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Abstract

Advanced reconstruction methods for computed tomography include sophisticated forward models 

of the imaging system that capture the pertinent physical processes affecting the signal and noise 

in projection measurements. However, most do little to integrate prior knowledge of the subject – 

often relying only on very general notions of local smoothness or edges. In many cases, as in 

longitudinal surveillance or interventional imaging, a patient has undergone a sequence of studies 

prior to the current image acquisition that hold a wealth of prior information on patient-specific 

anatomy. While traditional techniques tend to treat each data acquisition as an isolated event and 

disregard such valuable patient-specific prior information, some reconstruction methods, such as 

PICCS[1] and PIR-PLE[2], can incorporate prior images into a reconstruction objective function. 

Inclusion of such information allows for dramatic reduction in the data fidelity requirements and 

more robustly accommodate substantial undersampling and exposure reduction with consequent 

benefits to imaging speed and reduced radiation dose. While such prior-image-based methods 

offer tremendous promise, the introduction of prior information in the reconstruction raises 

significant concern regarding the accurate representation of features in the image and whether 

those features arise from the current data acquisition or from the prior images. In this work we 

propose a novel framework to analyze the propagation of information in prior-image-based 

reconstruction by decomposing the estimation into distinct components supported by the current 

data acquisition and by the prior image. This decomposition quantifies the contributions from prior 

and current data as a spatial map and can trace specific features in the image to their source. Such 

“information source maps” can potentially be used as a check on confidence that a given image 

feature arises from the current data or from the prior and to more quantitatively guide the selection 

of parameter values affecting the strength of prior information in the resulting image.
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I. Introduction

A great deal of effort on the development of advanced tomographic reconstruction 

approaches has focused on increasingly sophisticated and accurate models for the data 

acquisition and noise associated with the measurements. Statistical methods using such 

advanced forward models have demonstrated a dramatically improved tradeoff between 

radiation dose and image quality [3] and such model-based techniques are being adopted for 

more widespread use in clinical diagnostic imaging. Despite these advances, most 

approaches use very little prior information about the anatomical structure of the patient. 

Typical model-based approaches use only very general concepts including image 

smoothness or edges [4] to encourage desirable image features.

In many cases, a great deal of knowledge about the object is available. Consider the case of 

interventional imaging. Prior to an image-guided intervention, a patient typically has one or 

more imaging studies conducted for purposes of diagnosis and treatment planning. Other 

sequential imaging situations include longitudinal surveillance of disease progression or 

therapy response. Traditionally, imaging systems treat each acquisition in isolation even 

though previous scans contain a wealth of patient-specific prior information.

While such knowledge is typically ignored (even in model-based reconstructors), two 

methods that integrate prior images include PICCS [1] and PIR-PLE [2]. Both use 

compressive sensing notions and use prior images to construct a sparse domain and apply 

sparsity encouraging metrics (e.g. the ℓ1 norm). The methods differ in that PICCS does not 

include a noise model and relies on a linear constraint related to the data (requiring a 

linearizable forward model); whereas PIR-PLE uses a likelihood-based objective and 

forward model similar to other statistical, model-based methods. Both methods have 

demonstrated good image quality even under conditions of dramatic data undersampling, 

and PIR-PLE shows promise even under conditions of simultaneous undersampling and 

photon starvation.[5]

Despite these strengths, methods that integrate prior images into the reconstruction should 

be able to address a fundamental question if they are to find widespread adoption: to what 

extent are the features in the image the result of the newly acquired data, and to what extent 

are they the result of the prior image? For example, if a prior image is included in the 

reconstruction process, how can one determine if a reconstructed feature is “real” and 

supported by the current data collection, versus features that appear only because they were 

in the prior image. The question is complicated further in that such methods include 

parameters that can be tuned to adjust the strength of the prior images, allowing features to 

be selectively eliminated or reinforced in the resulting image. How, therefore, can one 

quantitatively select or justify these parameter values?

In this paper we investigate a novel framework that tracks the propagation of information 

from both the current measurement data and from the prior image portions of the 

reconstruction objective function in an attempt to begin answering these important 

questions. This investigation leverages the mathematical form of the PIR-PLE objective 

function where prior images are included as a penalty term and is extensible to PICCS as 
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well. The work is somewhat similar in spirit to previous regularization analysis [6] where 

quantitative measures of the influence of regularization (e.g., on spatial resolution) have 

been developed. The current work is distinct, and identifies a method by which the 

contribution of prior and current data can be estimated for each image voxel.

II. Methods

A. Review of Prior Image Reconstruction Methods

We adopt the following forward model where the mean transmission measurements are 

written as

(1)

where D represents an operator that forms a diagonal matrix from a vector, b is a vector 

comprising detector pixel-dependent photon levels and detector sensitivity effects, μ is a 

vector of the discretized attenuation volume we wish to estimate, r is a vector of the 

(presumed known) scatter contribution, and A represents the so-called system matrix that 

carries out the projection operation. (Note that AT represents the matched backprojection 

operation.)

From this forward model, it is straightforward to adopt a noise model and derive a 

likelihood-based objective function to estimate the attenuation volume. Choosing a Poisson 

noise model results in the following log-likelihood function

(2)

where hi is the marginal log-likelihood for the ith measurement.

Consider the general form of the PIR-PLE reconstruction technique introduced in [2] but 

without the simultaneous registration of the prior image. This estimator may be written

(3)

The objective has three terms: 1) The first term is the log-likelihood function that enforces a 

fit between the attenuation estimate and the data, and that incorporates the relative data 

fidelity of different measurements. 2) The second term is a generalized image penalty that 

typically discourages roughness in the reconstruction through the use of a gradient (or other 

sparsifying) operator ΨR applied to the image volume and a p-norm metric. 3) The third 

term encourages similarity with a previously obtained prior image, μP, and may also use a 

sparsifying operator ΨP. We have allowed for potentially different sparsifiers and p-norms 
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for each of the two penalty terms (as indicated by subscripts), and the relative strength of the 

roughness and prior-image penalties are controlled by the regularization parameters, βR and 

βP, respectively. The implicit estimator described by (3) does not appear to have a closed-

form solution, and solutions are found iteratively[2].

The PICCS methodology [1] is another promising approach that leverages information from 

prior images. Recall the general form of the PICCS objective function and constraint:

(4)

Here, the objective is comprised of terms that are analogous to the prior image penalty and 

general image penalty terms in (3) with a control parameter α, but the data enters through a 

linear constraint based on an estimate of the line integrals. Again, solutions are computed 

iteratively. The relationship between PICCS and PIR-PLE can be elucidated somewhat by 

rewriting the PICCS estimator in an unconstrained form:

(5)

Thus, PICCS and PIR-PLE are alike in a sense, but the latter uses an unweighted norm for 

the data fit term, and regularization parameters βR = (1 − α)/ β and βP = α/β with large β 

values.

B. Analysis of Prior-Image Reconstruction Approaches

Direct analysis of (3) is difficult due to the nonlinearities of the likelihood function and the 

use of p-norms. One approximation that has previously been applied is to use a second-order 

Taylor approximation of the likelihood [7] about an estimate of the line integrals, so that the 

objective may be re-written approximately as

(6)

where we have adopted a weighted norm for the first term and

(7)

The special case of quadratic penalties (pR = 2 and pP = 2) yields the closed-form:
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(8)

Equation (8) is interesting since it implies a decomposition

(9)

(10)

The first term, F(y), is a function of only the current data and the second term, G(μP) is a 

function of only the prior image. This additive form suggests two distinct attenuation 

domain volumes whose source can be traced to either the current data or the prior image. 

Analysis of these volumes should reflect how information is transferred from the two 

sources to the resulting image. The extent to which specific image features arise from a 

given information source can be identified in a spatially varying manner – an information 
source map. Note that we differentiate between the approximate “decomposition” 

reconstruction, μ̂
D, and the solution to (6), μ̂. With valid approximations, we expect these 

terms to be nearly identical.

Unfortunately, while the selection of quadratic penalties terms in (6) allows for the simple 

decomposition in (10), reconstructions with quadratic penalties provide a fairly poor 

integration of prior image information. That is, the real power of PIR-PLE and PICCS 

approaches lies in the use of lower p-values that encourage similarity to a prior image, but 

include a small enough penalty for larger differences that significant changes are still 

permitted in the reconstruction. The following section illustrates a decomposition 

methodology for accommodating nonquadratic penalties.

C. Additional Approximations for Nonquadratic Penalties

The additive decomposition in (9) is compelling, but raises questions about how to extend 

the decomposition to more general values of p. Consider the typical selection of p = 1 that 

can be difficult for some reconstruction algorithms and that is often replaced by a modified 

norm that is “rounded” near the origin and differentiable at zero. For example,

(11)
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As illustrated in Figure 1, given a suitable operating point, τ, we approximate the modified 

norm using a quadratic function

(12)

such that

(13)

Applying this approximation to (6) for the case of pR = 1 and pP = 1 yields an approximate 

decomposition:

(14)

It remains to choose an operating point for the approximation. In our analysis, we presume 

that the reconstruction in (3) has already been performed, allowing us to choose an operating 

point based on the solution, μ̂. This means the diagonal matrices in (14) may be defined as

(15)

Note the close relation between (10) and (14) with equality if the diagonal matrices in (15) 

are identity. Moreover, it is straightforward to extend this methodology for other p-values. 

We note that the same decomposition may be applied to PICCS by leveraging the 

unconstrained form in (5). This necessitates setting W = I and choosing a sufficiently large 

β.

Since the system matrix is typically not computed explicitly and is too large to store, we 

adopt a conjugate gradient approach for approximating the terms F(y) and G(μP) in (14) to 

decompose a prior-image-based reconstruction (PIR-PLE or PICCS) into data- and prior-

image-supported components.

III. Results/Discussion

To investigate the data and prior image decomposition framework described in the previous 

section we adopted the imaging scenario illustrated in Figure 2. The experiment presumes 

the availability of a reconstructed prior image and data for a follow-up image that includes a 
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change (viz., enlargement of a feature in the right lung). The follow-up acquisition involves 

highly sparse data. We investigate two acquisition strategies using a simulated C-arm 

geometry: 1) a region-of-interest (ROI) scan that acquires 60 laterally truncated projections 

over 360° (dashed white circle in Fig. 3); and 2) an angularly subsampled scan that 

acquires 20 untruncated projections over 360°. All experiments used 0.776 mm detector 

pixels, 0.8 mm isotropic voxels, and a monoenergetic x-ray beam with 105 photons per 

detector element in the unattenuated beam. Both PIR-PLE and PICCS reconstructions are 

investigated.

We illustrate the application of the decomposition approach applied to the ROI acquisition 

experiment in Figure 3. A PIR-PLE reconstruction was formed, and both the data-based (F) 

and the prior-image-based (G) terms of the decomposition are shown. Moreover, the sum of 

the individual terms are presented as a check on the validity of the approximations leading to 

(9). (I.e., μ̂ ≈ μ̂
D which is qualitatively confirmed by the results.) A colorized information 

source map is also shown that identifies regions of the estimate that arise predominantly 

from either the current data (cyan/white) or the prior image (red). As one might expect, in 

this ROI scenario we see increasing contribution from the prior image in regions outside the 

scanned ROI. Moreover, the anatomical change (i.e., the simulated lung nodule) occurring 

between the prior image and follow-up can be clearly traced to the F term representing the 

newly acquired data.

A second experiment considered the angularly undersampled case in which reconstructions 

were performed using both PIR-PLE and PICCS over a range of reconstruction parameters. 

Specifically, we performed a sweep over the prior image penalty strength (βP) for PIR-PLE 

and a sweep of the α parameter in PICCS. The results are summarized in Figures 4 and 5, 

respectively. In both cases, the relationship between parameter strength and the strength of 

the prior image is clearly reflected in the decomposition. Moreover, the presence of the lung 

nodule is consistently represented in the data decomposition term, F. Interestingly, similar 

image reconstructions do not necessarily have similar decompositions – most evident in the 

reconstructions at higher levels of βP and α. This suggests that even though the images 

appear very similar, they are actually relying on different sources of information transferred 

from the prior and newly acquired data, suggesting different conclusions regarding what 

might have changed in the image, and what is supported by the data.

The ability to trace the source of information offers a potentially very important tool in 

beginning to understand how information propagates in prior-image-based reconstruction 

and how data and prior information are integrated in the resulting image. It also suggests a 

quantitative method by which one might justify the selection of penalty strengths and could 

even provide a basis by which one could design penalties that enforce a specific balance of 

information usage. Similarly, such a framework helps to illustrate the relationship between 

methods like PICCS and PIR-PLE and the particular information balance that is reached by 

either approach. Ongoing work includes analysis of such a relationship, the extent to which 

the information source map is quantitatively valid, and how such a framework could be 

implemented in systems employing prior-image-based reconstruction to communicate 

confidence levels to the observer that a perceived image feature arises from the prior or from 

the newly acquired data.
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Fig. 1. 
Consider a prior image reconstruction that uses the modified norm that includes f(ti). 
Finding a suitable operating point, τi, we may approximate f(ti) with a quadratic function, 

g(ti), that intersects at f(τi).
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Fig. 2. 
Illustration of the prior image (A) and the true follow-up image (B) used to form current 

acquisition data (i.e., ROI or angularly undersampled). The images are the same except for 

the addition of a simulated lung nodule in the follow-up (green circle).
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Fig. 3. 
The information source decomposition applied to the ROI experiment using PIR-PLE. The 

two decomposition terms F(y) and G(μP) along with their sum (the predicted reconstruction, 

μ̂
D). The colorized source map combining F(y) and G(μP) in a single image conveys which 

features arise mainly from the prior image (red) and which arise largely from the newly 

acquired data (cyan/gray). The reconstruction is seen to rely more heavily on prior image 

information in regions outside the scanned region-of-interest (indicated by the dashed white 

circle).
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Fig. 4. 
Information source mapping applied to angularly undersampled data using PIR-PLE. Each 

row represents a different prior image penalty strength (βP). The direct relationship between 

prior image penalty strength and the influence of the prior image is clear. Low βP values 

result in a negligible G component and produce images similar to traditional penalized-

likelihood with no prior image contribution. High βP values yield greater similarity with the 

prior image, and the changes supported by the newly acquired data are readily apparent in 

the F component and the colorized source maps – most notably, the solitary lung nodule.
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Fig. 5. 
Information source mapping applied to the angular undersampling case and PICCS 

reconstruction. Each row represents a different choice of α, with larger α yielding increased 

reliance on the prior image and smaller α yielding increased reliance on the roughness 

penalty.
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