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Abstract. Energy-discriminating, photon-counting (EDPC) detectors are attractive for their potential for
improved detective quantum efficiency and for their spectral imaging capabilities. However, at high count
rates, counts are lost, the detected spectrum is distorted, and the advantages of EDPC detectors disappear.
Existing EDPC detectors identify counts by analyzing the signal with a bank of comparators. We explored alter-
native methods for pulse detection for multibin EDPC detectors that could improve performance at high count
rates. The detector signal was simulated in a Monte Carlo fashion assuming a bipolar shape and analyzed using
several methods, including the conventional bank of comparators. For example, one method recorded the peak
energy of the pulse along with the width (temporal extent) of the pulse. The Cramer–Rao lower bound of the
variance of basis material estimates was numerically found for each method. At high count rates, the variance in
water material (bone canceled) measurements could be reduced by as much as an order of magnitude.
Improvements in virtual monoenergetic images were modest. We conclude that stochastic noise in spectral
imaging tasks could be reduced if alternative methods for pulse detection were utilized. © 2016 Society of Photo-

Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.3.2.023505]
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1 Introduction
Energy-discriminating, photon-counting (EDPC) detectors have
been proposed for use in diagnostic computed tomography
(CT) scanners.1 Compared to conventional, energy-integrating
detectors, EDPC detectors promise several benefits. These detec-
tors may be virtually immune to electronic noise by virtue of the
pulse height threshold. They could improve contrast-to-noise
characteristics for all material types but especially for high atomic
number contrast agents using appropriate weighting of energy
bins.2,3 Finally, these detectors introduce the possibility of simul-
taneous imaging of multiple contrast agents. EDPC detectors
have been studied in several early prototype systems.4,5

For spectral tasks such as material decomposition, it is well
known that an ideal EDPC detector (i.e., one with perfect energy
resolution and no count losses) outperforms existing approaches
such as fast kVp switching, dual-source, or dual-layer detector
systems.6 However, current implementations of EDPC detectors
suffer from a variety of nonidealities, including K-escape,
charge sharing, and pulse pileup. K-escape, the departure of
characteristic fluorescence photons from the detector material,
is a fundamental limitation that cannot be corrected. With K-
escape, the detected energy will be the original photon energy
minus the energy of the characteristic photon. Charge sharing
refers to the distribution of charge from one incident x-ray pho-
ton into more than one detector pixel. Rather than counting a
single photon at the correct energy, the system will count multi-
ple events at lower energies. Pulse pileup occurs when multiple
photons arrive in close spatial and temporal proximity that
together are indistinguishable from a single, higher-energy

photon. Charge sharing is aggravated with smaller pixel sizes,
whereas pulse pileup effects become more significant with
larger pixel sizes and at high flux. Charge sharing compensation
mechanisms are promising for improving performance7–9 but
increase the effective pixel size and associated pileup effects.

Photon-counting detectors are commonly parameterized by a
dead time or its inverse, the characteristic count rate.10 The char-
acteristic count rate is well defined in model systems such as the
ideal paralyzable or nonparalyzable detector and can be loosely
defined in real systems as the maximum count rate that the
detector electronics support for events arriving at a perfectly
constant rate. As the count rate incident on the detector becomes
comparable to the characteristic count rate, photon counts are
lost and the detected spectrum is distorted because of pileup
effects. It has been estimated that if the incident count rate is
more than 20% of the characteristic count rate, an otherwise
ideal EDPC detector will be outperformed by conventional
dual-energy CT.11 Many currently available detectors are not
ideal, and even at very low incident flux may still be outper-
formed by conventional systems due to charge sharing.6

However, performance at low flux is expected to improve sub-
stantially with newer technologies such as charge sharing
compensation.8,9

The performance of EDPC detectors at moderate count rates
is further compromised by the method of signal analysis and
pulse detection that is typically used. Most existing detectors
rely on a bank of comparators to analyze the signal from the
detector. While comparators are simple to implement and effec-
tive in the low-flux regime, at moderate flux the performance of
the comparator system suffers. The purpose of this work was to
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examine alternative approaches for pulse detection and to assess
their performance in EDPC detectors at higher count rates.12

2 Methods

2.1 Pulse Detection in Energy-Discriminating,
Photon-Counting Detectors

Most x-ray EDPC detectors operate using a semiconductor sub-
strate that directly converts incident, high-energy x-ray photons
into electron and hole charge clouds. These charge clouds are
swept into the readout electronics and are preprocessed using
pulse shaping circuitry, yielding a signal such as the example

in Fig. 1. This signal is then analyzed using pulse-detection
logic such as the bank of comparators. This pulse-detection
logic condenses and summarizes the events received on the
detector, but some information is lost in the process. In this
work, we adopted the triangular bipolar pulse shape described
in Ref. 13, based on a fit to experimental measurements of a
photon-counting detector. The shape consisted of a short, tall
positive triangle followed by a long, shallow, and negative
tail. The pulse was not constrained to have integral zero but to
best match the experimental data.

These comparators are simple circuits that compare the
detector signal to a reference voltage and increment a counter

−20
0

20
40
60
80

Incident photons

ke
V

−20
0

20
40
60
80

A

Detected signal

ke
V

−20
0

20
40
60
80

Comparators equivalent signal

ke
V

B

−20
0

20
40
60
80

Peak energy equivalent signal

ke
V

−20
0

20
40
60
80

Peak energy−width equivalent signal

ke
V

−20
0

20
40
60
80

Local maxima equivalent signal

ke
V

−20
0

20
40
60
80

Local maxima with multicount discrimination equivalent signal

ke
V

Time

Fig. 1 Example of different pulse-detection mechanisms. The “detected signal” plot is simulated from the
incident photons, convolved with the bipolar detector response shape. Noise is added in this plot but
absent in actual simulations. In the detected signal plot, two horizontal lines are drawn, representing
energy thresholds for the comparators. Because of pileup, the signal contributions from different photons
sometimes overlap and become difficult to separate. Each of the pulse-detection mechanisms loses
different types of counts. For each mechanism, we draw an equivalent signal that can be compared
against the incident photons to show which photons are lost. See text for details.
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when the signal rises above the reference voltage. A high-energy
photon will yield a pulse that triggers several comparators in
sequence. At low count rates a bank of comparators effectively
bins incident photons, and hence the system is able to infer the
number of events within each bin by taking differences. For
example, if the detector uses two comparators at a lower energy
EL and a higher energy EH, which are triggered nL and nH
times, respectively, it can be inferred that there were nH photons
with energies exceeding EH and (nL − nH) photons with ener-
gies between EL and EH.

As the incident count rate increases, this simple interpreta-
tion breaks down and it is no longer clear what the bank of
comparators is counting. For example, two photons, arriving
in quick succession, may trigger the EH comparator twice
but the EL comparator only once. According to the simple inter-
pretation, this is equivalent to two counts with energies above
EH and a nonphysical, negative count between EL and EH. This
occurs in Fig. 1 and is denoted in region A and results in the
elimination of one of the counts at EL (at B). We hypothesized
that other pulse-detection schemes could be more robust than the
comparator at high count rates. We investigated five alternative
pulse-detection schemes that are described as follows.

2.1.1 Peak-energy counting

Peak-energy counting is a simple extension of the conventional
bank of comparators. Suppose again that a pair of photons
arrives in close succession, crossing the EH comparator twice
but the EL comparator once. Peak-energy counting prohibits
double counting of the higher-energy threshold. Once the lowest
energy threshold EL is crossed from below, the higher energy
threshold is only allowed to count once until the EL threshold
is crossed again from above. Conceptually, peak-energy count-
ing accepts missed counts to improve reliability. It divides the
incident signal into a number of segment “pulses,” where each
pulse is defined as regions above EL. Within each pulse, peak-
energy counting is able to identify the highest energy, and it bins
the entire pulse as a single event with that highest energy.

In this pulse-detection logic, as with other logics described
later, there is a special dependence on the lowest energy thresh-
old EL to segment the detected signal into multiple pulses. We
will return to this point in Sec. 4.

2.1.2 Peak, width two-dimensional binning

A refinement on peak-energy counting is to additionally record
the width, or time duration, of the pulse, and not just its peak
energy. Pulse pileup would be expected to lengthen the pulse,
defined as the time for which the signal is above the lowest
energy threshold EL. A pulse that is longer than normal might
therefore indicate corruption. In Fig. 1, long pulses are denoted
by wider rectangles and also dashed outlines to denote their
possible corruption.

The length of the pulse might be recorded using a time-to-
amplitude converter. For the purpose of this work, we sought to
provide only an upper bound on the performance, and analyti-
cally divided the detector signal into a series of pulses. Each
pulse was binned into one of three length bins as well as into
an energy bin corresponding to the peak energy of the pulse. For
n energy thresholds, the data corresponding to this pulse-detec-
tor logic was therefore 3n integers instead of n integers for the
regular bank of comparators.

2.1.3 Local maxima detection

Another mechanism for detecting pulses, aimed at capturing the
maximum quantity of events, is to bin individual local maxima
in the detector signal. This was not a problem in simulations,
which were noiseless and used a perfect bipolar triangular pulse
for each individual photon. In this case, it was possible to
analytically identify local maxima and bin them accordingly.
We did this to explore the upper bound performance of this
method, but in practice, identifying local maxima in noisy data
may be difficult.

2.1.4 Local maxima with multicount discrimination

A further refinement on the detection of local maxima is to
further bin the detected local maxima into two categories:
“first” local maxima and “subsequent” local maxima. A first
local maximum is the first maximum detected after the crossing
of the lowest energy threshold EL from below. In the presence of
pulse pileup, we anticipated that the first such maximum in the
pulse was the one most likely to be accurate, with subsequent
maxima corrupted by the effects of preceding photons. In a two
energy threshold system, there are now four outputs, nfirstL , nfirstH ,
nsubsequentL , and nsubsequentH . In Fig. 1, subsequent pulses are
denoted by dashed outlines to denote their possible corruption.

2.1.5 Local maxima with multicount discrimination using
comparators

As we previously described, it may be impractical to identify
local maxima in a signal that is corrupted with noise. Therefore,
we designed a variant of the local maxima counter that operated
on the same data present with the traditional bank of compara-
tors. Here, the local maxima were inferred only from the up-
crossings and down-crossings of the energy thresholds.

A local maximum is identified by an up-crossing of any
energy threshold, followed by a down-crossing of the same
threshold without a crossing of any other threshold. Multicount
threshold detection is provided by special logic on the lowest
threshold EL. The first maximum detected in a pulse increments
the “first” counter corresponding to the energy of the maximum.
Afterward, the first counter is locked and all future maxima
increment the “subsequent” counter instead. The lock on the
first counter is released upon the crossing of the EL threshold
from above.

2.2 Monte Carlo Simulations

The relationship between the various counts in the simulated
systems and the desired values of basis material amounts is
very complicated. In real systems, one would need an algorithm
to produce estimates of the basis material amounts from the
measured counts. The Cramer–Rao lower bound (CRLB) uses
an information theoretic inequality to provide a lower bound on
the variance of any unbiased estimator. Therefore, it allows us to
bind the performance of an estimator without having developed
such an algorithm. The CRLB needs only data on the derivative
of the signals with respect to the estimated quantities and
knowledge of the statistics of the data.

The variance of EDPC detectors is difficult to analyze in
the general case, although with certain assumptions, analytic
approximations are available.13,14 In the presence of pileup,
detector statistics are not Poissonian and the measurements from
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the various bins become correlated. Monte Carlo simulations
were therefore used to estimate the covariance matrix with
each pulse-detection logic.

Following Refs. 11 and 15, we assume that the measure-
ments from each pixel follow a multivariate Gaussian distribu-
tion. For short frame times (i.e., few detected counts), readouts
from a pixel may not be Gaussian. However, a readout with
a sufficiently long frame time can be approximately treated as
a sum of readouts for short integration times, and the central
limit theorem implies that the resulting readout should follow
a multivariate Gaussian distribution. We estimate the mean
and standard deviation of this Gaussian using Monte Carlo
trials. In each trial, the arrival times of incident photons are
randomly chosen following Poisson arrival times, and their
energies are determined by sampling the incident spectrum.
We used 10,000 trials, with each trial having an integration
time that was 10,000 times the mean time between arrival of
photons. For all of the pulse-detection mechanisms, we used
six energy bins, with thresholds at 30, 45, 65, 85, 105, and
125 keV. These energy bins were not optimized.

We then estimated the changes in the mean and covariance
matrix as the two basis materials, water and bone, were varied
by a small amount. This information was used to calculate the
Fisher information matrix as follows:16

EQ-TARGET;temp:intralink-;sec2.2;63;488

F ij ¼
�
∂μðmÞ
∂mi

�
T

Σ−1ðmÞ
�
∂μðmÞ
∂mj

�

þ 1

2
Tr

�
Σ−1ðmÞ ∂ΣðmÞ

∂mi
Σ−1ðmÞ ∂ΣðmÞ

∂mj

�
;

where μðmÞ and ΣðmÞ refer to the mean and covariance matrix
as a function of the basis material thicknesses m. The CRLB of
the variance is the inverse of the Fisher information matrix.

We repeated this process five times to calculate the standard
deviation of our numerically estimated CRLB.

2.3 Experiments

A 120-kVp incident spectrum was generated from using the
Spektr toolkit17,18 and was passed through a variable amount
of water and bone. We neglected scatter and assumed that
only primary radiation reached the detector. The arrival times
of photons and their energies were randomly sampled from
this spectrum on a small area detector pixel and represented
as a series of delta functions on the detector signal. Because of
various detector imperfections, the energy deposited on the
detector is not always proportional to the energy of the incident
photons. We analyzed two cases: in the first case, we assumed an
ideal energy response with a deposited energy equal to the inci-
dent photon; and in the second case, the energy deposited was
first degraded using the energy response functions measured in
Ref. 4. The energy response of EDPC detectors is implementa-
tion dependent, and the detector response in Ref. 4 was used
only to illustrate one possible case. Features such as charge shar-
ing compensation can greatly improve the energy response.8

The deposited signal spikes were then convolved with a bipo-
lar pulse shape.13 The pulse shaping circuitry is again implemen-
tation dependent, but we choose the bipolar pulse shape because
it has been proposed and validated for one specific detector.
A real detector may show different pulse shapes depending
on the depth of interaction in the substrate. We used a fixed
bipolar shape throughout, as described in Ref. 13.

We examined two possible spectral tasks: material decompo-
sition imaging and equivalent monoenergetic imaging. Material
decomposition is a popular application of spectral imaging sys-
tems, enabling the clinician to, e.g., retrospectively subtract out
iodine contrast from a postcontrast image to produce a virtual
noncontrast image. In material decomposition, the data are used
to estimate an equivalent thickness of two basis materials such
as soft tissue and iodine.19 In our work, we used water and bone
as the basis materials. Equivalent monoenergetic images are
equivalent to a linear combination of the water and bone
basis materials, with coefficients equal to the attenuation coef-
ficients of the basis materials at a chosen energy, so the combi-
nation mimics an image with a truly monoenergetic spectrum at
that energy.

We use linear systems theory to propagate the noise from
individual projections to the noise in CT images. To a good
approximation, the variance of a CT image is proportional to
the unfiltered backprojection of the variance of individual
projections.20 Estimating the noise for each ray in the sinogram
using Monte Carlo techniques would be computationally pro-
hibitive. Instead, we precomputed the variance on a grid at
2.5-cm water length increments and 1-cm bone length incre-
ments. The variance for other rays was determined using bilinear
interpolation from this precomputed table. We assumed that the
CT system used a beam-shaping filter but no tube current modu-
lation. The beam-shaping filter was approximated to be water-
like with a shape given in Ref. 21. Although real beam-shaping
filters are not composed of water, they are often designed to be
similar to water to reduce the complexity of the beam hardening
correction.

We estimated raw data for a CT system by forward projection
of an anonymized clinical image. We assumed a parallel beam
system, and decomposed the clinical image into water and bone
equivalents by assuming voxels < 100 HU were composed of
water of the appropriate density, and voxels > 100 HU were
composed of water and cortical bone in the correct mixture to
produce the observed CT number.

For propagation of noise into CT images, the output of the
tube was assumed to be 5 × 108 counts∕mm2 s at the detector
before the bowtie filter or the object. After the bowtie filter,
the effective tube output was reduced. This corresponds roughly
to a scan technique of 120 kVp and 200 mA, although the pre-
cise mapping from tube current to counts is scanner dependent.
The characteristic count rate of the detector was assumed to
be 1 × 107 counts∕mm2 s, following the bipolar pulse shape
described in Ref. 13.

3 Results
Figure 2 shows the CRLB for the ideal detector energy response.
The incident spectrum passes through 1 cm of bone and 20 cm
of water. The left plot is the CRLB of the water component of
the water–bone decomposition. The right plot is the CRLB of
the equivalent monoenergetic image with the lowest variance.
The response of an ideal detector that is immune to pileup
effects would have a flat response on this curve, because the
effect of increasing flux has been normalized out. The perfor-
mance of all the systems degrades with increasing count rate.
When the count rate is substantially less than the characteristic
count rate, all the systems perform similarly, but at higher rates
the difference in performance when measuring the water com-
ponent is more than an order of magnitude, with the simple
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comparator being among the poorest performers. The effect of
count rate on the equivalent monoenergetic image is smaller.

Curiously, the performance of the simple local maxima
method improves at high flux. At low flux, the output of the
simple local maxima method corresponds directly with detected
photons. For example, bone provides greater contrast in the low
energy bins, and water provides greater contrast in high-energy
bins. We observed that, at high flux, these interpretations break
down, with water providing greater contrast at lower bins and
bone providing greater contrast at higher bins. A possible
explanation for this behavior is that individual bins experience
transition points between these two regimes and become inef-
fective at discriminating between the two basis materials, lead-
ing to a local maximum in variance. Continuing to increase the
incident count rate past the limit of Fig. 2 does eventually lead to
decreasing performance of the simple local maxima method.

Figure 3 shows a similar plot, but with the imperfect detector
energy response reported in Ref. 4. The improvements of the

alternatives still exist with imperfections in the detector
response.

Figure 4 illustrates propagation of variance into CT images
for a thorax and an abdomen. The propagation of variance was
performed by backprojecting the variance, as estimated using
the CRLB, of each ray in the sinogram. As pointed out in
Ref. 20, this method is effective at producing images of the
variance (or variance maps) in reconstructed images under the
approximation that the ramp filter is local. Currently, an estima-
tion algorithm that is efficient both in noise performance and
computation time for material decomposition, and that compen-
sates for distortion due to pulse pileup, charge sharing, etc., does
not exist. However, should it be developed, backpropagation of
the CRLB would provide an estimate of the variance maps that
such an efficient estimator would produce. In these variance
maps, higher brightness indicates larger variance. In both cases,
we constrain the analysis to three systems: the traditional bank
of comparators, the local maxima with multicount threshold
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Fig. 2 Relative CRLB of the variances for different pulse-detection logics, assuming ideal energy
response. The x -axis corresponds to the incident flux normalized by the characteristic count rate,
but the variances are reported at constant dose, so the measurement time decreases as the incident
flux is increased. Within each plot, the CRLB has been normalized to performance at very low count
rates. Hence, both axes are unitless. Error bars represent 95% confidence intervals. (a) Water material.
(b) Equivalent monoenergetic imaging.
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Fig. 3 The same variance plots as in Fig. 2, but assuming a degraded energy response following that of
Ref. 4. (a) Water material. (b) Equivalent monoenergetic imaging. Note that the y -axis is normalized to
the CRLB of the degraded energy response at low count rate, which is a different normalization factor
than used in Fig. 2.
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detection constrained to operate on the bank of comparators,
and peak/width two-dimensional (2-D) binning. In the water
material images, variance is markedly reduced in the lung
field and in the region outside the patient by the more complex
pulse-detection mechanisms.

4 Discussion
At low count rates, the EDPC detector did not suffer from pileup
and all proposed pulse-detection mechanisms operated equally
well. As the count rates increased, many of the alternatives
outperformed the simple comparator, and some by more than
a factor of three on material decomposition images. The best
schemes were able to identify a subset of events in which
one may have more confidence (e.g., the shorter pulses in
peak/width binning, or the “first” detections with multicount
discrimination) because they were less contaminated from
pileup. Presumably, the CRLB was able to use these higher-
quality events to produce better estimates of the basis material
amounts.

Equivalent monoenergetic imaging was much less sensitive
to pulse pileup than basis material decomposition. It is well
known that the noise in basis material decompositions is
strongly anticorrelated. With spectral distortion, the noise
increases and becomes even more anticorrelated. In equivalent
monoenergetic imaging, when the target photon energy is in the
middle of the spectrum, the two basis materials are combined in
a way that exploits this anticorrelation and produces images of
minimal noise. We note that in Figs. 2 and 3, we select the
energy for equivalent monoenergetic imaging expressly to min-
imize the noise. In some applications, the clinician may choose

a lower energy than the minimum-noise energy, such as the
energy that maximizes the iodine contrast-to-noise ratio. In
these cases, the anticorrelations are not fully exploited and the
resulting images will have variance that is intermediate between
the equivalent monoenergetic images shown here and the basis
material images. The local maxima with multicount discrimina-
tion performs very well in equivalent monoenergetic imaging,
presumably because it is able to detect photons that cannot
be discerned with other methods, such as those that rely on
comparators. It would be difficult to realize these advantages
in a real system.

Our simulations involved several assumptions. Each photon
arriving onto an EDPC detector deposits charge only into one
pixel, and the amount of charge deposited is deterministic. In
practice, a single photon may undergo several interactions
within the detector substrate, including possible scattering
into neighboring pixels. The detected signal may be a function
of the depth of interaction. Electronic noise will introduce addi-
tional uncertainties. Perhaps more importantly, our simulations
neglected real-world effects such as material polarization,
charge trapping, and voltage drift. The bank of comparators is
simple and robust. More sophisticated pulse-dependent logic
could be fragile, particularly in its dependence on the lowest
energy threshold, EL, which served as a “reset” marker in
many of our proposed schemes. It may be possible to build alter-
native pulse-detection logic that is more robust in the presence
of these nonidealities, but this is beyond the scope of our work.

Scatter effects were not modeled in this work because the
amount of scatter depends on several factors beside object thick-
ness, including the cone angle of the scanner, the bowtie filter
used, and the design of the antiscatter grid. However, photons
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scattered in the object will introduce additional degradation. It
has previously been shown that scatter contamination of the
lower energy bins, even if the scatter were perfectly estimated
and suppressed, would still increase the variance of these bins.22

Scattered photons would degrade the energy response of the
detector, which (as seen in Figs. 2 and 3) may diminish the
advantages of new pulse-detection logic. However, it would
also increase the effective incident count rate on the detector
and could lead to benefits at lower tube current.

These concerns notwithstanding, we believe that the choice
of pulse-detection logic is an important and often overlooked
design consideration in EDPC detectors. While the comparator
has become the standard method for extracting counts from
EDPC detectors, it is not the only possibility and some of
the alternatives that we investigated here have the potential to
reduce stochastic noise in spectral imaging tasks.
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