Skip to main content
. 2016 Jun 1;6:27056. doi: 10.1038/srep27056

Table 2. Correlations among regressors.

  C(t) R(t) X(t) C(t − 1) R(t − 1) X(t − 1)
C(t) 1 −0.008 −0.109 −0.091 −0.096 0.136
R(t) −0.022 1 0.104 −0.041 7.43 × 10−5 0.021
X(t) −0.120 0.106 1 0.065 0.051 0.268
C(t − 1) −0.150 −0.033 0.063 1 −0.008 −0.109
R(t − 1) −0.105 −0.023 0.059 −0.022 1 0.105
X(t − 1) 0.140 0.030 0.258 −0.118 0.107 1
  C(t) R(t) X(t) QL(t) QR(t) QC(t)
C(t) 1 −0.008 −0.109 −0.224 0.218 −0.071
R(t) −0.022 1 0.104 0.001 0.052 0.107
X(t) −0.120 0.106 1 −0.037 0.038 0.043
QL(t) −0.253 0.002 −0.020 1 −0.191 0.192
QR(t) 0.253 0.049 0.022 −0.259 1 0.463
QC(t) −0.087 0.095 0.049 0.155 0.430 1

Shown are Pearson’s correlation coefficients between explanatory variables used in the multiple linear regression models. Top, regression model 1 (eq. 4); bottom, regression model 2 (eq. 5). Lower diagonal, DMS; upper diagonal, DLS.