Hindawi Publishing Corporation
Computational Intelligence and Neuroscience
Volume 2016, Article ID 2565809, 10 pages
http://dx.doi.org/10.1155/2016/2565809

Research Article

A Guiding Evolutionary Algorithm with Greedy Strategy for
Global Optimization Problems

Leilei Cao,"> Lihong Xu,! and Erik D. Goodman’

! Department of Control Science and Engineering, Tongji University, Shanghai 201804, China
2BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA

Correspondence should be addressed to Lihong Xu; xulhk@163.com
Received 23 January 2016; Revised 15 April 2016; Accepted 3 May 2016
Academic Editor: Jens Christian Claussen

Copyright © 2016 Leilei Cao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A Guiding Evolutionary Algorithm (GEA) with greedy strategy for global optimization problems is proposed. Inspired by Particle
Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each
method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the
current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring
to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the
capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local
search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was

compared.

1. Introduction

Most real-world optimization problems in engineering, man-
agement, and other applications are of high dimensional-
ity, multimodal, and/or multiobjective. Methods for solving
these problems range from classical mathematical methods to
heuristic algorithms. With more complex problems, heuristic
intelligent algorithms have been used successfully and fre-
quently [1]. These algorithms include Simulated Annealing
[2], Genetic Algorithm [3], Particle Swarm Optimization
[4], Ant Colony Optimization [5], Artificial Bee Colony [6],
Firefly Algorithm [7, 8], and Bat Algorithm [9]. Support for
parallel computation and stochastic search are common char-
acteristics of these algorithms. Inevitably, most of these algo-
rithms are slow to converge or converge prematurely, trapped
in local optima upon addressing high-dimensional or multi-
modal optimization problems [10]. High-dimensional vari-
ables expand the search space, influencing the required num-
ber of evaluations and speed of convergence. Multimodality
means that there exist one or more global optima and some
number of locally optimal values [10, 11]. The “No Free

Lunch” theorem clarifies that the performance of any search
algorithm depends on the complexity of the problem domain
[12].

All of the above-mentioned heuristic algorithms are
population-based except Simulated Annealing, and some of
them are classified as swarm intelligence. These population-
based algorithms, when applied to complex problems, fre-
quently outperform classical methods such as linear pro-
gramming [13], gradient methods [14], and greedy algorithms
[15]. Although the heuristic algorithms can solve some
problems, sometimes they converge on local optima or find
solutions near but not at the global optimum.

This paper introduces a Guiding Evolutionary Algorithm
to address global optimization problems. It is inspired by
Particle Swarm Optimization and the Bat Algorithm and
uses some methods from the Genetic Algorithm. It is easily
understood and implemented. For some problem classes
tested, this algorithm has outperformed canonical implemen-
tation of those individual heuristic methods. This paper is
organized as follows: Section 2 gives brief overview about
PSO and BA. Section 3 proposes this new global optimization

http://dx.doi.org/10.1155/2016/2565809

algorithm. A set of test functions and the experimental results
are presented in Section 4, and conclusions are presented in
Section 5.

2. Particle Swarm Optimization and
Bat Algorithm

2.1. Overview of PSO. A variety of heuristic algorithms are
called swarm intelligence algorithms, simulating collabora-
tive behavior of a swarm of insects, birds, fish, or other ani-
mals searching for food [4, 16]. Among them, Particle Swarm
Optimization (PSO) is the most widely used. PSO was first
proposed by Eberhart and Kennedy [4] in 1995. Each solution
in PSO is a “particle” that searches in the independent variable
space by learning from its own experience and other particles’
past experiences [17, 18]. There are two different ways of
representing others’ past experiences: the global best and
the local best. In global optimization problems, each particle
adjusts its velocity and position according to the historical
best position of itself and the best position among all particles.
But this method tends to make each particle converge to a
local optimum in those problems containing many locally
optimal values. For these problems, the local best method is
more effective. Each particle adjusts its velocity and position
according to its historical best position and the best solution
found within its neighborhood. In fact, if the neighborhood
is all particles, the local best becomes the global best version.
PSO is simple and easy to be implemented, but PSO lacks a
mutation mechanism which could increase the diversity of
the population and help to avoid convergence at local optima.

2.2. Bat Algorithm [9, 19-21]. The Bat Algorithm (BA) was
proposed by Yang in 2010. It is based on the echolocation
behavior of bats, which can find their prey and discriminate
different types of insects even in complete darkness. This
algorithm combines global search with local search in each
iteration, which balances exploration and exploitation during
search. The algorithm defines the rules for how these bats’
positions and velocities in a d-dimensional search space are
updated. The new positions and velocities at time step ¢ are
given by
fi = fmin + (fmax - fmin) * ﬁ’

t-1

T (T =) (1)

t_ -1t
X, =x; +v,

t_
vi=v

where f8 € [0, 1] is a random vector and x" is the global best
location found to date. f; is the frequency of the wave.

For the local search part, a new solution for each bat is
generated locally using a random walk around the current
best solution:

X d+8*At; (2)

new — Xol

where ¢ € [-1, 1] is a uniformly distributed random number

and A’ is the average loudness of all bats at this time step.
The update of the velocities and positions of bats has some

similarity to the procedure in the standard Particle Swarm

Computational Intelligence and Neuroscience

Optimization as f; essentially controls the pace and range of
movement of the swarming particles. To a degree, BA can be
considered as a balanced combination of the standard Particle
Swarm Optimization and an intensive local search controlled
by the loudness and pulse rate. Furthermore, the loudness A;
and rate r; of pulse emission must be updated accordingly as
the iterations proceed. The loudness usually decreases once a
bat has found its prey, while the rate increases.

3. A Guiding Evolutionary Algorithm

Although Bat Algorithm can solve some difficult problems
and converge quickly, it often cannot avoid converging
to a local optimum, especially for those high-dimensional
multimodal problems. Examining PSO and BA reveals some
differences, in that BA rejects the historical experience of
each individual’s own position but accepts a better personal
solution with some probability. We will modify some of the
updating mechanisms of BA and add a mutation method in
order to try to address global optimization problems more
accurately.

3.1. Crossover. There is a leading individual in both PSO
and BA, which can lead all individuals to update their own
positions. But we find that current velocities of individuals
are weighted accumulations of their own historical velocities
across iterations. In the later parts of a search, this will tend
to decrease the speed of convergence or favor convergence
on local optima, even though there are bounds on velocities
in PSO. To avoid these situations and employ the leading
individual effectively, we use the following expression:

Tl (=X # B, 3)

where x'! is the current global best individual and f3 is the
step length of the position increment.

In fact, this expression is a form of crossover between each
individual and the best individual to generate their offspring.
x'~! is a guide to lead all other individuals to walk forward
toward the current best one. To explain formula (3) clearly, we
use a simple example to describe the process of locating the
global best individual. Figure 1 shows a two peaks’ function,
the ordinate of which is the value of the objective function
and the abscissa of which is the design variable. Point P is the
global best we expect to find in this maximization problem.
Points A, B, C, and D indicate four individuals, and x;, x,, x5,
and x, are their solutions in variable space, respectively. x ;.
and x,,, are the bounds of the variable space. Among the four
individuals, point C is the best; therefore, other individuals
will move toward this current best individual. Let us assume
B € [0,2] is a uniform random variable. For point A, its
motion ranges between x; and x,,,, because 2 * (x; — x;)
exceeds the upper bound of the variable range. Theoretically,
point A can move to each point whose variable value is
between x; and x,,,,, and this will depend on the random
variable 3. Not only point A but also points B and D will be
attracted by point C. The best individual will be replaced once
a better solution occurs. After many iterations, all of these
individuals can reach the global best point P. While searching,

Computational Intelligence and Neuroscience

Xmin X1 X2 X3

FIGURE 1: A two peaks’ function.

even though the best individual may reach the lower peak,
other individuals can also move to point P because of random
walking and a great number of population.

3.2. Mutation. Although these global optimization algo-
rithms work quite well on some engineering problems, they
sometimes cannot avoid converging on a local optimum
with high probability. For such heuristic algorithms, it is
difficult to prove that they will always converge to a global
optimum. In order to raise the probability of converging to
a global optimum, we add a mutation mechanism which is
inspired by the Genetic Algorithm. The purpose of mutation
is to increase the diversity of the population and prevent
them trapping into a local optimum, especially in the later
iterations. Therefore, the probability of mutation will be made
low at the beginning and higher later. We set the mutation
probability as follows:

TmaX
p:c*ln<ﬁ>, (4)

max

where c is a limiting parameter which can be a constant or a
variable, T}, is the maximum number of generations, and ¢
is the current generation. We will assume that T, ,, = 50 and
¢ = 0.2; then, probability p increases with iterations as shown
in Figure 2. Especially in the early iterations, p is low, while it
increases rapidly in the later iterations.

The mutation formula is as follows:

Xi=x +ex M, (5)

where x; is the solution of an individual after crossover, ¢ €
[-1, 1] is a uniform random number, and M is a vector which
determines the scope of mutation. In general, we set M such
that mutation can span the entire range of the independent
variables. We will assume that the range of jth dimension of
the variables is [a, b], and then

M; = max(xfj—a,b—xf.). (6)

0.8 T T T T -

0.7 b

0.5 * A

0.4t . 1

Probability

03} o .
02t

0.1} ok #H¥]

0 10 20 30 40 50

Generations

FIGURE 2: Probability of mutation.

Each dimension of the vector M is set as formula (6).
Sometimes the solution after mutation will exceed the range
of the variables, and we can limit it to the bounds in this
situation.

3.3. Local Search. As we know, most of global optimization
algorithms have excellent capability of exploration but are
weak at exploitation. To enhance this ability, especially in the
later iterations, we will expect the algorithm to be able to
locate the global best quickly with local search, once it has
found the right neighborhood. The probability of local search
will be maintained low in early iterations and raised later in
the search process. The probability of local search will follow
the same distribution as mutation (4).

Each individual has the calculated probability of being
replaced by a result of local search, performed around the
current best individual. Similarly to the Bat Algorithm’s
random walk, we use the following formula to express local
search:

xf = xi_l +exL, (7)

where x'! is the best individual of the current population, & €
[-1, 1] is a uniform random number, and L is a vector which
determines the search scope of the random walk, formulated
in the variable space. We still will assume that the range of jth
dimension of the variables is [a, b], and then

Lj=10%*(b—a). (8)

10% is only an example of scope of the random walk.
The other dimensions of the vector L are set as formula (8).
Local search acts much like mutation; the differences are in
the points to which the mutational changes are added—the
global best in one case and any individual in the other.

3.4. Summary of GEA. Unlike the classical (greedy) simplex
algorithm, a population-based algorithm can “jump out” of a
local optimum using parallel search, without losing all prior

Computational Intelligence and Neuroscience

Evaluate the initialized population
Select the best individual x'
While (¢t < T, {
For each individual {

If (rand < p) {

}
If (rand < p) {

}

}
}
}

Output results and visualization

Initialize the population x; (i = 1,2,...
scope of mutation M, range of local search L

s P t
Make crossover to generate a new individual x;

Make mutation for x/

Make local search for xf.

}
If (f(x}) is better than f(xffl)) {
Accept this new individual

If (f(x!) is better than f(x)) {
Replace x'" using x!

,n), and define limit parameter c,

ALGORITHM 1

information. Therefore, we can afford to accept a new global
best-to-date individual when it is found, instead of accepting
it according to some probability, as Simulated Annealing
must do in order to reduce getting trapped at local optima. In
the GEA, each individual updates only when its offspring has
better fitness. The updates of the global best individual and
each individual are greedy strategies, but, because of a large
population size, convergence to local optima can be avoided
in some multimodal global optimization problems.

The proposed Guiding Evolutionary Algorithm with
greedy strategy resembles the framework of the Genetic
Algorithm, which can be described as follows: initialization,
evaluation, selection, crossover, and mutation. A difference
from the Genetic Algorithm is that there is no special
selection mechanism in the GEA, because each individual
will generate its offspring by recombination with the global
best individual and it does not require an operator to select an
individual to evolve. In addition, local search is also employed
to increase the algorithm’s exploitation capability. The whole
framework is easy to understand and implement. The whole
pseudocode of this algorithm is as shown in Algorithm 1.

4. Experimental Results and Discussion

4.1. Test Functions [11, 22, 23]. In order to test the proposed
algorithm, 6 commonly used functions are chosen. F,-Fj are
well-known test functions for global optimization algorithms
including Genetic Algorithm, Particle Swarm Optimization,
Bat Algorithm, Firework Algorithm [24], and Flower Polli-
nation Algorithm [25]. F, is a simple unimodal and convex
function; F, is a unimodal but nonconvex function; F; is
multimodal, since the number of local optima increases with
the dimensionality; F, has a global minimum at 0, which is

inside the parabolic, narrow-shaped flat valley (variables are
strongly dependent on each other; therefore it is difficult to
converge on the global optimum); F; is multimodal and has
many local minima but only one global minimum; F; also has
numerous local minima and is multimodal. The definitions
of these benchmark functions are listed in Table 1. All of their
global minima are at 0.

4.2. Parameter Settings for Testing Algorithms. In this section,
the Guiding Evolutionary Algorithm (GEA), Fast Evolu-
tionary Algorithm (FEA) [23], Particle Swarm Optimization
(PSO), and Bat Algorithm (BA) are tested separately on six
benchmark functions. For F; to F, to illustrate how the
dimensionality of problems influences the performance of the
algorithms, three different dimensions of benchmark func-
tions are used: D = 10, D = 20, and D = 30. The parameters
of the Fast Evolutionary Algorithm are set as in [23]. Through
some trials, we set the number of generations in FEA, PSO,
and BA as 500, while the number of generations is set as
50 in GEA, in order to get the best results. Population sizes
were adjusted according to the different benchmark functions
and different dimensions. Although these algorithms run for
different numbers of generations, the numbers of evaluations
are the same for any given benchmark function. For PSO,
according to some researches [17, 18], the following settings
can make it perform well: the inertia weight is set as 0.7, while
the two learning parameters are set as 1.5; the limitation of
velocity is set as [—1, 1]. Parameters of BA are set as follows:
minimum frequency f,;, = 0, maximum frequency f, .. =
2.0, the loudness A, = 0.8, the pulse rate r, = 0.8, and the
control factor & = 8 = 0.9. These parameters are attributed to
some published articles [11, 19]. For our GEA, 8 € [0,2] and
c=0.2.

Computational Intelligence and Neuroscience

TABLE 1: Six test functions utilized in this experiment.

Functions Name of function Expression Don'lam of
variables
D
De Jong’s sphere _ 2 B
E function f) ;xi [-100, 100]
D D
Schwefel 2.22
= A+ . _
b function f) ; || H || [-15,15]
D X D 2
F, GriewangK’s function fx)= —l;[cos (E) + ;4000 +1 [-15,15]
D-1 R
F, Rosenbrock’s function f(x)= Z 100 * (x,-+1 - xf) +(x; - 1) [-15,15]
i=1
D
F, Rastrigin’s function f(x)=D=*10+ Z (xlz — 10 * cos (2nxi)) [-5,5]
i1
1 L 1 2
Fy Ackley’s function f(x)=20+e-20%exp| —0.2 *) * ;xf —exp (D * i:zlcos (27Tx12)> [-15,15]

Generally speaking, for unimodal functions, the conver-
gence rate is of primary interest, as optimizing such functions
to a satisfactory accuracy is not a major issue. For multimodal
functions, the quality of final solutions is more significant
since they can illustrate the ability of the algorithm tested, to
escape from local optima and locate the true global optimum.
Based on these requirements, we present the computational
optimal solutions of these benchmarks using our GEA as
well as comparing with other algorithms. In addition, the
curves of convergence rate are plotted in order to indicate
the numbers of evaluations to reach the approximate global
optimum or converge on a local optimum.

4.3. Experimental Results and Discussion

4.3.1. Results for the 10D Benchmark Functions. Table 2
depicts the computational results of four algorithms on six
benchmark functions with 10 dimensions, which were run 20
times independently to get the best, worst, mean, median,
and standard deviation values. Among these five values,
the “median” item can indicate the algorithm’s optimizing
performance reasonably, while the “standard deviation” item
denotes the stability of the algorithm’s optimizing perfor-
mance. Figure 3 presents the convergence characteristics in
terms of median value of 20 runs of each algorithm on each
benchmark function.

From the computational results, we find that BA performs
best among these four algorithms on F), although three
of them have excellent performances. As stated earlier, the
convergence rate is more crucial in comparison with conver-
gence accuracy for unimodal functions. As indicated from
Figure 3(a), GEA, PSO, and BA have fast convergence rate and
high convergence accuracy, but FEA gets the worst accuracy.
Actually, F, is only a simple unimodal and convex function.
There is no mutation operation in the BAs procedure but
only local search. However, compared with GEA and PSO,
the local search and absence of mutation become the BA’s

advantage in addressing unimodal and convex functions. But
this advantage is lose upon testing unimodal and nonconvex
function F,. GEA clearly outperforms the other algorithms
in convergence rate and convergence accuracy; the median
and mean value are close to the true global optimum. Viewed
from Figure 3(b), it is easy to see that GEA and PSO have
similar search processes in the early evaluations, but GEA
can jump out from a local optimum because of its mutation
operation and continue to search with local search, while PSO
stops at the local optimum. GEA improves several orders of
magnitude compared to the results of the other algorithms. In
addition, it has better stability of optimization performance.
F; is a multimodal function; both GEA and PSO perform
well, and they have similar convergence rates and accuracies
as indicated from Figure 3(c). We display the ability to
avoid falling into local optima. As described, function F,
poses special difficulties for an optimizer. Although PSO
locates the minimization value exactly in median value on
F,, PSO’s stability is worse than that of GEA. Sometimes,
locating the exact optimum is not our purpose, but rather
the stable computational performance of the algorithm is
more significant. Each of GEAs values on F, is close to
the real global optimum, and the stability of its optimizing
performance is excellent. This performance benefits from
changeable mutation parameters and local search areas. But,
as viewed from Figure 3(d), the convergence accuracies of
FEA and BA are worse than those of GEA and PSO. F; and Fj
are multimodal functions, but F5 makes it extremely difficult
to locate the global optimum, while F, is much easier. GEA
and PSO have similar performance upon addressing F; and
F,, while GEA is a little better than PSO especially in standard
deviation. Although neither of them can locate the real global
minimization on Fs, they still work better than FEA and
BA. As indicated from Figure 3(e), although FEA has the
fastest convergence rate, the convergence accuracy is too poor
similar to that of BA. In addition, BA also performs well upon
addressing Fg, but it is not yet better than GEA and PSO. Their

6 Computational Intelligence and Neuroscience
TABLE 2: Results of benchmark functions in 10 dimensions using four algorithms.
Functions Evaluations Value GEA FEA PSO BA
Best 3.45E - 37 231E-15 5.42E — 38 1.20E — 44
Worst 6.62E - 35 1.95E - 03 1.05E - 34 5.57E - 44
F, 50000 Mean 5.86E — 36 4.83E - 04 1.34E - 35 241E - 44
Median 1.44E - 36 2.89E - 04 1.48E - 36 2.37E - 44
StDev 1.46E — 35 5.98E - 04 2.88E — 35 1.05E - 44
Best 525E-11 1.23E + 00 3.79E - 04 3.74E - 22
Worst 3.44E - 04 7.27E + 00 2.11E-01 5.11E +01
F, 50000 Mean 1.28E - 04 3.89E + 00 6.86E — 02 7.84E + 00
Median 5.03E - 05 3.28E + 00 2.97E - 02 1.23E + 00
StDev 1.20E - 04 1.96E + 00 8.52E - 02 1.42E + 01
Best 2.46E - 02 2.34E - 02 7.40E - 03 2.46E - 02
Worst 1.06E - 01 3.37E-01 1.62E - 01 2.63E - 01
F; 50000 Mean 6.37E - 02 1.36E - 01 4.88E - 02 1.24E - 01
Median 6.52E - 02 1.31E-01 3.69E - 02 1.08E - 01
StDev 2.39E - 02 7.12E - 02 3.82E - 02 6.86F — 02
Best 4.23E-29 4.60E - 03 OE + 00 1.78E + 00
Worst 6.91E - 10 6.16E + 00 3.99E + 00 6.98E + 00
F, 200000 Mean 352E-11 2.99E + 00 5.98E - 01 4.44F + 00
Median 3.88E -21 2.04E + 00 OE + 00 4.43E + 00
StDev 1.54E - 10 2.55E + 00 1.46E + 00 1.31E + 00
Best 4.97E + 00 6.96E + 00 3.98E + 00 6.96E + 00
Worst 1.19E + 01 2.69E + 01 1.39E + 01 2.69E + 01
F; 200000 Mean 7.56E + 00 1.71E + 01 7.71E + 00 1.77E + 01
Median 7.46E + 00 1.59E + 01 7.46E + 00 1.69E + 01
StDev 1.69E + 00 5.82E + 00 2.77E + 00 4.82E + 00
Best 7.99E - 15 1.16E + 00 7.99E - 15 7.99E - 15
Worst 1.65E + 00 3.40E + 00 1.65E + 00 2.32E +00
Fy 100000 Mean 1.40E - 01 2.11E + 00 3.96E - 01 7.13E - 01
Median 7.99E - 15 2.17E + 00 7.99E - 15 7.99E - 15
StDev 4.38E - 01 7.93E - 01 6.34E - 01 9.39E - 01

median values are very close to the real global minimum. The
convergence rates of GEA, PSO, and BA are also similar, but
FEA has been trapped in alocal optimum prematurely as seen
from Figure 3(f).

4.3.2. Results for the 20D and 30D Benchmark Functions.
Table 3 shows these four algorithms’ computational results
on six 20D benchmark functions, and Table 4 shows com-
putational results on six 30D benchmark functions. As the
convergence graphs are similar to those of the 10D functions
except the convergence accuracy, they are not presented
here. It is easy to see that increasing the dimension of F,
did not influence the nature of the performance of these
algorithms, just increasing the number of evaluations needed
to get similar accuracy. Increased dimension of F, reduces the
convergence accuracy of GEA, PSO, and BA, but FEA is not
affected by that because FEA can never get good accuracy.
Sometimes we can accept the results of GEA and PSO on F,
in 20D and 30D, but that of FEA and BA cannot be accepted.
The effects of F; on 20D and 30D are better than those on
10D for these four algorithms. This problem is known to

become easier as the dimension increases [26]. GEA performs
best among the methods on F;, although increasing the
problem’s dimension and its convergence accuracy brings the
computational optimum closer to the real global optimum
for all tested methods. For F,, Fs, and Fg, with increasing
dimensions, none of these algorithms can locate the real
global optimum or approach it closely. But GEA is the best
compared with the other algorithms in optimization results.
High dimension is a calamity for these problems, which
makes it difficult to locate their real global optimum.

4.3.3. Discussion. Analysis of the results of four algorithms
on six functions with different dimensions indicates that
GEA has better optimization performance compared to FEA,
PSO, and BA. BA is suitable to address simple unimodal
problems, but it has an undistinguished performance on
other problems, especially on multimodal problems. FEA
has a fast convergence rate, but its convergence accuracy
is too bad in some problems. Sometimes GEA and PSO
have similar computational results and convergence rate and
accuracy on multimodal problems, but GEA performs more

Computational Intelligence and Neuroscience

100 10°
[
10°|¥
g0 E
g g
g 107} g 1
kst kst
= &
2 107 £
107401
1070 . : : - 107°
0 1 2 3 4 5 0 1 2 3 4 5
4
Evaluations x10 Evaluations x10*
—=— GEA —— PSO —=— GEA —— PSO
—— FEA —— BA —— FEA —— BA
() (b)
10! 10"
10§
100 f
o 100 o
2 Rt
g g
£ g 1070t
51 kst
g g ., -15
£ 107! 3 & 10
\\ 10°20
10°%5
1072 10730 . . .
0 1 2 3 4 5 0 0.5 1 1.5 2
Evaluations x10* Evaluations x10°
—&— GEA —— PSO —&— GEA —— PSO
—«— FEA —— BA —— FEA —— BA
(c) (d)
10°
L)
= =
: g
g =
g g
2 FRRIVANNVNPV—9—R—2—0—0—0-—2—0 35
= 5
s}
1 1.5 2
5
Evaluations x10 Evaluations x10*
—a— GEA —— PSO —&— GEA —— PSO
—+— FEA —— BA —— FEA —— BA
(e) (f)

FIGURE 3: The median value convergence characteristics of 10D benchmark functions. (a) F; (b) F,; (c) F;; (d) Fy; (e) Fs; and (f) F.

8 Computational Intelligence and Neuroscience
TABLE 3: Results of benchmark functions in 20 dimensions using four algorithms.
Functions Evaluations Value GEA FEA PSO BA
Best 1.56E — 36 2.26E - 09 4.59E - 30 4.07E - 44
Worst 4.72E - 35 6.20E — 04 5.30E - 15 1.18E -43
F 200000 Mean 1.30E - 35 1.84E - 04 3.56E - 16 7.51E — 44
Median 7.39E - 36 9.57E - 05 445E - 26 7.40E — 44
StDev 1.37E - 35 2.02E - 04 1.22E-15 2.06E — 44
Best 4.23E-03 1.24E + 00 3.57E - 03 8.71E - 22
Worst 3.07E - 01 4.32E + 00 1.36E + 00 1.31E + 02
F, 200000 Mean 6.83E - 02 3.11E + 00 2.29E - 01 6.54E + 01
Median 5.30E - 02 3.13E + 00 1.10E - 01 7.71E + 01
StDev 6.86E - 02 9.24E - 01 3.32E-01 4.39E + 01
Best OE + 00 1.95E - 03 0E + 00 1.11E-16
Worst 7.40E - 03 8.13E-02 1.23E-02 7.13E - 02
F; 200000 Mean 1.85E - 03 2.74E - 02 2.22E-03 2.93E-02
Median 1.11E - 16 2.30E - 02 1.67E - 16 2.22E-02
StDev 3.29E - 03 1.92E - 02 4.07E-03 2.19E-02
Best 3.20E + 00 2.21E-02 5.33E + 00 1.39E + 01
Worst 1.26E + 01 4.93E + 01 1.69E + 01 1.51E + 02
F, 400000 Mean 8.90E + 00 1.80E + 01 1.12E + 01 3.92E + 01
Median 9.34E + 00 1.90E + 01 1.16E + 01 1.59E + 01
StDev 2.00E + 00 9.30E + 00 2.56E + 00 4.58E + 01
Best 7.96E + 00 1.29E + 01 7.96E + 00 1.68E + 02
Worst 2.39E + 01 8.56E + 01 2.89E + 01 2.35E +02
F; 400000 Mean 1.79E + 01 4.55E + 01 1.66E + 01 1.93E + 02
Median 1.89E + 01 4.58E + 01 1.64E + 01 1.92E + 02
StDev 3.73E + 00 2.04E + 01 6.29E + 00 1.67E + 01
Best 1.51E - 14 1.18E + 00 1.51E-14 1.33E + 01
Worst 2.17E + 00 3.95E + 00 2.45E + 00 1.54E + 01
Fy 200000 Mean 8.92E - 01 2.95E + 00 9.60E — 01 1.44E + 01
Median 1.16E + 00 3.04E + 00 1.16E + 00 1.45E + 01
StDev 7.86E — 01 6.62E - 01 7.89E - 01 6.77E — 01

stably because of its changeable mutation operation and local
search, which can increase its capability of exploration and
exploitation. The changeable mutation operation will reduce
the convergence rate, but the greedy strategy offsets this
reduction. Therefore, GEA has a convergence rate as quick
as that of PSO and BA, and the convergence accuracy of GEA
is better than/or similar to that of the others.

5. Conclusion

In this paper, a Guiding Evolutionary Algorithm (GEA) has
been proposed to solve global optimization problems. This
algorithm mixes advantage of Particle Swarm Optimization,
Bat Algorithm, and Genetic Algorithm. The largest difference
is that the GEA accepts a newly generated individual only
when its fitness is better than that of the parent, while the
PSO and many versions of the GA always accept the new
individual. The BA accepts the better solution according
to some given probability. This mechanism of GEA can

guarantee that each individual stays in its historically best
position and moves forward toward the global best position
found to date. Comparing with PSO and BA, the velocity
was removed from GEA but replaced by a random walk step
toward the current global best individual. After crossover
with the global best individual, mutation was added to the
generated individual according to a mutation probability. To
increase the algorithm’s exploitation power, a local search
mechanism was applied to a new individual according to
a given probability of local search; this mechanism actually
produces a random walk around the current global best indi-
vidual.

Experimental results show that GEA can approximate
the globally optimal solution very accurately in most of the
problems tested. Comparing with three other typical global
optimization algorithms, GEA performs more accurately and
stably. In the future work, niching methods will be considered
for addition to the GEA to solve those multimodal problems
yet more effectively.

Computational Intelligence and Neuroscience 9
TABLE 4: Results of benchmark functions in 30 dimensions using four algorithms.
Functions Evaluations Value GEA FEA PSO BA
Best 9.32E - 35 1.22E - 08 6.14E — 12 1.06E — 43
Worst 6.01E - 33 3.86E - 04 2.15E - 07 2.42E - 43
F, 400000 Mean 1.28E - 33 5.09E - 05 1.99E - 08 1.62E — 43
Median 6.57F — 34 1.86E - 05 8.45E - 10 1.62E - 43
StDev 1.467E — 33 8.90E - 05 5.01E - 08 341E - 44
Best 2.18E - 02 1.73E + 00 7.29E - 01 9.46E — 22
Worst 6.98E - 01 5.65E + 00 9.51E - 01 1.93E + 02
F, 400000 Mean 2.66E - 01 3.37E + 00 3.90E - 01 7.45E + 01
Median 2.35E-01 3.30E + 00 3.21E-01 6.32E + 01
StDev 1.89E - 01 1.11E + 00 2.45E - 01 7.04E + 01
Best 8.88E - 15 2.76E - 02 4.68E - 12 1.11E - 16
Worst 9.86E - 03 1.43E - 01 9.88E - 03 2.71E - 02
F, 400000 Mean 1.36E - 03 7.59E - 02 2.10E-03 8.99E - 03
Median 298E -13 6.67E — 02 6.39E - 06 8.63E - 03
StDev 3.34E - 03 3.53E - 02 3.77E - 03 7.79E - 03
Best 1.37E + 01 2.90E + 00 2.01E + 01 1.92E + 01
Worst 2.39E + 01 1.59E + 02 2.92E +01 9.35E + 01
F, 600000 Mean 2.05E + 01 3.35E+01 2.44E + 01 3.05E + 01
Median 2.08E + 01 2.88E + 01 2.48E + 01 2.44E + 01
StDev 2.21E + 00 3.42E + 01 2.50E + 00 1.70E + 01
Best 1.39E + 01 4.08E + 01 1.09E + 01 2.51E + 02
Worst 3.28E + 01 1.78E + 02 3.38E + 01 3.72E + 02
F; 600000 Mean 2.30E + 01 7.87E + 01 2.24E + 01 3.25E + 02
Median 2.09E + 01 6.87E + 01 2.19E + 01 3.26E + 02
StDev 5.33E + 00 3.53E +01 6.87E + 00 2.99E + 01
Best 9.31E - 01 2.15E + 00 3.48E - 06 1.39E + 01
Worst 2.41E + 00 3.92E + 00 2.01E + 00 1.61E + 01
Fy 300000 Mean 1.72E + 00 3.06E + 00 1.10E + 00 1.52E + 01
Median 1.78E + 00 3.01E + 00 1.50E + 00 1.54E + 01
StDev 4.01E-01 6.64E — 01 7.73E - 01 5.90E - 01

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

This work was supported in part by the US National Science
Foundation’s BEACON Center for the Study of Evolution
in Action, funded under Cooperative Agreement no. DBI-
0939454.

References

[1] L Fister Jr., D. Fister, and X. S. Yang, “A hybrid bat algorithm,”
Elektrotehniski Vestnik, vol. 80, no. 1-2, pp. 1-7, 2013.

[2] W. L. Gofte, G. D. Ferrier, and J. Rogers, “Global optimization
of statistical functions with simulated annealing,” Journal of
Econometrics, vol. 60, no. 1-2, pp. 65-99,1994.

[3] D. Whitley, “A genetic algorithm tutorial,” Statistics and Com-
puting, vol. 4, no. 2, pp. 65-85, 1994.

[4] R. C. Eberhart and J. Kennedy, “A new optimizer using particle
swarm theory; in Proceedings of the 6th International Sympo-
sium on Micro Machine and Human Science, vol. 1, pp. 39-43,
Nagoya, Japan, October 1995.

[5] M. Dorigo, M. Birattari, and T. Stiitzle, “Ant colony optimiza-
tion,” IEEE Computational Intelligence Magazine, vol. 1, no. 4,
pp. 28-39, 2006.

[6] D. Karaboga and B. Basturk, “On the performance of artificial
bee colony (ABC) algorithm,” Applied Soft Computing Journal,
vol. 8, no. 1, pp. 687-697, 2008.

[7] X.S. Yang, “Firefly algorithm,” in Engineering Optimization, pp.
221-230, John Wiley & Sons, New York, NY, USA, 2010.

[8] X.-S. Yang, “Firefly algorithm, stochastic test functions and
design optimization,” International Journal of Bio-Inspired Com-
putation, vol. 2, no. 2, pp. 78-84, 2010.

[9] X. S. Yang, “A new metaheuristic bat-inspired algorithm,” in
Nature Inspired Cooperative Strategies for Optimization (NICSO
2010), vol. 284 of Studies in Computational Intelligence, pp. 65—
74, Springer, Berlin, Germany, 2010.

[10] B.Y.Qu, P.N. Suganthan, and J. J. Liang, “Differential evolution
with neighborhood mutation for multimodal optimization,”

10

(12]

(22]

(23]

[24]

[25]

[26]

IEEE Transactions on Evolutionary Computation, vol. 16, no. 5,
pp. 601-614, 2012.

G. Wang and L. Guo, “A novel hybrid bat algorithm with
harmony search for global numerical optimization,” Journal of
Applied Mathematics, vol. 2013, Article ID 696491, 21 pages,
2013.

H. Xu, C. Caramanis, and S. Mannor, “Sparse algorithms are not
stable: a no-free-lunch theorem,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 34, no. 1, pp. 187-193,
2012.

S. Sanner and C. Boutilier, “Approximate linear programming
for first-order MDPs,” in Proceedings of the 2Ist Conference
on Uncertainty in Artificial Intelligence (UAI °05), pp. 509-517,
Edinburgh, UK, July 2005.

S. Yazdani, H. Nezamabadi-Pour, and S. Kamyab, “A gravita-
tional search algorithm for multimodal optimization,” Swarm
and Evolutionary Computation, vol. 14, pp. 1-14, 2014.

G. Obregon-Henao, B. Babadi, C. Lamus et al., “A fast iterative
greedy algorithm for MEG source localization,” in Proceedings
of the Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC ’12), pp. 6748-6751, San
Diego, Calif, USA, September 2012.

R. S. Parpinelli and H. S. Lopes, “New inspirations in swarm
intelligence: a survey,” International Journal of Bio-Inspired
Computation, vol. 3, no. 1, pp. 1-16, 2011

J. Kennedy, “Particle swarm optimization,” in Encyclopedia of
Machine Learning, pp. 760-766, Springer, 2010.

R. C. Eberhart and Y. Shi, “Particle swarm optimization:
developments, applications and resources,” in Proceedings of the
Congress on Evolutionary Computation, pp. 81-86, IEEE, Seoul,
South Korea, May 2001.

X.-S. Yang and A. Hossein Gandomi, “Bat algorithm: a novel
approach for global engineering optimization,” Engineering
Computations, vol. 29, no. 5, pp. 464-483, 2012.

P.-W. Tsai, J.-S. Pan, B.-Y. Liao, M.-J. Tsai, and V. Istanda, “Bat
algorithm inspired algorithm for solving numerical optimiza-
tion problems,” Applied Mechanics and Materials, vol. 148-149,
pp. 134-137, 2012.

X.-S. Yang and X. He, “Bat algorithm: literature review and
applications,” International Journal of Bio-Inspired Computa-
tion, vol. 5, no. 3, pp. 141-149, 2013.

L. Fister, S. Fong, J. Brest, and L. Fister, “A novel hybrid self-
adaptive bat algorithm,” The Scientific World Journal, vol. 2014,
Article ID 709738, 12 pages, 2014.

H. Liu, E Gu, and X. Li, “A fast evolutionary algorithm
with search preference,” International Journal of Computational
Science and Engineering, vol. 3/4, no. 3-4, pp. 197-212, 2012.

Y. Tan and Y. Zhu, “Fireworks algorithm for optimization,” in
Advances in Swarm Intelligence, pp. 355-364, Springer, Berlin,
Germany, 2010.

X. S. Yang, “Flower pollination algorithm for global optimiza-
tion,” in Unconventional Computation and Natural Computa-
tion, pp. 240-249, Springer, Berlin, Germany, 2012.

D. Whitley, S. Rana, J. Dzubera, and K. E. Mathias, “Evaluating
evolutionary algorithms,” Artificial Intelligence, vol. 85, no. 1-2,
pp. 245-276, 1996.

Computational Intelligence and Neuroscience

