, dental amal-
gams, thermometers, and thermostats. However, humans
are mainly exposed to mercury through fish and shellfish,
which tend to concentrate mercury in their bodies. Some
mercury-related health outcomes are immunotoxic effects,
cardiovascular disease, cancer, and kidney disease [138–140].
In vivo studies in rats have revealed that prenatal exposure
to mercury produces a reduction in neural cell proliferation,
which is associated with DNA hypomethylation [141]. In
humans, a recent study showed that in utero exposure to
mercury, even at low levels, produced changes in DNA
methylation [114]. Furthermore, studies have hypothesized
that prenatal mercury exposure can change the proportion
of immune cells in cord blood through DNA methylation
changes [114, 142]. In adult women, there is an increase in
the DNA methylation of the promoter region of the tumor
suppressor gene GSTM1 following high levels of mercury
exposure [137]. Another study in male dental professionals
found a correlation between SEPP1 DNA hypomethylation
and hair mercury levels [143].

Nickel (Ni) is a metal that is widely occurring nowadays.
It is used in jewelry, coins, batteries, and medical devices,
among other things. The International Agency for Research
on Cancer (IARC) has determined that some nickel com-
pounds are carcinogenic to humans (mainly linked to respira-
tory cancers), but the state of knowledge of the molecular

mechanisms implicated is low and further research is
required. In vitro experiments have shown that this com-
pound is able to increase global levels ofH3k4me3,H3K9me1,
andH3K9me2 through demethylase inhibition [110, 144, 145].
In adults, nail concentrations of nickel were positively
correlated with LINE-1 DNA methylation levels [118].

Besides alterations of DNA methylation or/and histone
modifications, numerous changes in miRNA profiles have
been associated with exposure to different metals, among
them mercury, arsenic, and cadmium [146], and a negative
correlation between mercury and lead levels and various
miRNAs has been found in cervical swabs from pregnant
women [147].

In addition to metals, air pollutants can also affect the
epigenome. In adults, exposure to atmospheric pollutants,
especially those which are traffic-related, has been associated
with a reduction in lung function andwith lung cancer, which
could be due to changes in the DNA methylation of inflam-
mation and immunity genes, as well as of repetitive elements
[148, 149]. The effects of exposure to particulate matter (PM)
on global and gene-specific methylation in workers in the
steel industry, which has high levels of PMexposure, have also
been investigated. Inducible nitric oxide synthase (iNOS) was
found to have significantly decreased promoter methylation
after PM exposure [150].Moreover, exposure to black carbon,
a marker of traffic particles, has also been found to be associ-
ated with aberrant global DNAmethylation and to be related
to cardiovascular disease [151]. In some cases, differential
miRNA expression produced by environmental exposure,
including air pollution, may be associated with human
diseases. In adults, alterations of miR-9, miR-10b, miR-21,
miR-128, miR-143, miR-155, miR-222, miR-223, and miR-338
associated with air pollution have been observed in various
studies [152]. Both upregulation and downregulation of sev-
eral miRNAs caused by diesel exhaust particle (DEP) expo-
sure have been associated with human airway diseases [153].

Asbestos can also alter the epigenome. Exposure in adults
induces malignant pleural mesothelioma (MPM), although
the pathogenic mechanisms implicated in the tumor trans-
formation are not well characterized [154]. Many studies
have related asbestos exposure to promoterDNAmethylation
of many tumor suppressor genes such as APC, CCND2,
CDKN2A, CDKN2B, ESR1,HPPBP1, RASSF1, SLC6A20, SYK,
and ZIC1 in MPM [155–157]. Along with asbestos, benzene is
a major immunosuppressive agent. Bollati and collaborators
found that low benzene exposure is able to induce peripheral
bloodDNAmethylation changes, such as a decrease in LINE-
1, AluI, and MAGE-1 methylation and p15 hypermethylation.
These changes could increase the risk of developing acute
myelogenous leukemia [158, 159].

Endocrine disruptors are chemical pollutants which at
certain doses can affect the endocrine system and pro-
duce adverse developmental, reproductive, neurological, and
immune effects. Many compounds act in this way, such as
pesticides (DDTandmethoxychlor), fungicides (vinclozolin),
herbicides (atrazine), industrial chemicals (PCBs, dioxins),
and plant hormones (phytoestrogens) [5, 160], although
those most frequently affecting mammalian organisms are
plastics, specifically bisphenol A (BPA) and the phthalates.
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The impacts of exposure to both these plastics on human
health have been widely reviewed and reported by the
National Toxicology Program-Center for the Evaluation of
Risks to Human Reproduction [161, 162]. There is an ever
increasing potential health risk associated with exposure to
these two chemicals due to their extensive use in the manu-
facturing of polycarbonate plastics [163]. Effects of exposure
include a decrease in female fertility and an increase in cancer
susceptibility [164, 165]. BPA is a carbon-based synthetic
compound employed to make certain consumer goods, such
as CDs, DVDs, plastic bottles and containers, and the epoxy
resins that line metal food and drink cans. Global hypometh-
ylation has been found to result fromBPA exposure in animal
models such asAgoutimice [166, 167], in human spermatozoa
[168], and on chromosome X in prepubescent girls [169].
In vitro study has related BPA treatment to an increase in
promoter DNA methylation levels of LAMP-3 (lysosomal-
associatedmembrane protein 3), Nsbp1 (nucleosome binding
protein-1), and Hpcal1 (hippocalcin-like 1) genes [170, 171].
An in vivo study in rats has shown an increase in PGC-1𝛼
DNA methylation related to induction of cardiomyopathy
[172]. BPA has also been found capable of altering the expres-
sion and DNAmethylation of many imprinted genes, includ-
ing Snrpn,Ube3a, Igf2,Kcnq1ot1, Cdkn1c, andAscl2 [173, 174].
Apart from the DNAmethylation changes produced by BPA,
it also results in an increase in EZH2 activity and histone H3
trimethylation levels [170, 175].

The effect of electromagnetic radiation on the epigenome
has also been investigated. Prolonged exposure to ultraviolet
(UV) light is associated with the development of various skin
lesions and cutaneousmalignances [176, 177]. It is well known
that solar UV radiation is involved in oxidative stress (3)
[178], immune system alterations [179], and gene mutation
and DNA damage (6) [180]. Some studies have also found
changes at the epigenetic level associated with chronic expo-
sure to ultraviolet radiation. One study found aberrant DNA
hypermethylation linked to increased DNA methyltrans-
ferases activity and hypoacetylation of H3 and H4 in UV

exposed epidermal cells in mouse models [181]. These epi-
genetic modifications could be related to the transcriptional
silencing of certain tumor suppressor genes and thus result
in stimulating skin tumor formation. The identification of
aberrant methylation in genes such as Cip1/p21 and p16
INK4a [182], genes of the cadherin and laminin families [183],
and the inactivation of the RB1/p16 and p53 pathways in cuta-
neous squamous cell carcinoma [184], as well as other studies,
supports the notion that important epigenetic changes are
mediated by chronic sun or UV radiation exposure. These
and other findings have allowed the identification of genes
with aberrant methylation that could be used as molecular
markers which are commonly perturbed in malignant skin
lesions (10) [185–187], and the development of new therapies
to reverse those epigenetic changes associated withUV radia-
tion. In addition to the clinical chemopreventive agentswhich
exist for blocking the aberrant methylation or histone deacet-
ylation caused in many tumorigenesis processes, there are
also other natural compounds found in a variety of different
foods which have a photoprotector effect. Several experimen-
tal studies in in vivomodels have shown the beneficiary effect
of proanthocyanidins fromgrape seeds [188] andpolyphenols
from green tea [189, 190], among others, in countering photo-
carcinogenesis.

3.2. Diet. Probably themost widely described example of diet
affecting epigenetic marks is the study of the intake of folate
and other methyl donors during prenatal stages. Vitamin B9,
or folic acid, used in the synthesis of tetrahydrofolate, cannot
be synthesized de novo by the human body; hence it needs to
be supplied from the diet. Furthermore, vitamin B6 functions
as a cofactor in the synthesis of 5-methyltetrahydrofolate, the
methyl donor for the B12-dependent remethylation of homo-
cysteine to S-adenosylmethionine (SAM), and the methyl
donor group for DNA and histones which is necessary to
maintain methylation levels (Figure 2). The methyl donor
suppliers can affect the epigenome in a global manner and
also in a locus-specific way [87, 191], and lack of folic acid
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nutritional supplement contributes to the induction of cancer
in animal models of disease [192]. The best example is the
influence of maternal diet on the murine Agouti gene (Avy).
This gene is responsible for determining if mouse coat color
is banded (Agouti) or solid (non-Agouti) and is regulated by
the DNA methylation status of the intracisternal A-particle
(IAP) retrotransposon located in the promoter region of the
Agouti gene [193, 194]. When it is methylated, a mouse’s
coat has a normal appearance (solid color), but when the
retrotransposon is unmethylated, the coat is banded or yellow
and the mouse will have an increased risk of cancer and
diabetes. The availability of methyl donors before and during
pregnancywas found to increase themethylation status of the
promoter Agouti gene in future offspring [195].

In humans, there are some studies showing the effects of
diet and food availability on the epigenome and how these
epigenetic changes could be involved in the appearance of
several diseases in adulthood [191, 196]. A clear example of
these relationships is reflected in the results of studies of the
offspring of pregnant women during the Dutch famine of
1944-1945, during the last period of the Second World War
[191, 197]. Another representative example showing the effects
of nutrition comes from a study in Gambia showing differen-
ces in the epigenomes of children conceived during the
nutrient-poor rainy season compared to those conceived in
periods where the nutritional intake of the mother is better
[196].

Although dietary folate deficiencies are most obvious
when they take place during embryonic development, during
adult life the amount of folate intake in the diet has been
found to be related to epigenetic status inmammals [198, 199],
including humans [200], and has also been related to methy-
lation changes in colon cancer [201] and hyperhomocys-
teinemia [202]. Other dietary methyl donors are methionine,
which is involved in the metabolic pathway of SAM and has
been related to epigenetic-dependent hepatic disorders [203],
and selenium, which is a dietary supplement capable of mod-
ifying the epigenetic status of prostate cancer cells and reduc-
ing both DNA and histone methylation levels and which has
been suggested to improve cancer prevention through the
activation of silenced genes [204]. In addition it has been
described that deficiency in vitamin B12, another methyl
donor, plays an important role in the adipocyte metabolism,
and its deficiency leads to increased total cholesterol by
limiting S-adenosylmethionine [205].

In relation to adults, caloric restriction (CR) is a dietary
regimen based on a reduction in caloric intake which many
studies have related to lifespan extension in various eukaryote
organisms [206–212].There are numerous studies supporting
the notion that CR protects against many different diseases
related to aging due to a reduction in oxidative stress and
regulation of metabolic pathways [213–216]. The molecular
mechanisms involved in this regulation are varied, and epi-
genetic marks could play an important role in the processes
[217, 218]. For example, it is thought that CR might attenuate
the epigenetic changes occurring during the progress of aging
[219–221].

Bioactive dietary compounds such as polyphenols can
alter developmental plasticity through the generation of

epigenetic changes and may also play a role in health and
disease. In the last two decades much research has been
focused on themechanisms that could be responsible, at least
in part, for the relationship between regular consumption
of such bioactive compounds and the changes that may be
produced in the epigenome and result in improvements in
health and aging. This has given rise to the novel field of
study known as epigenetic influence of nutrition [222]. Since
numerous bioactive dietary compounds appear to have the
potential to promote health or prevent diseases, such benefi-
cial dietary supplements could be used to complement other
therapies. Polyphenols, a structural class of organic chem-
icals characterized by the presence of large multiples of
phenol structural units, are necessary in the human diet
and can be found in fruits and vegetables [223]. Plant-
origin polyphenols can be classified into different groups
based on their chemical configuration and include flavonoids,
stilbenes, phenolic acids, benzoquinones, acetophenones,
lignins, and xanthones [224]. Some authors estimate that
more than 8000 distinct dietary polyphenols exist, includ-
ing resveratrol (found in grapes), epigallocatechin-3-gallate
(EGCG, in green tea), sulforaphane (SFN [1-isothiocyanato-
4-(methylsulfinyl) butane], in broccoli), and curcumin (in
turmeric) [225]. Although more studies are needed, the
potential of green tea and broccoli in cancer chemopre-
vention seems to be mediated by epigenetic mechanisms,
including DNMT and HDAC activity inhibition [226, 227].

3.3. Healthy and Unhealthy Habits. Although unhealthy
lifestyle habits could be considered as a kind of environmental
stressor, the fact that they depend on personal decisions has
led us to describe them in a separate section.

It is well known that maternal tobacco smoke exposure
(MTSE) is one of the most important risk factors during
pregnancy for many diseases such as asthma, cancer, obesity,
and type II diabetes [228–231]. MTSE is known to produce
epigenetic changes that can affect birth-weight and fetal pro-
graming [232], specifically DNA methylation: there is global
DNA hypomethylation and an increase in DNA promoter
specific methylation in children exposed to prenatal smoking
compared to children who were not [233]. In adults tobacco
use has been related to an increase in promoter gene-specific
DNA methylation, which in turn is linked to increased
predisposition to diseases such as cancer [234–237]. To inves-
tigate in more depth the effect of tobacco smoking on DNA
methylation, researchers have performed genome-wide DNA
methylation analyses with the Illumina 450K BeadChip. As
a result, tobacco use has been related to changes in DNA
methylation of CpG sites related to the development and
function of the cellular, cardiovascular, detoxification, hema-
tological, immune, tumorigenic, and reproduction sys-
tems [238–241]. Apart from DNA methylation, smoking
also affects proper histone regulation across the polycomb
repressive complex, coinciding with decreased H4k16ac and
increased H3k27me3 [242]. Many substances contained in
tobacco can also affect miRNAs. During development, a
decrease in the expression of miRNAs, such as miR-16, miR-
21, andmiR-146a, have been related to nicotine and benzoap-
yrene exposure in smoking mothers [243]. In adult smokers
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miR-218 has been shown to be downregulated in bronchial
epithelial cells [244]. Also, smoking has been associated with
alterations in the expression of miRNAs such as miR-21,
miR-34b, miR-125b, miR-146a, miR-223, and miR-340 [152].
Moreover, cigarette smoke condensate (CSC) causes aberrant
overexpression of miR-31 in lung epithelium, and it could act
as an oncomir promoting pulmonary carcinogenesis [245].

High alcohol consumption is also widely recognized to
have many negative effects which lead to a deterioration in
an individual’s health. Alcohol can interfere with methionine
metabolism through the inhibition of methionine synthase
and, as a consequence, the long-termuse of alcohol could lead
to a decrease in the hepatocyte level of SAM [246]. In adult
life, hypomethylation in LINE1 has been related to alcohol
consumption in some tumors [247, 248]. Other studies have
revealed that the use of alcohol alters DNA methylation pat-
terns in hepatocarcinogenesis and neural stem cell differenti-
ation [249, 250]. In addition, miR-125 andmiR-126 downreg-
ulation has been observed in alcohol consumption related to
hepatocellular carcinoma [251, 252].

Apart from DNA methylation and miRNA changes,
ethanol induces gene activation through an increase in his-
tone H3 and H4 acetylation and H3k4me3 [253–256], which
may lead to immune system dysfunction [257]. Interestingly,
epigenetic changes due to ethanol seem to be different
depending on whether there is chronic or binge ethanol
intake [253]. Furthermore, prenatal alcohol exposure also
significantly affects the correct development of the fetus,
including altering PcG/TrxG programing [258].

Substantial stress during early life can be a risk factor in
the initial appearance of symptoms for individuals susceptible
to bipolar disorder and other mental disorders [259]. Many
studies have reported a relationship between early life stress
and the aberrant DNA methylation of many genes such as
the glucocorticoid receptor gene [260, 261] and the serotonin
1A receptor [262]. Also, stress is able to produce changes in
histone modifications, such as increased levels of H3K4me3
and reduction of H3K9me3 levels in the dentate gyrus [263].
In this regard, there is an interesting study showing how
prenatal maternal stress, generated by a natural disaster, was
related to changes in DNA methylation patterns of blood
cells, which could have an effect on the immune function of
the offspring [264].

Physical exercise enhances or maintains physical fitness
and is beneficial for human health in a number of ways. Little
is known about the molecular mechanisms responsible, but
several studies have shown that epigenetics is related to the
effects of exercise on human health, since epigenetic changes
in germ cells, skeletal muscle, and brain have been observed
following a period of exercise [265–267].

3.4. Pharmacological Factors. Pharmacological treatment
can also induce genome-wide epigenetic changes. Sodium
valproate (VPA), a small fatty acid [268], has been widely
studied. It is used to treat epilepsy, bipolar disorder, serious
depression, migraine, and schizophrenia, as well as being
used in cancer treatment and as a complementary treatment
for latent HIV infection [269, 270]. Because of VPA’s global
HDAC inhibitor effect [271], it could possibly generate the

expression of some undesirable genes, and its side effects
remain to be fully demonstrated.

Diethylstilbestrol (DES) is a “synthetic estrogen” which
has been used for many years during pregnancy to prevent
miscarriages and other pregnancy disorders but has been
found to be associated with an increased risk of breast
cancer and vaginal and cervical adenocarcinoma [272, 273].
It has been suggested that these side effects are mediated by
epigenetic mechanisms, since it has been found that DES
neonatal exposure in mice was related to decreased DNMT
expression and alterations in DNAmethylation in the mouse
uterus [274]. In addition, it has been described that DES
exposure in breast epithelial cells produces upregulation and
downregulation of various miRNAs [275]. Moreover, miR-21
was consistently downregulated by DES exposure in MCF-7
breast cancer cell line [276].

Apart from these two drugs, there are many different
medicines used on a daily basis that have recently been found
to have epigenetic activity. For example, procaine, a local
anesthetic, is now known to induce DNA demethylation
[277]. And several antibiotics have also been implicated [278],
such as pyrazinamide, a classic antituberculosis drug found to
alter DNA methylation in the liver of treated rats, along with
LINE-1 hypomethylation and GSTP and p16(INK4A) pro-
moter hypermethylation, all of which may be a side effect of
its hepatic toxicity [279]. In addition, doxorubicin, an anthra-
cycline antitumor antibiotic, has been found to inhibit
DNMT1 and can induce apoptotic cell death [280]. miRNA
profiles may also be altered by many different drugs used in
therapy, for example, all-trans-retinoic acid in acute promye-
locytic leukemia [281] and gemcitabine [282] and cisplatin
[283] in ovarian cancer. Most importantly, perhaps, attention
should be paid to the effects of medication on the germ cell
epigenome and the potential transmission of epigenetic alter-
ations to offspring. An example is where aberrantDNAmeth-
ylation patterns were found in the sperm of patients treated
with temozolomide, a chemotherapy drug used as a treatment
for high-grade glioma [284].

4. Conclusions

The mammalian epigenome changes throughout embryonic
development and with aging. Some of these changes are
genetically programed and others take place without any
apparent function, though the molecular mechanisms
involved are still to be elucidated. Moreover, what part of
these changes is due to the interplay of environment with
the epigenome and which is the result of individual genetics
remain unknown. Further research needs to be focused on
attempting to understand the causes of these changes in order
to prevent the onset of diseases. In addition to all the environ-
mental factors affecting the epigenome described in this
review, we should take into account increased exposure to the
nanomaterials and nanoparticles present in many everyday
consumer goods, and consequently the study of the possible
effects of this on the epigenome and human health will be
a future, or rather is a current, challenge. The emergence of
next-generation technologies will help us to answer some of
these questions in the coming years.
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