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Abstract

There is no segmentation method that performs perfectly with any data set in comparison to 

human segmentation. Evaluation procedures for segmentation algorithms become critical for their 

selection. The problems associated with segmentation performance evaluations and visual 

verification of segmentation results are exaggerated when dealing with thousands of 3D image 

volumes because of the amount of computation and manual inputs needed.

We address the problem of evaluating 3D segmentation performance when segmentation is applied 

to thousands of confocal microscopy images (z-stacks). Our approach is to incorporate 

experimental imaging and geometrical criteria, and map them into computationally efficient 

segmentation algorithms that can be applied to a very large number of z-stacks. This is an 

alternative approach to considering existing segmentation methods and evaluating most state-of-

the-art algorithms. We designed a methodology for 3D segmentation performance characterization 

that consists of design, evaluation and verification steps. The characterization integrates manual 

inputs from projected surrogate “ground truth” of statistically representative samples and from 

visual inspection into the evaluation. The novelty of the methodology lies in (1) designing 

candidate segmentation algorithms by mapping imaging and geometrical criteria into algorithmic 

steps, and constructing plausible segmentation algorithms with respect to the order of algorithmic 

steps and their parameters, (2) evaluating segmentation accuracy using samples drawn from 

probability distribution estimates of candidate segmentations, and (3) minimizing human labor 

needed to create surrogate “truth” by approximating z-stack segmentations with 2D contours from 

three orthogonal z-stack projections and by developing visual verification tools.

We demonstrate the methodology by applying it to a dataset of 1253 mesenchymal stem cells. The 

cells reside on 10 different types of biomaterial scaffolds, and are stained for actin and nucleus 
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yielding 128 460 image frames (on average 125 cells/scaffold × 10 scaffold types × 2 stains × 51 

frames/cell). After constructing and evaluating six candidates of 3D segmentation algorithms, the 

most accurate 3D segmentation algorithm achieved an average precision of 0.82 and an accuracy 

of 0.84 as measured by the Dice similarity index where values greater than 0.7 indicate a good 

spatial overlap. A probability of segmentation success was 0.85 based on visual verification, and a 

computation time was 42.3 h to process all z-stacks. While the most accurate segmentation 

technique was 4.2 times slower than the second most accurate algorithm, it consumed on average 

9.65 times less memory per z-stack segmentation.

Keywords

3D segmentation; segmentation evaluation; sampling; visual verification; confocal imaging; stem 
cells

1 BACKGROUND

Three-dimensional (3D) segmentation methods of digital volumetric data (called z-stacks) 

from confocal microscopy have been a research problem for a couple of decades 

(Indhumathi et al. 2011; Chen et al. 2014; McCullough et al. 2008; Lin et al. 2003; 
Herberich et al. 2011). In its simplest form, 3D segmentation is about labeling each 

volumetric element (voxel) as foreground or background. The need for 3D segmentation 

automation becomes prominent when hundreds or thousands of z-stacks have to be 

processed and the cost of manual segmentation is prohibitive. It has been widely accepted 

(Fenster and Chiu 2005; Udupa et al. 2006) that evaluations of automated segmentation have 

to include accuracy (validity), precision (reliability, repeatability), and efficiency (viability). 

Our goal is to address the problem of segmentation evaluation over a very large number of z-

stacks.

Automated 3D segmentation over a large number of z-stacks often comes at a high 

computational cost and hence computational efficiency is of concern. There has been an 

abundance of 3D segmentation algorithms published in computer vision and medical fields 

with a frequently cited older review by Pal and Pal (Pal and Pal 1993). We have followed a 

more recent succinct review in (Wirjadi 2007) which divides segmentation approaches into 

classes such as thresholding, region-growing, deformable surfaces, level sets, and other 

concepts (watersheds, fuzzy connectedness, etc.). We selected a class of thresholding-based 

3D segmentation approaches because of experimental criteria and computational efficiency. 

Within this class of 3D segmentation methods, we focus on a segmentation evaluation 

methodology rather than on a broad range of existing 3D segmentation methods and/or their 

trade-offs between speed and accuracy.

While there is a plethora of 3D segmentation algorithms based on thresholding, each 

segmentation solution is customized to a particular experiment and its datasets by choosing a 

specific sequence of segmentation steps and parameters. Thus, the construction and 

optimization of such 3D segmentation algorithms have to be supported by evaluations and 

verifications of segmentation results. The challenges of segmenting a large number of z-
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stacks lie not only in the algorithmic design but also in the design of methodology evaluation 

procedures that scale over a thousand of z-stacks and minimize any needed human labor.

Previous work on segmentation evaluation frameworks has been reported in several papers 

(Y. Zhang 1996; Y. J. Zhang 2001; Zou et al. 2004; Udupa et al. 2006; Shah 2008; Fenster 

and Chiu 2005; Cardoso and Corte-Real 2005). The evaluation methods are broadly divided 

into analytical and empirical methods (Cardoso and Corte-Real 2005; Y. Zhang 1996). Due 

to the difficulties in comparing algorithms analytically, the majority of published 

segmentation algorithms are evaluated by empirical methods that are classified into 

goodness and discrepancy types. The goodness type needs a set of conditions according to 

human intuition that are mapped into measured parameters. The discrepancy type is based 

on the availability of ground truth or at least a surrogate “ground truth”. We have built our 

3D segmentation evaluation methodology as an empirical discrepancy method with the focus 

on pixel level accuracy. While object level evaluations might be appropriate for cell counting 

or tracking (Cohen et al. 2009), the biological study behind the current work requires pixel 

level evaluations of 3D cell geometry. The challenges of evaluation lie not only in 

establishing a surrogate “ground truth” and measuring accuracy but also in understanding 

precision of the surrogate “truth” and its labor demands.

Our interest in automated 3D segmentation comes from investigating the effects of various 

biomaterial scaffolds on 3D shape of stem cells (Farooque et al. 2014). It was hypothesized 

that a scaffold type affects cell morphology and influences cell behavior. To obtain 

statistically significant evidence for testing this hypothesis, primary human bone marrow 

stromal cells (hBMSCs) were cultured on 10 scaffold types. The cells were stained for actin 

and nucleus, and imaged using confocal laser scanning microscopy (CLSM) over 

approximately 100 cells (i.e., z-stacks) per scaffold type. To this end, we aim to measure and 

analyze 3D cell shapes after cell (foreground) voxels in each z-stack are labeled by an 

automated 3D segmentation algorithm.

In this context, we pose the following research questions.

1. How do we construct a 3D segmentation algorithm based on the experiments 

designed to test the aforementioned biological hypothesis?

2. How do we evaluate accuracy and precision of 3D segmentation algorithms over 

more than a thousand z-stacks?

3. How do we verify 3D segmentation algorithmic performance over a large number 

of z-stacks?

We approach the research problems in three steps: design, evaluate, and verify.

The algorithmic design consists of analyzing imaging and geometric criteria of the cell-

scaffold interaction experiments, and then mapping them into a set of algorithmic steps. The 

algorithmic steps are ordered into six plausible segmentation sequences that form the pool of 

evaluated algorithms.

Next, the accuracy and precision evaluation is executed by establishing surrogate measures 

of “ground truth” called reference segmentations via manual segmentation. We select two z-
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stack samples per scaffold for manual segmentation to minimize the manual labor needed to 

create reference segmentations. The two samples are the most and the least representative z-

stacks in terms of foreground voxel counts. The voxel counts are obtained by six candidate 

segmentation algorithms. Foreground voxel counts over all cells per scaffold type form six 

probability distribution functions (PDFs) that are combined to a sampling score per z-stack. 

Experts perform manual segmentation by contouring only two z-stack samples per scaffold 

and only three orthogonal max intensity projections of each z-stack instead of a much larger 

number of z-stack frames (12 to 298 frames). The number of manually contoured 2D images 

represents 0.09 % of all actin frames (10 scaffolds × 2 samples × 3 orthogonal projections / 

total number of 64 230 actin frames) that would have to be contoured in order to create 

manual segmentations of all 1253 cells based on actin stain. Sampling adequateness is 

evaluated visually.

Finally, verification consists of applying to all 10 scaffold types the two most accurate 

segmentation algorithms based on reference segmentations. All 3D segmentation results are 

converted into a mosaic of three orthogonal 2D projections and into 3D meshes for 2D and 

3D visual verification. The pre-processing into 2D mosaics and 3D meshes minimizes the 

amount of human time and enables fast browsing with fixed 2D views and interactive 3D 

views. In return, additional measurements are obtained about segmentation quality and 

segmentation accuracy estimates are related to the verification results. The verification 

provides labels for (a) rejected cells (e.g., due to faint stain or due to touching the edges of a 

field of view (FOV)), (b) missed cells (i.e., the segment is other than the desired cell), and 

(c) inaccurately segmented cells (i.e., the segment corresponds to the desired cell but the 

shape deviates from the correct shape based on visual verification by an expert). The 

aforementioned methodology helps us to characterize segmentation precision, accuracy, 

efficiency, and the probability of segmentation success/failure.

2 MATERIALS AND METHODS

We start with the description of z-stacks (3D images), and then divide the overall 

methodology of 3D segmentation into design, evaluation and verification parts. These three 

parts map into the three research questions posed in the introduction.

2.1 Materials and Imaging

The effect of scaffold type on cell and nucleus structure was investigated with confocal 

microscopy. Ten scaffolds were investigated (Table 1).

Primary human bone marrow stromal cells (hBMSCs, Tulane Center for Gene Therapy, 

donor #7038, 29 yr. female, iliac crest) were cultured in medium (α-MEM containing 16.5% 

by vol. fetal bovine serum, 4 mmol/L L-glutamine, and 1 % by volume of penicillin/

streptomycin) in a humidified incubator (37 °C with 5 % CO2 by vol.) to 70 % confluency, 

trypsinized (0.25 % trypsin by mass containing 1 mmol/L ethylenediaminetetraacetate 

(EDTA), Invitrogen) and seeded onto substrates at passage 5. SC, SC+OS, NF, NF+OS, MF, 

PPS and CF substrates were placed in multi-well plates and cells suspended in medium were 

seeded onto them at a density of 2500 cells/cm2. MG, FG, and CG cells were suspended in 

the liquid gel components and dispensed into multi-well plates prior to gelation such that the 
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cell concentration was 2500 cells/cm2 (based on the area of the well). hBMSCs were 

cultured for 1 d for all treatments prior to imaging. After 1 d culture, cells on scaffolds were 

fixed with 3.7 % (vol./vol.) formaldehyde and stained for actin (330 nmol/L Alexa Fluor 546 

phalloidin, Life Technologies) and nucleus (0.03 mmol/L 4′,6-diamidino-2-phenylindole, 

DAPI, Life Technologies). More than 100 cells were imaged per scaffold type to provide 

statistically meaningful results.

Cells were imaged (confocal laser scanning microscope, SP5 II, Leica Microsystems) using 

a 63× water-immersion objective (numerical aperture 0.9). A z-stack with two channels (1 

airy unit, actin 543 nm excitation and emission 564 nm to 663 nm; nucleus 405 nm 

excitation and emission 434 nm to 517 nm) was collected for each of 1253 cells. Only 

individual hBMSCs that were not touching other cells (one nucleus per object) were imaged. 

Based on the manufacturer’s defined resolution for the 63× objective (xy = 217 nm and z = 

626 nm for 488 nm wavelength), we defined our acquisition voxel dimensions at 240 nm × 

240 nm × 710 nm (x-,y- and z-axis, respectively) and drew conclusions on shape features 

greater than 0.1 mm in size. Each z-frame in the z-stacks was exported as a 1 MB tif image 

with a resolution of 1024 × 1024 pixels (246 μm × 246 m). Examples of z-frame tif images 

are shown in Figure 1. Statistics of the z-frames are summarized in Figure 2. The data 

collection generated z-stacks of 1253 cells, which is equivalent to 128 460 z-frames (on 

average 125 cells/scaffold × 10 scaffold types × 2 stains × 51 frames/cell frames stored as tif 

files) and 135 GB.

2.2 Design: Construction of Candidate 3D Segmentation Algorithms

For evaluation purposes, the space of all plausible automated 3D segmentation algorithms 

that are applicable to the 1000+ z-stack experiment should be narrowed down. Each 3D 

segmentation algorithm consists of a set of algorithmic steps. We select candidate 

algorithmic steps based on imaging and geometrical experimental criteria first. Next, we 

apply a set of problem constraints to filter all possible permutations of algorithmic steps into 

a biologically admissible subset. The outcome is a set of six 3D segmentation algorithms 

whose accuracy will be evaluated.

Algorithmic steps—Table 2 summarizes imaging and geometrical criteria for identifying 

cellular objects in the biological experiments designed to study cell-scaffold interaction. 

Each criterion is mapped to an algorithmic step based on an assumed image property. The 

numerical values in the last geometrical criterion are directly related to our 3D data. The 

values were established based on a discussion between cell biologists and computer 

scientists, since they depend on specific image acquisition settings. The last column in Table 

2 also provides abbreviations for the five algorithmic steps that will be used for constructing 

plausible 3D segmentation sequences (T, E, F, L, and M).

Order of algorithmic steps—Following the analysis in Supplemental Document A, we 

narrowed down the space of 120 possible segmentation sequences to two evaluated 

algorithmic sequences with and without geometric criteria: T➔E and T➔E➔F➔L➔M➔L.
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Constructed candidate algorithmic sequences—The two sequences above contain 

two parameters: the method for estimating the intensity threshold in step T and the type of 

morphological operation in step M. We followed the work in (Sezgin and Sankur 2004) that 

includes evaluation and ranking of 40 methods for selecting an intensity threshold. The 

accuracy evaluations in (Sezgin and Sankur 2004) are based on document images and “non-

destructive testing images” including laser scanning confocal microscopy images. We have 

tested performance of the top ranked methods from the six categories of thresholding 

techniques by leveraging implementations in Fiji (Schindelin et al. 2012) and our own 

prototype implementations. Based on the published ranking in (Sezgin and Sankur 2004) 

and our visual performance assessment using our data, we selected minimum error 
thresholding (T1) and topological stable state thresholding (T2).

The two types of morphological operations in step M are either Closing➔Opening (M1) or 

Opening➔Closing (M2). Both thresholding and morphological parameters are described in 

the Supplemental Document B. Based on the above parameters, six segmentation algorithms 

for accuracy evaluations are defined as summarized in Table 3.

2.3 Evaluation: Accuracy and Precision of 3D Segmentation Algorithms

In the absence of accurate first principle simulations, a segmentation reference can be 

obtained via imaging phantoms or providing manual inputs. Unfortunately, imaging 

phantom objects is very difficult because the properties of a cell and surrounding media and 

of a phantom and surrounding media must match experiments. Further, the culture 

environment, such as the type of scaffold in which the cell was cultured, will affect the 

phantom imaging. Turning our attention to manual inputs and to empirical discrepancy 

methods (Y. Zhang 1996; Cardoso and Corte-Real 2005), a segmentation reference would be 

established ideally by manual contouring each 2D cross section of a z-stack while viewing 

the z-stack from multiple viewpoints. This approach would require manual input for 

approximately 64 230 frames in our dataset (on average 125 cells/scaffold × 10 scaffolds × 

51 frames/cell) and is clearly labor prohibitive.

In order to minimize the overall manual labor, we introduce sampling and “minimum effort” 

manual labeling using orthogonal projections as illustrated in Figure 3. We proceeded 

following the enumerated steps in Figure 3.

1. Six automated algorithmic sequences are applied to all 1253 raw z-stacks to obtain 

segmented 3D volumes and foreground voxel counts.

2. A set of average and standard deviation values  is computed from the 

foreground voxel counts per scaffold type and algorithmic sequence k.

3. Each z-stack j is associated with score(j) according to Eq. (1).

(1)

where Ck(j)) is the FRG voxel count obtained by the k-th segmentation algorithm 

for the j-th z-stack. The score can be viewed as a normalized residual subtracting 
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the effect of six algorithms on the FRG voxel count. Given the score per z-stack, 

one can choose any number of samples between the smallest to the largest 

normalized residuals that correspond to the most representative of the most 

deviating cell in terms of foreground (FRG) voxel count. We chose to draw two 

extreme samples per scaffold type according to Eq. (2).

(2)

where j1 and j2 are the indices of the two extreme samples (global min and max 

residuals). Figure 4 illustrates the application of steps 2 and 3 in Figure 3 (sampling 

methodology) to the z-stacks from Collagen Fibrils scaffold.

4. Three orthogonal max intensity projections (X-Y, X-Z, and Y-Z shown in Figure 5) 

of each sampled z-stack are presented to a human expert for manual contouring and 

then processed into a connected 2D region by painting interior pixels.

5. After performing the six automated segmentations listed in Table 3, each sampled 

z-stack is projected into the three orthogonal planes and the segmented foreground 

pixels in each projection are labeled into a connected 2D region.

6. The manually and automatically obtained connected regions A and B for the same 

orthogonal projection are compared using the Dice similarity index (DSI) (Cha 

2007), (Dice 1945) defined in Eq. (3).

(3)

The Dice index has been used frequently as a similarity measure for spatial overlap and is 

related to the kappa statistic for evaluating inter-rates agreement (Zou et al. 2004). Values 

larger than 0.7 indicate a good spatial overlap (Zou et al. 2004).

In order to determine the most accurate segmentation sequence, we compute the average of 

all Dice indices over all compared samples of segmentation references and their three 

orthogonal projections, and then compare them across the six candidate algorithmic 

sequences. To execute the overall methodology in our specific case, the total number of 

segmentation executions is equal 6 × 1253 × 9 = 67 662, for the 6 algorithms in Table 3 to 

segment 1000+ z-stacks 9 times in order to find optimal threshold for the minimum error 

thresholding (T1) and the topological stable state thresholding (T2). The choice of 9 

threshold values for the optimization was preceded by sample runs over 255 threshold 

values, and selecting the maximum threshold value as the range.

Segmentation precision is established by four experts performing manual segmentation of 

the same z-stacks. The resulting segmentation masks are compared pair-wise and the 

average Dice index is reported as a measure of repeatability (segmentation precision).
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2.4 Verification: 3D Segmentation Results over a Large Number of Z-stacks

The previously described methodology does not guarantee accurate segmentation for every 

z-stack because it is computed only over the sampled z-stacks and against three orthogonal 

2D projections instead of full 3D segmentation. Our goal is to use visual verification for 

detecting segmentation failures with minimal human effort, and use the results for quality 

control and for computing the probability of segmentation failure.

To minimize human labor, we converted each 3D segmentation into a mosaic of three 

orthogonal projections for 2D visual verification shown in Figure 6. An expert browsed a 

folder of such mosaic images and provided annotations classified according to the left 

column of Figure 6.

Furthermore, we converted segmentation results into a multi-resolution pyramid of 3D 

meshes and designed a web-based visualization for 3D visual verification shown in Figure 7. 

The 3D visualization allows a quick visual assessment of 3D shapes. Additional sorting and 

color-coding capabilities were used for verifying shape accuracy and reporting annotation 

labels.

3 EXPERIMENTAL RESULTS

We have followed the three parts of the 3D segmentation evaluation methodology (design, 

evaluate, verify) described in Section 2 and applied them to 1253 cells.

3.1 Design: Ordered Segmentation Sequences

The six candidates of 3D segmentation sequences were applied to the 1253 actin channel z-

stacks to generate 7518 segmentation outcomes. We investigated two questions related to (a) 

the importance of each algorithmic step (or each corresponding criterion) on the final 

foreground (FRG) voxel counts and (b) the sensitivity of FRG counts per algorithmic step 

across scaffold types.

Figure 8 shows the average FRG count after each step of one of the sequences A12: 

T1➔E➔F➔L➔M2➔L for the 10 scaffolds. We observed the largest negative rate after 

thresholding T1 and the second largest rate after the step L (removal of all connected regions 

but the largest one). Thus, T1 and L steps are the most important in terms of FRG voxel 

count. FRG voxel counts did not change significantly during the E (removal around edges) 

and F (hole filling) steps.

For most of the segmentation steps, the lines in Figure 8 had similar slopes indicating that 

the 6 segmentation algorithms were not sensitive to a scaffold type. Some degree of scaffold 

sensitivity is seen after the step F (lines cross each other between F to L). These observations 

are true across all 6 segmentation algorithms.

3.2 Evaluation: Manual Segmentation Precision

In order to establish a surrogate “truth” via manual segmentation, we investigated precision 

of manual segmentation over a set of three z-stacks (cells) segmented by four experts. We 

chose cells on Collagen Gel scaffold because these cells have been observed to have the 
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largest 3D extent, which is important in assessing 3D segmentation accuracy. Two cell 

biologists and two computer scientists manually segmented three orthogonal projections per 

cell (9 images). Figure 9 summarizes precision statistics per cell projection of Dice index. 

The Dice index has an overall average precision of 0.82 and standard deviation of 0.07. 

These results demonstrate consistent enough manual segmentations (Dice index larger than 

0.7). The fact that manual segmentations by four experts resulted in an average Dice index 

of 0.82 indicates that image data are of sufficient quality to be segmented and analyzed.

3.3 Evaluation: Automated Segmentation Accuracy

We evaluated segmentation accuracy based on 20 cells selected according to the described 

sampling methodology (two cells per scaffold). The cells were manually contoured using the 

polygon drawing tool in ImageJ/Fiji (Schindelin et al. 2012). The projections of the 

automated segmentation and the manually contoured masks were compared by using the 

Dice index. The 20-cell collection was extended by additional 10 cells drawn from various 

scaffolds (2 PPS, 1 MF, 1 CF, 1 CG, 2 MG, 2 NF, 1 NF+OS) and manually segmented. The 

additional 10 cells were selected and manually segmented through the iterative process of 

imaging, evaluation and verification (quality control). The iterative process started with 1147 

cells that were reduced to 873 cells via quality control. In the next two iterations, additional 

106 cells were imaged yielding a total of 1253 cells and 30 manually segmented cells. We 

investigated the question whether the accuracy estimations from 20 initially sampled cells 

are similar to the estimations from 30 sampled cells collected during the iterative quality 

control process.

The Dice index based segmentation accuracies per segmentation algorithm are shown in 

Figure 10 (top) for the case of 20 cells and 30 cells. The two segmentation sequences with 

only imaging criteria (A1: T1➔E and A2: T2➔E) performed much worse than the 

algorithmic sequences with imaging and geometric criteria. This result emphasized the 

importance of mapping tacit geometric knowledge about cells into algorithmic steps. Next, 

the inclusion of M2 (Opening➔Closing) led to higher accuracy than the inclusion of M1 

(Closing➔Opening). This indicates that the thresholding step did not remove voxels with 

low intensity and hence M2 was preferred to shrink the foreground. Finally, the comparison 

of average accuracies reported for 20 and 30 cells are quite similar considering that they 

represent 1.6 % (20/1253) and 2.4 % (30/1253) of the cells. This suggests that the 20 cells 

selected by the score based sampling be sufficient for evaluating the segmentation 

candidates.

Based on the results in Figure 10 (top), the segmentation sequences A11: 

T1➔E➔F➔L➔M1➔L, A12: T1➔E➔F➔L➔M2➔L and A22: T2➔E➔F➔L➔M2➔L 

delivered an average accuracy larger than 0.7 based on the Dice similarity index. One would 

also like to know the robustness of accuracy estimates to scaffold type. In other words, is 

there a need for a scaffold-specific segmentation algorithm? Figure 10 (bottom) shows the 

accuracy estimates per scaffold type. The results demonstrate that the sequences A12 and 

A22 are consistently more accurate across all scaffold types. Thus, one segmentation 

algorithm is sufficient for the segmentation task with multiple scaffolds. Note that the 

segmentation accuracy estimate for PPS scaffold is less than 0.7 because the automated 
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segmentation failed for one of the four selected PPS samples. This points to the small 

sample size if the accuracy evaluation is refocused from the entire collection of z-stacks to 

the subset of z-stacks per scaffold. From a quality control perspective, the best approach is to 

verify the segmentation accuracy estimates. Thus, we selected the top two performing 

sequences A12 and A22 for additional visual verification.

3.4 Evaluation: Efficiency

We have collected efficiency benchmarks on a desktop computer (Apple Mac Pro with 3.2 

GHz Quad-Core Intel Xeon processor, and 16 GB of RAM). The execution was divided into 

(a) finding optimal threshold according to one of the two objective functions (implemented 

in Java language) and (b) applying all segmentation steps to obtain the segmentation 

(implemented in C language). Thus, the steps T1 and T2 were divided into the computations 

of threshold optimization O1 and O2 (threshold values between 1 to 9), and actual image 

thresholding T (i.e., T1={O1, T}, T2={O2, T}). All runs were executed using single 

threaded implementations.

Figure 11 (top) documents the relative efficiency of three computations O1, O2, and 

T➔E➔F➔L➔M2➔L that form the top two segmentation sequences A12 and A22. The 

computation O1 takes the highest percentage of time and there are some dependencies of the 

percent execution times on the scaffold type. The total times for O1, O2 and 

T➔E➔F➔L➔M2➔L were approximately 36.1 h, 8.6 h, and 6.2 h respectively.

Figure 11 (bottom) shows the average heap memory size allocated by Java Virtual Machine 

(JVM) and the used heap memory size during threshold optimization computations O1 and 

O2. The average heap memory allocation per z-stack computed over all scaffolds for O1 is 

0.46 GB (0.17 GB used heap) and for O2 is 4.44 GB (1.97 used heap). Based on Figure 11, 

we can conclude that the segmentation algorithms using O1 (minimum error thresholding) 

were 4.2 times slower (36.1/8.6) but consumed 9.65 times less memory (4.44/0.46) than the 

segmentation algorithms using O2 (topological stable state thresholding).

3.5 Verification

The best performing two segmentation sequences A12 and A22 were selected for visual 

verification. Table 4 provides a summary of the verification annotations for the actin channel 

z-stacks based on the mosaic of three orthogonal projections illustrated in Figure 6.

Based on Table 4, the segmentation algorithm A12 reported much fewer inaccurate shapes 

than the algorithm A22 (130 versus 233) which is consistent with the accuracy estimates 

(Dice index 0.84 versus 0.76). Thus, by proceeding with the segmentation sequence A12: 

T1➔E➔F➔L➔M2➔L we can assign the probabilities of segmentation failure 0.15 

((1253−1059)/1253) and success 0.85 (1059/1253) over all 10 scaffolds in addition to the 

accuracy, precision and efficiency measurements. The probability of failure can be 

decomposed into percent contributions from cell z-stack rejection due to imaging 2.4 %, 

missed cell region 2.7 %, and inaccurate shape 10.3 %.
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4 DISCUSSION

Input data

We have considered the segmentation task for various image inputs in the context of cell 

volume quantification. Even though 3D segmentation could be applied to actin or nucleus or 

combined channel inputs, we focused on the actin channel. The nucleus was also stained in 

each cell to confirm that the actin-based segmented object was a cell. In fact, the nucleus 

presence confirms that objects are not dust or debris. Staining cells in scaffolds is 

challenging since there can be high background from fluorophore binding to the scaffold 

matrix. In the present work, cells were imaged within 10 different scaffolds making it 

difficult to find an optimal stain that had low intensity background in all scaffolds. We 

selected phalloidin (Alexa fluor 546 phalloidin) since phalloidin is a small molecule fungal 

toxin that binds specifically to actin and would be expected to yield low intensity 

background. Distance was calibrated in confocal Z-stacks using a NIST-traceable stage 

micrometer (Klarmann Rulings). Additional calibration was performed by imaging 

fluorescent spheres (FocalCheck Microspheres, 15 μm, LifeTech) to estimate shape 

uncertainty of the confocal Z-scanning system.

Methodology

The choice of two samples per scaffold was motivated by minimizing human labor. 

Contouring a minimum residual (“typical”) cell and a maximum residual (“atypical”) cell in 

term of its FRG voxel count was feasible over 10 scaffolds. Other criteria can be imposed on 

the residual values to choose sample cells. Ideally, one would like to sample cells that would 

be annotated as “rejected” or “missed cell” in proportions to the cells with accurate and 

inaccurate shapes.

Though manual segmentation of each 2D frame in a Z-stack would be the most accurate 

method to validate automated segmentations, this approach is prohibitively labor-intensive. 

In our case, the exhaustive manual segmentation would require 128 460 images in the entire 

dataset. If we chose only 2 cells per scaffold × 10 scaffolds × 521 z-frames per cell 

(representing the sum of average number of z-frames per scaffold) then the manual 

segmentation would still require 10 420 images. In contrast, manual segmentation of a 2D 

X-Y projection or a random z-frame is the most rapid approach, but does not consider the 

3D nature of the datasets. Thus, a compromise was selected where X-Y, Z-Y and Y-Z 

projections (3 orthogonal maximum intensity projections) were manually segmented. This 

approach minimizes manual labor while also accounting for the 3D nature of the data. A 

more thorough uncertainty analysis might be needed in the future to understand the trade-

offs between labor savings and accuracy of segmentation references.

While we described the procedure for selecting the auto-thresholding methods in Section 

2.2, the choice of only two methods was driven by combinatorial complexity and required 

computational time. By adding another auto-thresholding method we would introduce 1253 

z-stacks × 9 threshold values = 11 277 additional segmentations to find the optimal 

threshold. Given our focus on evaluation methodology rather than on computational speed, 

we did not want to exceed more than two days of computations to obtain results for the 
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current total number of segmentations (67 662 segmentations ~ 42.3 h). However, it is 

important to state that the described methodology is computationally demanding as the 

parameter search space of auto-thresholding methods and their threshold values could be 

very large.

Another frequently reported measure of segmentation quality is its robustness to background 

noise and various artifacts. In our case, the noise robustness has been addressed by threshold 

optimization. Although we used two of many published threshold optimization techniques 

(Sezgin and Sankur 2004) that had been evaluated, we performed additional experiments to 

verify the noise robustness of the segmentation sequences. We generated synthetic cell 

models as a sphere with the radius of 50 pixels and a prolate spheroid with the parameters 

[a=25, b=25, c=50]. They were represented by the z-stack dimensions of 128 × 128 × 110 

voxels. For each cell model, we added noise following Uniform and Gaussian probability 

distribution function (PDF) with either maximum or standard deviation values between 10 

and 130 in the increments of 10. As expected for 8 bit per pixel z-stacks, the estimated 

volume (FRG count) by the method A12 starts to deviate from the reference value at 130 for 

Uniform PDF and at 70 for Gaussian PDF. We did not simulate various artifacts such as 

debris, cells leaving the FOV, or touching cells because the simulation models would have to 

be developed and validated, and their parameters estimated from the data.

Experimental results

We observed consistency of the segmentation accuracy results measured for A12: 

T1➔E➔F➔L➔M2➔L (Dice index of 0.84 and the probability of segmentation success of 

0.85). The segmentation accuracy evaluation and visual verification represent both 

quantitative and qualitative measurement approaches. The quantitative approach, comparing 

manual and automated segmentation, is based on methods for selecting representative cell 

samples from the cell populations and for evaluating the accuracy of sample segmentations 

at pixel or voxel level. The qualitative approach, a visual inspection of all segmented cells 

for quality control, makes use of 2D and 3D tools (see Figure 6 and Figure 7), and an 

expert’s evaluation based on the tacit rules for annotation categories. There is more 

ambiguity in annotating “inaccurate shape” than “rejected cells” or “missed cells”, because 

the visual tolerance in defining “inaccurate shape” is hard to quantify. In our work, the 

visual tolerance was following approximately the 75 % rule used in (Lou et al. 2014). In 

other words, a cell is segmented accurately enough if the automated segmentation has at 

least 75 % overlap with the expert’s perceptual segmentation.

5 CONCLUSIONS

We have designed a methodology for evaluating automated 3D segmentation results over a 

large number of z-stacks. The methodology is generalizable to a class of problems where 

imaging and biological criteria can be translated into a finite set of segmentation algorithms. 

The key contributions of our work are in (1) designing and constructing candidate 

segmentation algorithms, (2) evaluating segmentation precision, accuracy and efficiency, and 

(3) verifying segmentation success visually. We constructed and evaluated six 3D 

segmentation algorithms, and visually verified two of them to deliver 1059 high-quality 
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segmentations from 1253 z-stacks. The most accurate 3D segmentation algorithm achieved 

an average precision of 0.82 and accuracy of 0.84 measured by the Dice similarity index, the 

probability of segmentation success 0.85 based on visual verification, and the computational 

efficiency of 42.3 h to process all z-stacks. While the most accurate segmentation was 4.2 

times slower than the second most accurate algorithm it consumed on average 9.65 times 

less memory per z-stack segmentation.

We plan to disseminate the raw z-stacks and their segmentations via a web application that 

serves the purpose of data sub-setting, as well as 3D browsing. We reached our goal of 

obtaining at least 100 cells per scaffold after visual verification. This will enable completion 

of the study of the effects of the 10 scaffolds on the 3D shape of stem cells at unprecedented 

statistical confidence.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Shape variations of 2D middle cross sections of z-stacks representing cells on spun coat 

scaffold. The actin stained images are displayed by showing all values above zero intensity.
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Figure 2. 
Statistics about the number of z-frames per z-stack over 10 scaffold types
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Figure 3. 
An overview of segmentation accuracy estimation. “Alg.” stands for algorithm.
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Figure 4. 
Illustration of the sampling methodology applied to 114 z-stacks from Collagen Fibrils 

scaffold collection. The two red dots in the lower right panel correspond to the two z-stacks 

selected for manual segmentation.
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Figure 5. 
Two examples of three orthogonal max intensity projections of the min (top) and max 

(bottom) scores for Microfiber scaffold. Left column shows the projections of the original z-

stack. Right column shows manually segmented three projections of the same z-stack. The 

ZX and YZ projections have been scaled in the Z direction.
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Figure 6. 
Annotations, three orthogonal projections of a z-stack with actin channel and PPS scaffold, 

and the segmentation results obtained by executing the top two algorithmic sequences. The 

cells of interest are denoted by a red box. The z-stack voxels here were projected as cubic 

voxels without being scaled in the z-dimension. The size of the XY projections is 246 μm × 

246 μm.
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Figure 7. 
A 3D web-based visualization of 100+ z-stacks from the same collagen scaffold type. The 

insets illustrate the interactivity during visual inspection. The blue ball is used as a spatial 

scale.

Bajcsy et al. Page 21

J Microsc. Author manuscript; available in PMC 2016 December 01.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



Figure 8. 
Average FRG voxel count per scaffold after executing each step of the segmentation 

sequence A12: T1➔E➔F➔L➔M2➔L. The legend denotes the scaffold types.
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Figure 9. 
Repeatability (precision) of manual segmentations estimated over three cell samples (S1, S2, 

S3) times 3 orthogonal projection images (XY, XZ, YZ) by four human subjects.
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Figure 10. 
Top: Segmentation accuracy of six segmentation algorithms measured by average of the 

Dice index over 20 or 30 manually segmented cells. Bottom: Segmentation accuracy 

estimations per scaffold type established based on 30 cells that were manually segmented.
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Figure 11. 
Top: Execution time efficiency for the top two performing sequences A12: 

T1➔E➔F➔L➔M2➔L and A22: T2 E➔F➔L➔M2➔L decomposed into O1, O2 and 

T➔E➔F➔L➔M2➔L computation times. Bottom: Memory benchmarks of two threshold 

optimization computations using O1 ~ Minimum error thresholding and O2 ~ Topological 

stable state thresholding approaches.
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Table 1

Scaffold type abbreviations and descriptions

Abbreviation Description

SC flat films of spuncoat poly(ε-caprolactone) (PCL, relative molecular mass 80 000 g/mol);

SC+OS flat films of spuncoat PCL with osteogenic supplements (OS, 10-nmol/L dexamethasone, 20-mmol/L β-glycerophosphate, 
0.05-mmol/L L-ascorbic acid);

NF electrospun PCL nanofibers (dia. 589 nm);

NF+OS electrospun PCL nanofibers with OS;

MF electrospun PCL microfibers (dia. 4.4 μm);

PPS porous polystyrene scaffolds (Alvetex, pore size 36 μm to 40 μm, Reinnervate, Inc.);

MG matrigel (reduced-growth factor Matrigel, BD Biosciences);

FG fibrin gel (fibrinogen from human plasma (6 mg/mL) polymerized with thrombin from human plasma (25 U/mL), Sigma, 
Inc.);

CG collagen gel (PureCol bovine type I collagen, Advanced BioMatrix);

CF collagen fibrils prepared as described (Elliott et al. 2007)
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Table 2

Mapping criteria for identifying cellular objects to algorithmic steps of automated segmentation.

Criterion Type Criterion Description Segmentation Algorithmic Step Abbreviation Comment

Imaging Signal from a cell is higher 
than background noise

Intensity thresholding T All voxels with intensity 
above the chosen threshold 
become foreground, all other 
pixels become background

Imaging A cell touching the edge of the 
field of view will be discarded

Removal of objects touching the 
image edges

E The shape of a cell touching 
the edge of the field of view 
cannot be determined since it 
is cut-off (part of the cell 
body is outside the field of 
view)

Geometry A cell does not contain any 
enclosed cavities

Spatial filling of cavities F Generally, cells are not 
expected to have cavities 
within their volume. 
However, it is conceivable 
that a cell could have a 
tunnel if it were wrapped 
around a fiber, or a void 
volume if it was wrapped 
around a spherical object.

Geometry a) A cell shape is continuous 
and does not have 
disconnected parts
b) The cell will be the largest 
object in an image 
(background debris in the 
image are smaller than the 
cell)

Spatial- and intensity-based removal 
of small objects

L a) Only one object should 
remain after segmentation
b) The largest object in the 
image that is not touching 
the edge of the image will 
also be the one object 
remaining after segmentation

Geometry Lessen contribution of image 
features below 1 μm in size

Surface smoothing of objects to 
remove features < 1 μm in size: 
closing, opening with 3×3×3 kernel 
that corresponds to 0.72 μm (x) by 
0.72 μm (y) by 2.139 μm (z)

M Although cells have sub-
micrometer features, the 
uncertainty in image data at 
this size-scale is not reliable, 
could arise from noise or 
debris, and may be 
artifactual
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Table 3

Summary of designed six segmentation algorithms.

Incorporated Assumption(s) Threshold Optimization Morphological Optimization Segmentation Algorithm Abbreviation

Imaging Minimum error N/A T1➔E A1

Topological stable state N/A T2➔E A2

Imaging and Geometry Minimum error Closing➔Opening T1➔E➔F➔L➔M1➔L A11

Opening➔Closing T1➔E➔F➔L➔M2➔L A12

Topological stable state Closing➔Opening T2➔E➔F➔L➔M1➔L A21

Opening➔Closing T2➔E➔F➔L➔M2➔L A22
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