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Abstract

Human longevity and diseases are likely influenced by multiple interacting genes within a few biologically conserved pathways. Using long-
lived smokers as a phenotype (n = 90)—a group whose survival may signify innate resilience—we conducted a genome-wide association 
study comparing them to smokers at ages 52–69 (n = 730). These results were used to conduct a functional interaction network and pathway 
analysis, to identify single nucleotide polymorphisms that collectively related to smokers’ longevity. We identified a set of 215 single nucleotide 
polymorphisms (all of which had p <5 × 10−3 in the genome-wide association study) that were located within genes making-up a functional 
interaction network. These single nucleotide polymorphisms were then used to create a weighted polygenic risk score that, using an independent 
validation sample of nonsmokers (N = 6,447), was found to be significantly associated with a 22% increase in the likelihood of being aged 
90–99 (n = 253) and an over threefold increase in the likelihood of being a centenarian (n = 4), compared with being at ages 52–79 (n = 4,900). 
Additionally, the polygenic risk score was also associated with an 11% reduction in cancer prevalence over up to 18 years (odds ratio: 0.89, 
p = .011). Overall, using a unique phenotype and incorporating prior knowledge of biological networks, this study identified a set of single 
nucleotide polymorphisms that together appear to be important for human aging, stress resistance, cancer, and longevity.
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Over time, nearly all biological organisms experience a progressive 
decline of cellular structure and function, resulting in a decreased 
ability for systems to adequately respond to environmental perturba-
tions and maintain homeostasis. This process known as aging is the 
number one risk factor for mortality among humans, contributing 
to an individual’s susceptibility to a number of distinct conditions 
such as cardiovascular disease, cancer, diabetes, neurodegenerative 
diseases, sarcopenia, lung disease, vision/hearing impairment, and 
frailty (1,2). Accordingly, it has been suggested that slowing the 
aging process would not only increase life span but also postpone 
most major illnesses and disability (3).

In 1993, a paper by Schächter and coworkers discussed the 
enormous potential for identifying alleles that influence aging and 
longevity in humans (4). Since then, with the growing availability 
of sequencing data, the search for genes that regulate human aging 
and longevity has gained significant momentum (5–8). Using twin 
data, researchers have estimated that genetic differences account for 

20%–30% of the variance in human life span, with the remainder 
being under the influence of environmental or stochastic factors 
(9,10). However, it has been suggested that the degree of genetic 
influence may also vary as a function of environment (11). Evidence 
from animal models suggests that genetic factors which influence 
longevity may be linked to innate stress resistance (12–15); if so, 
genetic endowment may contribute differentially to variability in 
life span within populations, as a function of environmental condi-
tions. For instance, genes that promote somatic maintenance and 
repair may exhibit a larger effect among individuals who accumulate 
increased exposure to adverse environmental conditions. Exposure 
to damaging environmental stressors would likely result in signifi-
cant reductions in life span for the majority of individuals; how-
ever, individuals genetically endowed with genes promoting somatic 
maintenance and repair may be able to better mitigate damage and 
thus would experience little to no reduction in life span. Conversely, 
the majority of those living under advantageous environmental 

http://www.oxfordjournals.org/
mailto:melevine@mednet.ucla.edu?subject=


conditions may have relatively long survival, due to minimal dam-
age accumulation, and thus genetic differences would have less of an 
effect on life-span variability.

Smoking is one of the most consistent biological stressors among 
humans and has been shown to have drastic consequences for life 
span and disease progression, most notable heart disease and cancer 
(16,17). It is suggested that cigarette exposure may impact the risk 
of death and disease via its acceleration of the aging process (18,19). 
Yet, not all smokers experience earlier mortality—in fact, a small 
proportion manage to survive to extreme ages. For instance, cen-
tenarians have been shown to exhibit the same poor health behav-
iors as other members of their birth cohort (20). There is reason to 
believe that these long-lived smokers may represent a biologically 
distinct group, endowed with genetic variants allowing them to 
respond differentially to environmental stressors. In previous work, 
we showed that current heavy smokers who had survived to age 
80 and beyond had mortality risks and inflammatory levels similar 
to nonsmoking individuals of the same age—suggesting that they 
may be innately equipped to offset the harmful effects of cigarette 
exposure (21).

In experimental studies, many of the genes associated with stress 
resistance and longevity in animal models have been found to be 
comprised within pathways, such as the insulin-like growth factor-I/
insulin signaling pathway, that are evolutionarily conserved among 
yeast, drosophila, Caenorhabditis elegans, mice, and humans (14,22). 
However, most of these mutations occur so rarely in nature that it 
is unlikely that they would contribute to the variability of life span 
within the general population. Furthermore, most of these mutations 
were discovered in organisms with identical genetic backgrounds, 
which will certainly not be the case when identifying polymorphisms 
that influence life span in humans. For humans, it is likely that mul-
tiple polymorphisms may simultaneously influence life span. For 
this reason, we hypothesize that multiple genes, potentially within 
these conserved pathways, influence longevity in a polygenic man-
ner. While work by Sebastiani and coworkers (8) successfully used 
Bayesian networks to quantify genetic signatures that were predic-
tive of longevity, most genome-wide association studies (GWAS) 
of human longevity investigate the individual influences of single 
nucleotide polymorphisms (SNPs). Incorporating a priori informa-
tion on networks may allow us to identify functionally related genes 
whose effects are too small to observe individually, yet jointly influ-
ence aging, longevity, and disease risks. Therefore, the current study 
aims to (a) investigate genes associated with the long-lived smoker 
phenotype, drawing on previous knowledge of functional interaction 
networks and pathways, in order to conceptualize GWAS results; (b) 
generate a polygenic risk score (PRS) based on GWAS and network-
selected SNPs; (c) examine how the genetic score is related to age 
in the nonsmoking population of middle-aged and older adults; (d) 
examine how the genetic score is related to prevalence of disease 
within both the smoking and nonsmoking populations.

Methods

Discovery and Validation Samples
Participants were part of the 2006 and 2008 waves of the Health 
and Retirement Study (HRS), a nationally representative longitudi-
nal study of health and aging in the United States (23). Our discovery 
sample was limited to white current smokers only. Cases (N = 90) 
were participants who reported that they currently smoked and who 
had survived to at least age 80 at the last wave they were interviewed, 
while controls (N = 730) were participants who reported that they 

currently smoked and who were less than 70  years of age at the 
last wave they were interviewed. It is well known that on average, 
smokers’ life expectancy is reduced by 10 years. Thus, one would 
expect that the mortality selection of smokers aged 80+ is similar 
to the mortality selection of nonsmokers aged 90+ (an age cutoff 
commonly used in longevity studies). Furthermore, we based our age 
cutoffs on our previous work, which provided evidence that heavy/
current smokers who survived to age 80+ were a distinct group (21). 
We showed that a nationally representative group of 80+-year-old 
smokers did not have higher mortality rates (during up to 18 years of 
mortality follow-up) compared to 80+-year-old never smokers. They 
also had similar physiological functioning measures—inflammation, 
blood pressure, and immune function. On the other hand, smokers 
who were aged 50–69 had significantly higher mortality rates during 
follow-up and worse contemporaneous physiological functioning 
measures than never smokers of the same age. Finally, the mortal-
ity rates of the younger group suggested that the majority of 50- to 
69-year-old current smokers will not survive to ages 80+. Overall, 
this suggests that smokers in their 80s and beyond likely represent a 
biologically resilient group (21).

Our validation sample (N = 6,447) was made up of HRS par-
ticipants who self-reported as nonsmokers at the time of their last 
interview, were aged 52 and older, and who had complete genetic 
data from which to generate a PRS. Participants younger than 52 
were excluded, given that HRS collects data on a nationally rep-
resentative sample of older adults (aged 52 and older), and their 
spouses, and as a result, younger participants represent spouses of 
persons aged 52 and older and therefore may not be representa-
tive of the population their age. In the validation sample, 4,501 
had missing genotype information for at least one of the SNPs used 
to create the PRS. When comparing excluded individuals (aged 50 
and older) to our validation sample, we found that they did not 
significantly differ in age, sex, or smoking status (former vs never). 
However, our validation sample was made up of significantly more 
participants who self-reported their race as white (86%) than the 
excluded sample (83%).

Genotyping and Quality Control
Genotyping was performed for participants who provided saliva 
samples and signed consent forms in 2006 and 2008 and was car-
ried out by the NIH Center for Inherited Disease Research (CIDR) 
using the Illumina Human Omni-2.5 Quad Beadchip, with cover-
age of approximately 2.5 million SNPs. Quality control filters were 
performed by CIDR and the Genetics Coordinating Center of the 
University of Washington (http://hrsonline.isr.umich.edu/sitedocs/
genetics/HRS_QC_REPORT_MAR2012.pdf). These filters con-
sisted of removal of: duplicate SNPs; missing call rates more than or 
equal to 2%; more than 4 discordant calls in 423 study duplicates; 
more than one Mendelian error; Hardy–Weinberg equilibrium p val-
ues less than 10−4 in European or African samples; sex differences 
in all allelic frequency more than or equal to 0.2; and sex differ-
ences in heterozygosity greater than 0.3. As a result, 2,201,371 SNPs 
remained. However, given our small sample of cases which could 
inflate p values for SNPs with small minor allele frequencies, we set 
our minor allele frequency cutoff at 0.05, which left us with a total 
of 1,224,285 SNPs for our analysis.

Principal components analysis was conducted by the HRS to 
account for population structure in accordance with the methods 
described by Patterson and coworkers (24). This analysis produced 
sample eigenvectors (EV). A screen plot generated by HRS showed 
that the 20 components produced by the principal components 
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analysis only accounted for a small fraction of the overall genetic 
variance (<4%) for the full HRS genetic sample and that most of 
this was contained within the first two components (23). We used a 
logistic regression model to examine the relationship between the 20 
EV and our phenotype and found that none of the EV were signifi-
cantly associated with being a long-lived smoker. Nevertheless, we 
ultimately decided to adjust for the first four EV in all subsequent 
analyses. More information on QC checks and the principal compo-
nents analysis is provided by HRS (25).

Functional Interaction Network
PLINK’s gene report command (26) was used to map SNPs with p 
less than 5 × 10−3 to Genes based on GRCh37/hg19 coordinates. Start 
and end genome positions from RefSeq genes were provided by the 
UCSC table browser (http://genome.ucsc.edu/cgi-bin/hgTables). For 
our analysis, we did not assign upstream or downstream SNPs to a 
gene; only those SNPs that fell within the designated GRCh37/hg19 
coordinates of the gene were assigned to the gene—no border was 
added to the start and stop coordinates of each gene.

Cytoscape plugin Reactome FI (25) was used to identify and 
examine functional interaction networks based on results from the 
GWAS. The functional interaction networks in the Reactome FI 
plugin are based on data from the Reactome database (27,28), which 
contains information on manually curated human pathways—DNA 
replication, transcription, translation, the cell cycle, metabolism, 
and signaling cascades. “Reactions” encompass a number of biolog-
ical processes, including binding, activation, translocation, degra-
dation, and classical biochemical reactions. The information in the 
database comes from published research and is peer-reviewed and 
regularly updated by expert biologists. More information on the 
database is available through the Reactome website (http://www.
reactome.org/).

Two gene sets—those whose assigned SNPs had p less than 
5 × 10−3 in the GWAS and those whose assigned SNPs had p less 
than 5 × 10−4 in the GWAS—were selected for incorporation in the 
network analysis. These two thresholds were chosen to allow for 
more lenient significance criteria, which may address the problem 
of missing heritability (29), yet limiting the potential of overfitting 
which could weaken predictive ability in validation studies (30). 
After examining the network structures of both sets, the subset with 
p less than 5 × 10−3 was selected for further analysis and validation, 
given that the network comprised of genes from SNPs with p less 
than 5 × 10−4 significance had too few SNPs to generate large enough 
functional interaction networks to produce a meaningful PRS.

Using the genes which formed a functional interaction network, 
and whose assigned SNPs had p less than 5 × 10−3 in the GWAS, we 
ran pathway enrichment analysis using Reactome FI. This analysis 
examines whether the number of networked genes in a given path-
way is significantly higher than what would be expected by chance 
alone. Probability and p value for the pathway enrichment analysis is 
determined by binomial test and false discovery rate based on 1,000 
permutation test. The possible pathways are curated from a number 
of resources including Reactome, KEGG, CellMap, NCI PID, and 
BioCarta.

Polygenic Risk Score
PRS were developed as a means of examining the aggregate influ-
ence of multiple genetic markers (31). A PRS can be thought of as a 
measure of “genetic burden” (32) and has become increasingly used 
to facilitate understanding genetic associations with complex traits. 
To generate a PRS, the 215 genes in our final network were mapped 

back to the original SNPs. For those mapping to more than one SNP, 
the SNP with the lowest p value was selected to represent that gene. 
Next PRS were calculated for the discovery (smokers) and the vali-
dation samples (nonsmokers) from the HRS population.

The PRS assumes a dose–response effect, where for each SNP, 
persons who are homozygous for the negatively associated allele 
(major allele if the beta coefficient was positive, and minor allele 
if the beta coefficient was negative) are coded as 0, persons who 
are heterozygous are coded as 1, and persons who are homozygous 
for the positively associated allele are coded as 2. Finally, the allele 
counts for each SNP were weighted by the log of their odds ratio 
(OR) from the GWAS and summed across the 215 SNPs from our FI 
network, to generate the total and component PRS. Scores were then 
standardized to have a mean of 0 and a SD of 1.

Statistical Analysis
Study methodology is outlined in Figure 1. A case–control GWAS 
(long-lived vs normal lived smokers) was used to identify SNPs 
that are potentially associated with longevity and biological stress 
resistance. Moderately significant SNPs from the GWAS were then 
mapped to genes and used to build a genetic network based on a 
priori experimental proteomic evidence of identified genetic path-
ways and gene interactions. SNPs included within the gene network 
were used to calculate composite PRS for the entire HRS genetic 
sample. Using multinomial logistic regression, controlling for the 
first four EV and sex, we examined the association between PRS and 
longevity—operationalized as the probability of being in an older 
age group: ages 80–89, 90–99, or 100+, relative to being at ages 
50–79 during the most recent wave interviewed—using a validation 
sample of nonsmokers from the HRS (n = 6,447). We then exam-
ined whether using the network-based approach to SNP selection 
for inclusion in the PRS improved predictive ability, we compared 
the association between being very old and our final PRS to the 
associations between being very old and four other PRS which uti-
lized other SNP selection criteria—top hits, a random subset with p 
less than 5 × 10−3, a random subset of the 784 SNPs with p less than 
5 × 10−3 that also mapped to genes, and the top hits of the 784 SNPs 
(p < 5 × 10−3 that also mapped to genes). To compare the PRS, logis-
tic regression models controlling for the first four EV and sex were 
used, with participant aged 50–79 coded as 0 and participants aged 
90 and older coded as 1. The cutoff age was increased to 90 versus 
80, which was used in the initial GWAS, given that our validation 
sample was made up of nonsmokers for whom survival to age 80 
is much more likely. Finally, we tested the association between PRS 
and disease prevalence for three major diseases of aging: heart dis-
ease, cancer (other than skin), and diabetes. Over 10 waves span-
ning from 1992 to 2010, participants were asked whether they had 
ever been diagnosed with each condition. Three logistic regression 
models incorporating the panel data and adjusting for repeated 
observations using random effects were run to assess the association 
between PRS and each of the three conditions. These models were 
run controlling for age, sex, the first four EV, self-reported race, 
education, smoking status at each wave, body mass index at each 
wave, and sample classification (discovery cases, discovery controls, 
or validation sample).

Results

Genome-Wide SNP Analysis
Our GWAS differentiating long-lived smokers from younger smokers 
was run controlling for sex and four EV which control for population 
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stratification. Although no SNPs met the genome-wide significant 
threshold—which is not surprising given our small sample size—20 
SNPs met the threshold for “suggestive” association (Figure 2a). Also, as 
shown in our Q-Q plot (Figure 2b), we observed a moderate departure 
from the null hypothesis of no association, beginning between p = 10−3 
and 10−4. Studies of “missing heritability” have suggested that while 
for the most part, the SNPs meeting statistical significance cutoffs in 
GWAS only account for a relatively small proportion of the variance in 
a phenotype, there is evidence that the additional consideration of less 
significant loci may capture more of the association with phenotypic 
heterogeneity. Two p value thresholds were considered (p < 5 × 10−3 and 
p < 5 × 10−4) based on previous studies suggesting that the proportion of 
the variance explained for a phenotype increases when allowing p value 
threshold to relax to such levels (26), but that allowing for variables 
with higher p values than this reduced predictive power (33).

Network and Pathway Analysis
SNP locations were mapped to Genes—for SNPs with p less than 5 × 10−3 
and p less than 5 × 10−4 from the GWAS. Overall, there were 535 SNPs 
with p less than 5 × 10−4, which mapped to 115 genes, and 5,184 SNPs 
with p less than 5 × 10−3, which mapped to 784 unique genes. Cytoscape 
plugin Reactome FI was used to construct functional interaction net-
works and run subsequent pathway enrichment analyses. Reactome FI 
was designed to identify network patterns that relate to disease. The 
database covers more than 50% of human proteins which are used to 
build functional interaction networks based on a set of input genes.

Using the 2013 FI network build, we found that 215 of our 784 
genes (p < 5 × 10−3) made up functional networks that had five or 
more genes each, the largest of which was encompassed by 202 
genes (Figure 3). The other 569 genes were either not functionally 
connected to any other genes that had SNPs with p less than 5 × 10−3 
or formed networks of three or fewer genes. On the other hand, 
only three genes were comprised in the network that utilized a p 
value cutoff of p less than 5 × 10−4, therefore, the network with p 

less than 5 × 10−3 was selected for use in further investigation and 
validation.

Next, we ran Reactome FI’s pathway enrichment analysis for 
these 215 genes in the network using p less than 5 × 10−3 as the signif-
icance threshold and found 21 pathways that were enriched at false 
discovery rate less than 5 × 10−3. The 10 most highly enriched path-
ways, in order, included: P13K-Akt signaling, pathways in cancer, 
signaling by platelet-derived growth factor, glutamatergic synapse, 
Ras signaling pathway, Rap1 signaling pathway, L1CAM interac-
tions, focal adhesion, Netrin-1 signaling, and Netrin-mediated sign-
aling (Supplementary Table S1).

Validation Using a PRS
A standardized PRS was generated based on a weighted composite 
score of the 215 SNPs from the selected interaction network and was 
evenly distributed (Figure 4a), with a range from −3.68 to 6.02 in the 
overall HRS population (discovery and validation sample). Mean PRS 
were compared between our original cases and controls—smokers 
aged 80+ and smokers younger than 70, respectively—to determine 
how much of variation in the original phenotype was explained using 
a composite SNP score of only 215 SNPs from the original 1,224,285 
SNPs. Results showed that the score completely accounted for group 
membership, with no overlap between the two groups (Figure 4b). Of 
our original 90 cases of long-lived smokers, 49 had complete data on 
all the SNPs needed to generate the overall PRS, and we found that 
for this group, PRS ranged from 2.34 to 6.02, with a mean of 4.17 
and a SD of 0.78. Among the 730 controls, 422 had no missing geno-
type data for the 215 SNPs, and these participants had PRS ranging 
from −3.41 to 2.32, with a mean of −0.55 and a SD of 0.95. Not only 
were scores significantly higher for the long-lived group, but scores 
also appeared to be more homogeneous.

Next using our validation sample, we performed a multinomial 
logistic regression, controlling for the four EV, sex, and race to deter-
mine if the PRS was associated with the probability of being in an 

Figure 1. Study approach. The study utilized data from the HRS to run a GWAS and network analysis using long-lived smokers as the phenotype of interest. 
SNPs identified through these processes were then used to create PRS. For validation and replication, we examined the association between the score and age 
or longevity among nonsmokers in the nationally representative population in HRS. GWAS = genome-wide association study; HRS = Health and Retirement 
Study; PRS = polygenetic risk score; SNP = single nucleotide polymorphism.
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older age group—aged 80–89 (n  =  1,290), 90–99 (n  =  253), and 
100+ (n = 4)—relative to those aged 52–79 (n = 4,900). Our results 
showed (Table 1) that among these 6,447 participants, a higher PRS 
was associated with an increased likelihood of being at ages 90–99 
or being a centenarian, relative to being in the youngest age group 
(50–79). Results showed that a one unit increase was associated with 
20% greater likelihood of being at ages 90–99 compared to 29–79 
(OR = 1.20, p = .007), and a 3.3-fold increases in the likelihood of 
being a centenarian (OR = 3.27, p  =  .027). Based on the parame-
ter from Table  1, we estimated the predicted proportion of cente-
narians in the population of nonsmokers, by PRS (Figure  4c). We 
found that for individuals with a PRS that was 2 SDs below the mean 
(PRS = −2), only 3.2 in 100,000 were predicted to be centenarians. 
For individuals with a mean PRS (PRS = 0), 33.2 in 100,000 were 
predicted to be centenarians, and for individuals with a PRS that was 

2 SDs above the mean (PRS = 2), 340.3 in 100,000 were predicted 
to be centenarians.

To provide evidence that using a network-based approach to 
select candidate SNPs improved our predictive measure, we com-
pared the strength of the association between longevity and our 
measure to the associations between longevity and four other 
weighted PRSs from 215 SNPs selected via other means—top hits 
(the 215 most significant SNPs from the GWAS), a random subset 
of 215 SNPs with p less than 5 × 10−3 from the GWAS, a random 
subset of 215 SNPs that were part of the 784 SNPs that had p less 
than 5 × 10−3 from the GWAS and that also mapped to genes, and the 
215 most significant SNPs out of the subset of 784 SNPs (those with 
p < 5 × 10−3 that also mapped to genes). To validate our approach, 
we used five separate logistic regression models—one per individual 
PRS—with the outcome being 1 if an individual was 90+ years old 

Figure 2. GWAS results. We found that while no SNPs met the criteria for genome-wide significance, a number of SNPs had “suggestive” association with 
longevity among smokers (a). Additionally, our Q-Q plot shows that we had more SNPs that had p values <5 × 10−4 than might be expected by chance (b). 
GWAS = genome-wide association study; SNP = single nucleotide polymorphism.
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and 0 if he/she was aged 52–79. Models were run using our vali-
dation sample only and controlling for the four EV, sex, and self-
reported race (Table  2). Of the five models, our original measure 
which utilized the functional interaction network to select SNPs for 
inclusion in the PRS was the only PRS variable found to be statisti-
cally significant (OR = 1.22, p = .005)—and it remained significant 
even after Bonferroni adjustment (p < .01). On the other hand, the 
four other PRSs were not significantly associated with being at ages 
90 and older and had OR between 0.83 and 1.10 with p values rang-
ing from .122 to .872. Lists of SNPs and corresponding gene sets 
used for the other PRS measures are available upon request.

Given that the replication and discovery sets both came from the 
same population sample (HRS), we also examined the association 
between the PRS and longevity (90+) in a completely independent 
sample. Data for this analysis came from the English Longitudinal 
Study of Aging (ELSA). ELSA is a sister-study of the HRS and there 
has been an attempt to harmonize the sample design, the questions, 
and the genetic approach. Both are nationally representative panel 
studies of individuals aged 50 years and older. Our validation sample 
from ELSA consisted of 264 long-lived individuals (aged 90+) and 
4,521 controls (aged 50–79). Approximately 11% of long-lived indi-
viduals were current smokers, whereas for controls, approximately 
13% were current smokers. Genotyping was performed using the 
Illumina Omni 2.5-8 Beadchip and the same QC criteria that were 
used for HRS. The majority of the SNPs used in the original PRS were 
available for ELSA (n = 205). The 10 SNPs that were not genotyped 
in ELSA (and their corresponding genes) are listed in Supplementary 
Table S3. After standardizing the PRS, so that it had a mean of 0 and 

SD of 1, we used a logistic regression to test whether the PRS was 
associated with an increased probability of being at ages 90+ com-
pared to ages 50–79. The model was run using all subjects, adjust-
ing for population stratification (EV1–EV4). Results showed that 
a 1 SD increase in PRS was associated with a 7% increase in the 
likelihood of being at ages 90+, relative to ages 50–79 (OR = 1.07, 
p  =  .018). We were not able to test centenarian status given that 
ELSA top-codes mortality at 90, making it impossible to differenti-
ate who survived to 100+. Subsequent models adjusting for smoking 
status (never, current, and former) were also run and did not appear 
to impact results (OR = 1.08, p = .014). Next, we examined whether 
the association between PRS and longevity was dependent on smok-
ing status. We found that the interaction between PRS and smok-
ing was not significant, and in stratified models, the effect size was 
similar for the never (OR = 1.06), former (OR = 1.08), and current 
smoking (OR = 1.08) groups.

Finally, using the HRS validation sample (nonsmokers), we 
examined the association between our original PRS and disease 
prevalence measures for heart disease, cancer, and diabetes. This 
analysis was restricted to participants who reached at least age 70 or 
older during the study, to ensure we were picking up aging-related 
disease. Over the 10 waves, 22.5% of participants self-reported hav-
ing been diagnosed with heart disease, 15.3% self-reported having 
been diagnosed with diabetes, and 13.6% self-reported having been 
diagnosed with cancer other than skin cancer at some point during 
their lifetime. Logistic regression models were run on the validation 
sample. Repeated-measures data across all waves were pooled over 
time and nonindependence for repeated measures were accounted 

Figure 3. Functional interaction network. After mapping SNPs with p values <5 × 10−3 to genes, we found that 215 of them were comprised within functional 
interaction networks of five or more genes—200 genes were in a single network and 15 genes made up 3 networks of 5 genes each. Of the 215 SNPs (represented 
by their respective genes in the network), the majority had p values between 5 × 10−4 and 5 × 10−3, associations that would have been overlooked using a normal 
GWAS approach. GWAS = genome-wide association study; SNP = single nucleotide polymorphism.
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for using clustering. Our results showed that a higher PRS was sig-
nificantly associated with lower prevalence of cancer (Table 3). For 
each 1 SD increase in the PRS, the likelihood that an individual 
had ever been diagnosed with cancer was reduced by nearly 11% 
(OR  =  0.89; p  =  .011). When examining the association between 

PRS and either heart disease or diabetes, we found no statistically 
significant relationships (Table 3).

Discussion

For most individuals, environment may play a major role in their 
probability of postponing disease and reaching old age. However, 
for those under chronic exposure to exogenous stressors, such as 
cigarette smoke, genetic variants may act as key factors in deter-
mining whether individuals are able to delay the age-related pro-
gressive decline in physiological functioning by offsetting damage 
though activation of somatic maintenance and repair mechanisms. 
As a result, survival among smokers may serve as a unique model 
for examining the genetics of stress resistance, aging, and longevity. 
Using long-lived smokers as our phenotype, we were able to identify 
a network of SNPs that, collectively, were strongly associated with 
extreme survival and lower cancer rates in an independent validation 
sample or nationally representative nonsmokers.

Figure 4. Associations between PRS and longevity. Overall, the weighted PRS was found to be fairly evenly distributed and ranged between −3.68 and 6.02 (a). 
When comparing the scores of our GWAS cases and controls, we found that there was no overlap between the two groups (b)—cases all had scores of 2.34 or 
greater (with a mean of 4.17), while controls had scores ranging between −3.41 and 2.32 (with a mean of −0.55). A multinomial logistic regression model was 
used to examining the association between PRS and age in a validation sample (n = 6,447). Results were used to predict the proportion of centenarians in the 
population by PRS (c). We found that among individuals with a PRS of −2.0 (2 SDs below the mean), only 3.2 in 100,000 persons are predicted to be a centenarian. 
On the other hand, for individuals with a PRS of 2.0 (2 SDs above the mean), 340.3 in 100,000 persons are predicted to become centenarians. GWAS = genome-
wide association study; PRS = polygenetic risk score; SNP = single nucleotide polymorphism.

Table 1. Odds Ratios for PRS From a Multinomial Regression Mod-
el for Longevity Using the Validation Sample (N = 6,447)

Age Category Odds Ratio p Value

80–89 1.04 0.204
90–99 1.20 0.007
100+ 3.27 0.027
<80 (Reference category)

Notes: Model run adjusting for sex and the first four eigenvectors. 
PRS = polygenic risk score.
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Our findings suggest that a 1 SD increase in the genetic load of 
the 215 SNPs we identified was associated with a 20% increase in 
the likelihood that an individual was aged 90–99 and an over three-
fold increase in the likelihood of being a centenarian. Additionally, 
our model predicted that approximately 340 in 100,000 individuals 
who had a PRS that was 2 SDs above the mean would be a cente-
narian, compared to only 33 and 3 in 100,000 who had a PRS at 
the mean or was 2 SDs below the mean, respectively. It has been 
reported in the literature that in 2010, there were just over 17 cente-
narians per 100,000 people in the United States (34), which appears 
similar to our estimate for mean PRS, taking into account that our 

validation sample is made up of participants aged 52 and older and 
only includes nonsmokers. However, additional studies utilizing dif-
ferent samples that include larger numbers of centenarians should 
be conducted to better understand the association between the PRS 
we generated in the current study and an individual’s likelihood of 
surviving to age 100 and beyond.

One of the major physiological risks of exogenous genotoxic 
exposure that accompanies smoking is the accumulation of DNA 
damage (35). However, it is likely that long-lived smokers possess 
variants which prevent genomic instability and allow them to sur-
vive to more extreme ages. Genomic instability also happens to be 
one of the hallmarks of cancer pathogenesis (36), thus the same 
genes that may promote survival among smokers may also be 
important for cancer prevention. This is consistent with our find-
ings which showed that the genes we identified through our GWAS 
and network analysis on long-lived smokers were collectively asso-
ciated with a nearly 11% lower cancer prevalence in the validation 
sample. Additionally, our functional interaction network of 215 
genes was significantly enriched with pathways in cancer, as well as 
Ras signaling, Rap1 signaling pathways, and signaling by platelet-
derived growth factor—all of which have implications for cancer 
pathogenesis (37–39).

Pathways which are believed to be potential regulators of the 
aging process were also enriched in our network. Overall, results 
showed that the PI3K/AKT signaling pathway had the highest 
enrichment score. This pathway has previously been shown to 
comprise genes related to stress resistance, DNA repair, cell death, 
protein turnover, and antioxidants (40). PI3K/AKT pathway is 
activated via insulin/insulin-like growth factor signaling. Insulin/
insulin-like growth factor signaling is evolutionarily conserved 
has been shown to elicit a strong influence on life span in model 

Table 3. Random Effects Logistic Regression Models of the Association Between PRS and Disease Prevalence

Cancer (nonskin)a Heart Diseaseb Diabetesc

Odds Ratio p Value Odds Ratio p Value Odds Ratio p Value

PRS 0.89 .011 0.987 .732 1.035 .260
Age (y) 1.06 <.001 1.073 <.001 1.044 <.001
EV1 2.18E-06 .026 4.22E-04 .089 9.88E+10 <.001
EV2 2.96E-06 .079 2.19E-09 <.001 8.62E+04 .008
EV3 1.38E+03 .355 7.509 .687 9.48E+02 .102
EV4 73.44 .303 80.830 .225 9.16E-03 .216
BMI
 Underweight (<18.5) 1.242 .344 0.942 .776 1.156 .711
 Overweight (25–29.9) 1.000 .998 1.144 .043 1.813 <.001
 Obese (30+) 1.136 .200 1.438 <.001 4.045 <.001
Education
 GED 0.981 .932 1.210 .264 0.767 .150
 High school 1.324 .026 0.855 .113 0.795 .036
 Some college 1. 286 .065 0.782 .025 0.709 .004
 College and above 1.651 <.001 0.631 <.001 0.606 <.001
Sex (female = 1) 0.945 .523 0.543 <.001 0.731 <.001
Ever smoked 1.156 .098 1.311 <.001 1.096 .260
Constant 0.001 <.001 0.002 <.001 0.006 <.001

Notes: Disease prevalence run as three separate logistic regression models, adjusting for multiple observations over 10 waves by clustering. The reference catego-
ries for independent variables in each model were: “Normal weight (18.5–24.9)” for BMI and “No high school degree or equivalent” for Education. GED = general 
educational development degree; BMI = body mass index; EV = eigenvector; PRS = polygenic risk score.

aObservations = 49,891; log likelihood = -5,636.66.
bObservations = 49,931; log likelihood = -7,942.78.
cObservations = 49,920; log likelihood = -7,181.58.
N = 6,434.

Table 2. Results From Logistic Regression Models (1 = 90+ years 
and 0 = 50–79 years) on the Validation Sample (N = 6,447) to Test 
the Association Between Longevity and Various PRS That Utilize 
Different SNP Selection Approaches

PRS Method Odds Ratio p Value

Network-based PRSa 1.21 .005
Top SNPsb 0.95 .649
Random SNPsc 0.83 .122
Random genesd 0.98 .872
Top genese 1.10 .253

Notes: PRS = polygenic risk score; SNP = single nucleotide polymorphism.
aOriginal PRS generated from SNPs within the functional interaction 

network.
bPRS of the 215 top hits from the genome-wide association study.
cPRS from a random subset of 215 SNPs with p < 5 × 10−3.
dPRS from a random subset of 215 SNPs with p < 5 × 10−3 that also 

mapped to genes.
ePRS of the 215 most significant hits that also mapped to genes.

710 Journals of Gerontology: BIOLOGICAL SCIENCES, 2016, Vol. 71, No. 6



organisms (14) and there is further evidence to suggest it may 
play an important role in human longevity (41). In worms, tran-
scription factor Daf-16 (abnormal DAuer Formation-16) is a key 
regulator of insulin/insulin-like growth factor signaling and has 
been found to be fundamental for extreme life-span extension 
(42). The FOXO family of transcription factors are the human 
homolog for DAF-16, and FOXO3a has been shown to be one of 
the most consistently cited longevity genes in human populations 
(43). Our network analysis and PRS included SNP rs12203834 
(Chr6:108975562), which is an intron variant in FOXO3a. While 
rs12203834 has not been previously cited, two SNPs in FOXO3 
have been previously associated with extreme longevity in two 
distinct populations—American men of Japanese ancestry from 
Hawaii (rs13217795) and German men and women (rs9400239) 
(44,45). Furthermore, a SNP (rs10457180) in FOXO3 was one 
of only two markers to reach genome-wide significance in the 
longevity consortium (46). The other was an APOE marker, which 
unfortunately was not directly genotyped in our data.

Although there is evidence to suggest that FOXO3 is an impor-
tant gene for aging and longevity, it is likely that additional genes 
may simultaneously be important for extreme survival, especially 
under adverse conditions. Previous studies have provided evidence 
that suggest life span is a polygenic trait (47), influenced by multiple 
alleles with individual small effects. Furthermore, Kirkwood and 
coworkers provide three explanations for why aging is likely poly-
genic: (a) aging is not programmed, (b) genes that influence life span 
are probably byproducts of selection for other traits, and (c) aging 
and life span are driven, for the most part, by stochastic damage 
accumulation (48). Using traditional single-SNP GWAS approaches, 
many alleles with small individual effects will go unnoticed due to 
the reliance on strict significance criteria, thus contributing to what 
is being termed the “missing heritability problem” (49). There is an 
urgent need for employing methods that both allow for the exami-
nation of cumulative associations across SNPs as well as reliable 
methods for selecting SNPs for inclusion in predictive measures. 
Our and others’ result illustrate the usefulness of polygenic meas-
ures (30,50); nevertheless best practices for SNP selection in the 
creation of these measures has been less concrete. Network-based 
analyses may be a useful tool for variant selection when creating 
polygenic scores (51). Given the evidence that phenotypes like lon-
gevity may be influenced by genes within specific pathways and 
networks (22), we believe that the use of prior knowledge, such as 
functional interaction network analysis, provides better inclusion 
criteria for composite scores than methods that only consider top 
GWAS hits. This is consistent with the present study which showed 
that PRSs composed of SNPs identified using other means—top 
hits—were not significantly associated with longevity, while the PRS 
made up of SNPs in a functional interaction network was found to 
be a significant predictor of whether an individual was 90 years or 
older. Furthermore, the strength of this association increased further 
when predicting whether a participant was a centenarian, remain-
ing significant even with a very small sample size. This is consistent 
with previous studies reporting that genes may be more important 
for extreme longevity versus variations in life span within typical 
ranges (45).

There are limitations to the present study that should be noted. 
First, our discovery sample consisted of a very small number 
of cases, which could limit our ability to detect true associations 
that have small effect sizes. Second, smoking, age, and disease sta-
tus were based on self-reports. Third, the network was based on 
curated information, which did not allow for the discovery of novel 

gene–gene interactions. Fourth, the p value threshold used to select 
SNPs for inclusion in the network analysis was based on the GWAS, 
which did not take into account gene–gene interactions. In moving 
forward, it will be important to incorporate network structure into 
the calculation of PRS and use statistical network-based methods to 
identify sets of functionally related genes.

Through our use of a unique phenotype, functional interaction 
networks to select SNPs, and methods allowing examination of asso-
ciations with aging-related phenotypes using composite measures of 
multiple genetic variants, we developed a genetic risk score that was 
significantly associated with an individual’s likelihood of surviving 
to extreme old age and also found to predict lower cancer preva-
lence. Overall, our findings suggest that longevity may be under the 
regulation of complex genetic networks which influence stress resist-
ance and genomic stability. In moving forward, it will be important 
to examine how functional variants associated with the SNPs in 
our score interact with one another to impact signaling within their 
respective pathways and how these alterations translate into differ-
ences in life span and cancer risk.
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