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Introduction
The rapid progress that DNA sequencing techniques have 
undergone in the last decade has changed the way in which 
metagenomics research is carried out.1,2 Sequencing of 16S 
rRNA gene has become a relatively easy way to study microbial 
composition and diversity.3 However, to process the amount of 
data, associated bioinformatics tools have to handle the result-
ing high dimensionality that is dependent on the number of 
operational taxonomic units (OTUs). From the beginning, 
one of the main goals of metagenomics research has been to 
describe and compare several samples. Unfortunately, stan-
dard metrics for dimensionality reduction techniques do not 
take into account the phylogenetic information that sequences 
contained. For this reason, UniFrac4 metric based on phylo-
genetic analysis was proposed. Using phylogenic information 
was a great advantage, because even unidentified sequences, 
due to a lack of reference database, could be used for the com-
parison of samples by UniFrac and for visualization by follow-
ing principal coordinate analysis (PCoA). On the other hand, 
the method had to tackle the increasing output of sequenc-
ing machines. Its array-based implementation, fast UniFrac,5 
provided orders of magnitude improvements, making UniFrac 

followed by PCoA a standard technique used for visualization 
in microbiome studies. However, dimensionality reduction 
causes new axes, which are principal coordinates, that do not 
correspond to specific OTUs, but rather to abstract OTUs. 
This can be disadvantageous in cases where common and 
unique taxa should be captured and compared for different 
environments because those particular taxa cannot be con-
nected with the samples or environments directly, but can be 
done only indirectly using PCoA biplot. Moreover, the nature 
of UniFrac makes it heavily dependent on the appropriate use 
of databases and phylogenetic methods.

Although the progress in DNA sequencing brings the 
possibility to get a deep insight into a metagenome by shot-
gun sequencing, which is the current trend, cheaper amplicon 
sequencing-based technique remains the standard approach 
for investigating the diversity of microbial communities.6,7 
Thus, there is still need to develop algorithms for processing 
amplicon sequencing that can be used for data quantitation 
by clustering similar sequences together and by assigning tax-
onomy to the clusters using a reference database.8 With the 
growing volume of current databases, it is possible to identify 
even uncultured microorganisms relatively reliably down to 

Bipartite Graphs for Visualization Analysis of  
Microbiome Data

Karel Sedlar1, Petra Videnska2, Helena Skutkova1, Ivan Rychlik3 and Ivo Provaznik1

1Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic. 2Research Centre for Toxic Compounds in the 
Environment RECETOX, Masaryk University, Brno, Czech Republic. 3Veterinary Research Institute, Brno, Czech Republic.

Supplementary Issue: Bioinformatics Methods and Applications for Big Metagenomics Data

Abstract: Visualization analysis plays an important role in metagenomics research. Proper and clear visualization can help researchers get their first 
insights into data and by selecting different features, also revealing and highlighting hidden relationships and drawing conclusions. To prevent the resulting 
presentations from becoming chaotic, visualization techniques have to properly tackle the high dimensionality of microbiome data. Although a number 
of different methods based on dimensionality reduction, correlations, Venn diagrams, and network representations have already been published, there 
is still room for further improvement, especially in the techniques that allow visual comparison of several environments or developmental stages in one 
environment. In this article, we represent microbiome data by bipartite graphs, where one partition stands for taxa and the other stands for samples. We 
demonstrated that community detection is independent of taxonomical level. Moreover, focusing on higher taxonomical levels and the appropriate merging 
of samples greatly helps improving graph organization and makes our presentations clearer than other graph and network visualizations. Capturing labels 
in the vertices also brings the possibility of clearly comparing two or more microbial communities by showing their common and unique parts.

Keywords: metagenomics, OTU table, 16S rRNA, bipartite graph, visualization analysis, graph modularity

SUPPLEMENT: Bioinformatics Methods and Applications for Big Metagenomics Data

Citation: Sedlar et al. Bipartite Graphs for Visualization Analysis of Microbiome Data. 
Evolutionary Bioinformatics 2016:12(S1) 17–23 doi: 10.4137/EBO.S38546.

TYPE: Technical Advance

Received: February 02, 2016. ReSubmitted: April 17, 2016. Accepted for 
publication: April 23, 2016.

Academic editor: Jike Cui, Deputy Editor in Chief

Peer Review: Five peer reviewers contributed to the peer review report. Reviewers’ 
reports totaled 3999 words, excluding any confidential comments to the academic editor.

Funding: Supported by BUT intern grant agency, interfaculty junior project FEKT/FIT-
J-16-3335. The authors confirm that the funder had no influence over the study design, 
content of the article, or selection of this journal.

Competing Interests: Authors disclose no potential conflicts of interest.

Correspondence: sedlar@feec.vutbr.cz

Copyright: © the authors, publisher and licensee Libertas Academica Limited. This is 
an open-access article distributed under the terms of the Creative Commons CC-BY-NC 
3.0 License.

�Paper subject to independent expert blind peer review. All editorial decisions made 
by independent academic editor. Upon submission manuscript was subject to anti-
plagiarism scanning. Prior to publication all authors have given signed confirmation of 
agreement to article publication and compliance with all applicable ethical and legal 
requirements, including the accuracy of author and contributor information, disclosure of 
competing interests and funding sources, compliance with ethical requirements relating 
to human and animal study participants, and compliance with any copyright requirements 
of third parties. This journal is a member of the Committee on Publication Ethics (COPE).

�Published by Libertas Academica. Learn more about this journal.

http://www.la-press.com/journal-evolutionary-bioinformatics-j17
http://www.la-press.com
http://dx.doi.org/10.4137/EBO.S38546
mailto:sedlar@feec.vutbr.cz
http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17


Sedlar et al

18 Evolutionary Bioinformatics 2016:12(S1)

the genus level.9 A number of various pipelines for processing 
data and identifying sequences are now available, eg, Megan,10 
mg-RAST,11 QIIME,12 etc. An OTU table containing an 
abundance of OTUs in different samples is presented as the 
output. Various visualization techniques can be used for the 
analysis of this table. Among them, one can use direct visual-
ization by a cluster heat map, or a correlation analysis followed 
by a cluster heat map.13 Although labels can be added and a 
range of clustering techniques can be utilized, the rectangular 
shape of the visualization may hide some small yet important 
clusters. Venn diagrams also suffer from a similar kind of rigid 
presentation, which makes them difficult to follow, especially 
for larger datasets. The abovementioned PCoA can not only be 
used for dimensionality reduction, but various different tech-
niques can also be applied, for example principal component 
analysis, nonmetric multidimensional scaling, FastMap, or 
MetricMap.14 Last but not least, a range of different network 
representations can provide visual analysis. Even though these 
visualizations are able to reveal microbial interactions, are usable 
for dynamic modeling of bacterial communities, or can process 
high-dimensional data,15 there is still a lack of simple workflow 
that could suitably complement UniFrac PCoA visualization.

Currently, the increasing output of sequencing platforms 
is causing such a massive increase in the number of nodes in 
network representations that the resulting representations are 
becoming uninformative and are not human readable. The 
significant reduction in the price for sequencing is having 
another impact. It is cheaper to acquire new data by sequenc-
ing than it is to store and process them.16 Moreover, this 
huge amount of sequences contains contaminations, so it is 
not necessary to use every sequence.17 Rather, an overall view 
can be more desirable. In an amplicon-based approach, where 
the reference database is limited to the target gene, even the 
BLAST18 identification for larger datasets is possible within 
a reasonable time, and a reduction of data can be achieved by 
focusing on the higher taxonomical levels. Herein, we present 
the bipartite graph visualization that was inspired by the net-
work analysis implemented in QIIME, which, unfortunately, 
lacks clear description. However, we show that several steps 
for OTU table preprocessing are required to meet the current 
needs and provide a clear and informative visualization. We 
also demonstrate important graph features to be independent 
of taxonomical level, making community detection also avail-
able for highly reduced data. Based on our previous outline 
of the approach in comparison of microbial samples,19,20 we 
now provide a deeper analysis showing the patterns that can 
be revealed by giving different weights to partitions, OTUs, 
and samples. These can provide additional information to 
UniFrac-PCoA analysis, making this approach an advanta-
geous complement to the standard technique.

Materials and Methods
Test dataset. For the verification and presentation of 

our approach, we utilized data regarding the microbiota 

composition in the cecum of egg-laying hens during their 
whole lives. The three experiments are described and data 
are published.21 Shortly, in the first experiment, long-term 
on-farm development of cecal microbiota was described. The 
three chickens or hens were taken from the flock, sacrificed 
at weeks 1, 2, 3, 4, 8, 12, 16, 19, 22, 26, 34, 38, 45, 51, 55, 
and 60. In the second experiment, short-term development 
of cecal microbiota was observed in newly hatched chickens. 
Three chicks were sacrificed on days 4, 7, 10, 13, 16, and 19. 
The third experiment verified the long-term experiment. Three 
chickens or hens were taken from the flock, sacrificed at weeks 
3, 7, 16, 28, 40, and 52. Cecal contents were collected from all 
sacrificed birds and were frozen at −20 °C. The isolated DNA 
served as a template for the preparation of 16S rDNA library, 
which was sequenced by 454 Junior (Roche).21 UniFrac analy-
sis followed by PCoA was used for visual presentation and 
dimensionality reduction. The data were classified into four 
clusters by Ward’s hierarchical clustering using Mahalanobis 
distance. Comparing the clusters to area flowcharts repre-
senting abundance of different taxa together with biological 
considerations, four main stages of microbiota development 
represented by four clusters were determined. This made the 
dataset an appropriate reference for presenting our workflow.

Overall workflow. Sequence reads were clustered at the 
97% similarity level using UCLUST22 and identified with 
RDP Seqmatch.23 The identified clusters of sequences repre-
sented OTUs and a number of sequences in the cluster stands 
for abundance of an OTU in particular samples. Besides the 
abovementioned techniques, other methods for OTU pick-
ing are applicable in this step. Matlab 2014a and R24 were 
used for OTU table preprocessing and for the construction 
of bipartite graphs, but any suitable scripting language can 
be used. The final graphs were visualized with Gephi25 using 
the force-directed layout ForceAtlas2.26 Different stages 
of microbiota composition were determined by community 
detection based on modularity optimization27 using different 
resolutions according to the graph size.28 Also this step can be 
implemented in any suitable graph visualization software. The 
overall commented workflow is shown in Figure 1.

Data transformation. An OTU table, which is P m × n 
matrix, was obtained as a result of sequence identification. 
Each of the m rows represents different OTUs; therefore, the 
precise number of rows depends on taxonomical level. While 
the number of rows is more when OTU stands for species, it 
can be reduced when OTU stands for phylum. Each of the 
n columns represents different samples; therefore, the precise 
number of columns depends on a number of samples and can 
be reduced by sample merging. The numbers in the table show 
the abundances of particular OTUs in the different samples. 
Due to dissimilar sequencing depth for each sample (from 
292 to 47,657 sequences in the source dataset), an OTU table 
representing relative abundances was used. We reconstructed 
six matrices where number of rows was reduced by focusing 
on higher taxonomical levels, see Table  1. For every matrix 
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from another set of five matrices, the number of columns was 
reduced by merging the samples. Although in Ref. 18 we used 
merging the samples according to the environment, here we 
performed a different strategy based on a fusion of samples 
from the detected communities. This approach better repre-
sents the original pattern and allows combining data from dif-
ferent experiments and the handling of uneven sampling in 
time. Additional reduction was done in row for five matrices 
by omitting low-abundant OTUs (Table 2). Due to the non-
normal distribution in different samples tested by Shapiro–
Wilk test, we used merging of samples based on median in 
way that the row of selected columns (samples) was replaced 
by its median value.18

The preprocessed OTU table was easy to use for graph 
reconstruction. The values of m and n represent the sizes of 

partitions, with m being the number of taxa and n being the 
number of samples or communities. A Boolean biadjacency 
B m × n matrix representing the connections between parti-
tions can be reconstructed in this way:
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A connection between the ith taxon and the jth sample/
community is created when the taxon was detected in this 
particular sample/community, and its abundance exceeded the 
threshold t. Usually, the threshold is set as 0. However, weak 
connections can be omitted by setting the threshold higher. To 
better reveal the hidden patterns in the microbiota composi-
tion, we suggest rate edges according to the relative abundance 
of the taxon across samples. This approach provides suitable 
results for showing the common and unique parts of micro-
biota composition for different samples/communities, because 
all the taxa are given an equal priority that is independent of 
the abundance of the taxon. A weighted biadjacency matrix W 
can be computed as:
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where the weight of the edge ranges from 0 to 10. This value 
was used not only for the width of an edge in the visualized 
graph but also for the final layout computation. The adjacency 
matrix Ar,r representing the graph is then reconstructed as 
a square matrix:
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where r = m + n. It represents the number of nodes in the final 
bipartite graph.

To distinguish the vertices between both partitions for 
visual presentation, we decided to present vertices from taxa 
partition as smaller than vertices from the second partition. 

NGS reads

OTU table

Matrix
representation 

Bipartite graph

Sequence
identification 

Graph
reconstruction 

Visualization

Processing steps description

→   Sequence identification: clustering of 
sequences and identification of clusters 
against a reference database eg,:
UCLUST, RDP seqmatch etc.

→   Graph reconstruction: taxonomical
level setting, merging samples, weighting
of edges using scripting languages eg,:
R, Matlab, Python etc.    

→   Visualization: graphic parameters
setting for better recognition and readability
of graph as graph ordering, color coding,
overall layout setting using a visualization
software eg,: Gephi, Cytoscape, Tulip etc.   

Figure 1. Flowchart describing proposed workflow. Every main step is 
implementable in several scripting languages/software according to the 
preferences of users.

Table 1. Summary of parameters describing the reconstructed graphs for reduction of taxa partition.

whole OTU genus family order class phylum

No. of vertices 18,503 280 139 98 73 66

No. of edges 37,356 5,776 2,268 1,155 656 407

Average degree 4.037 41.257 32.633 23.571 17.973 12.333

Graph density ,0.000 0.148 0.236 0.243 0.250 0.190

Average path length 3.713 2.118 2.042 2.053 1.916 1.960

Modularity 0.577 0.281 0.287 0.303 0.288 0.263

No. of communities 4 4 4 4 4 4
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Any arbitrary distinction, eg, circles vs. squares, can be used. 
Both partitions are identifiable from the matrix and their pre-
sentation is therefore dependent on software used for visual-
ization (Gephi, Cytoscape, etc.).

Results and Discussion
Original data visualization. The entire dataset con-

sisted of 18,451 OTUs detected in 52 cecal microbiota sam-
ples obtained during the whole life of egg-laying hens. For the 
first analysis, we only transformed the absolute values of OTU 
table into relative counts. We consider that this is a sufficient 
and suitable way for OTU table preprocessing, because of fol-
lowing edge weighting and data reduction by sample merging. 
Due to different sequencing depths and substantially different 
composition of the microbiota between the different stages 
of the lives of the hens, rarefaction may transform the data 
in an inappropriate way by removing the differences between 
samples; however, this was not tested because the results 
without using rarefaction satisfied the purpose of the pro-
posed visualization. The resulting graph is shown in Figure 2. 
Many small clusters of the vertices from the taxa partition 
are observable in the graph. These clusters were divided into 
four large communities, according to modularity optimiza-
tion, that are represented by four different colors. This result 
agrees with data description containing four main clusters. 
Unfortunately, vertices with a low average degree repulsed the 
vertices with high degrees. These were the vertices that rep-
resented the samples. Although this repulsion did not affect 
community detection, the resulting comet shape of the graph 
together with an enormous number of edges makes visualiza-
tion unclear and prevents capturing the labels of the vertices. 
Although the content of particular communities could be ana-
lyzed by further inspection using additional graph algorithms, 
the purpose of the presented workflow is to visualize the data 
to the naked eye without the need for additional steps. There-
fore, the data reduction is needed before community detection 
and graph presentation.

Reduction of taxa partition. In the next step, we tried to 
provide visualization that would on the one hand preserve the 
correct distribution of communities, but on the other hand, 

present the distribution in a much clearer way. Such a pre-
sentation can be achieved by data reduction. This reduction 
should not affect the results of the analysis while improving 
the overall layout. Thus, we decided to observe the overall 
influence of reducing the taxa partitions. We reconstructed 
the graphs gradually from the genus to the phylum levels. The 
results are summarized in Table 1. During the reduction of 
vertices from taxa partition, division of vertices from sample 
partition remained satisfactorily consistent when 89.5% verti-
ces remained in cluster 1, 88.3% in cluster 2, 95.4% in cluster 
3, and 100% in cluster 4. These four clusters represented the 
four biological stages defined in Ref. 21, when cluster 1 con-
tained mostly samples from newly hatched chickens, cluster 
2 mostly 2–4-week-old chickens, cluster 3 mostly 8–26-week-
old chickens, and cluster 4 the rest of samples from hens. 
Smaller size of cluster 1 and its overlap with cluster 2 caused 
its lowest consistency.

The most noticeable difference was between the whole 
OTU graph and the genus graph, which is not surprising, 
because resolution of V3/V4 16S rRNA is sufficient only to 
the genus level, and the whole OTU graph consists of many 
unidentified sequences on the species level. The number of ver-
tices was reduced 66 ×, to 280 identified genera. Because the 
number of edges was reduced only 7 ×, the average degree of 

Table 2. Summary of parameters describing the reconstructed 
graphs for reduction by abundance threshold.

threshold 0 0.005 0.01 0.05 0.1

No. of vertices 64 21 16 12 10

No. of edges 156 33 25 16 10

Average degree 4.875 3.143 3.125 2.667 2

Graph density 0.077 0.157 0.208 0.242 0.222

Average path length 2.105 2.181 2.133 2.242 2.711

Modularity 0.224 0.338 0.340 0.377 0.411

No. of communities 4 4 4 4 4

  

Figure 2. Bipartite graph reconstructed from the entire OTU table with 
four detected communities. 
Notes: Due to different sequencing depth for particular samples, relative 
abundances of OTUs were used. Communities were detected based on 
modularity maximization. Vertices (samples and OTUs) within the same 
community are colored with the same color.
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vertices and the graph density increased. Thus, the organization 
of such a graph is clearer. Although modularity decreased in 
comparison to the whole OTU graph, four main communi-
ties were still detected. Other moves to higher taxonomi-
cal levels caused additional reduction of vertices and edges, 
while modularity and detected communities remained similar. 
Although the reduction of taxa partitions according to higher 
taxonomical levels improved the graph layout while the results 
of community detection remained similar, 407 edges are still 
too many to provide a clear overview of the data. Moreover, 
in the phylum graph, 52 of 66 vertices represented samples, 
so community detection is a matter of sample clustering, and 
such clusters were already revealed by UniFrac-PCoA.21 On 
the other hand, distribution of phyla among these four stages 
of microbiota development would bring interesting additional 
information, because even in a PCoA biplot, the connection 
between samples and phyla was not easy to determine. The 
combination of UniFrac-PCoA, area charts, and hierarchical 
clustering was needed to reveal this pattern.21

Reduction of sample partition. On the contrary, 
a bipartite graph contains the information about the connec-
tions between taxa and samples by definition. In addition, 
another reduction can be applied to the graph by merging the 
samples together. By combining the samples according to the 
cluster they are assigned to, the bipartite graph can provide 
a very simple yet very powerful visualization, as presented 
in Figure 3.

The partition representing samples was now replaced by a 
partition standing for the different stages of microbiota devel-
opment. The size of the vertices from the partition represent-
ing stages was used to distinguish both partitions to the naked 
eye; it did not play any role in the graph layout computation or 
in community detection. Because all the samples were related 

to one organism, a hen, and the purpose was to describe the 
microbiota composition, this kind of graph denoted the situ-
ation in a very clear way. The number of vertices and edges 
was reduced to 15 and 28, respectively, while other parameters 
such as modularity (0.255), graph density (0.267), and aver-
age path length (1.886) remained more or less the same as in 
the graphs representing all the samples. Moreover, it revealed 
the same pattern as did the whole OTU graph in Figure 2, 
because every stage was included in the different community, 
but in a way that provided information about the main con-
nections among the stages and their most abundant phyla 
directly to the naked eye. Thus, it presented the correctness of 
the division of microbiota development as well as the robust-
ness of the bipartite graph representation against the merging 
of the samples.

Reduction by abundance threshold. Eventually, we 
decided to examine the impact of the threshold t in formula 
(1) on community detection. Bipartite graphs showing four 
detected stages and particular bacterial families were used to 
present the results. While the four selected stages consisted 
of many different bacterial families, most of them formed less 
than 1% of the microbiota composition. Thus, we decided on 
another reduction that was based on focusing only on conside
rably abundant taxa. The results are presented in Table 2.

A lot of the bacterial families did not reach even 0.5% 
abundance in particular stages, which led to a massive reduc-
tion of the graph, even for very low threshold (t = 0.005), from 
64 to 21 vertices and from 156 to 33 edges. Further increases 
of the threshold meant additional graph reduction, while the 
modularity increased. This is caused by two main facts. First, 
the average degree of vertices from the partitions representing 
stages is higher than the average degree in general, and com-
munities are therefore formed around these high-degree verti-
ces. Second, every taxon was given the same priority, according 
to formula (2), which was determined by its relative abundance 
across the samples rather than by its relative abundance within 
samples. Thus, by a reduction of the edges connecting different 
communities coupled with an increasing threshold, the modu-
larity was also increased. That is also the reason why in every 
graph from Table 2, no two vertices representing stages were 
assigned to the same clusters. Our bipartite graph representa-
tion was designed primarily for the comparison of microbiota 
compositions in different stages or environments in a visual 
manner.20 Therefore, this feature demonstrated that increas-
ing the threshold did not influence the results highlighting 
different communities. Although the communities remained 
coupled with different stages, the increased modularity indi-
cated the changes between and within the communities. 
These changes should be taken into account when making any 
conclusions about the diversity of the communities. This kind 
of visualization primarily shows most abundant, thus most 
typical taxa for a related community while information about 
overall taxa richness and their occurrence in samples or com-
munities is lost. Even a low threshold can lead to a massive 

Figure 3. Bipartite graph representing four stages of microbiota 
development. 
Notes: Four communities were detected based on modularity 
maximization. The color coding of particular communities (yellow, 
blue, red, and green) corresponds to the color coding used in Figure 2. 
Other colors represent intercommunity connections. Partitions are 
distinguished by the size of the vertices.
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reduction of vertices and especially edges when a lot of low-
abundant taxa is present in particular samples. An example 
is given in Figure 4, a graph showing families with at least 
0.5% abundance.

Although the family Fusobacteriacae was captured in both 
stages 4 and 3, the threshold was exceeded only in stage 4. 
Therefore, the edge connecting Fusobacteriacae and stage 4 
had maximum weight, because no other connection for Fuso­
bacteriacae was made. On the contrary, the edge connecting 
Ruminococcaceae with stage 4 had a lower weight, despite the 
fact that Ruminococcaceae are approximately 10 × more abun-
dant in stage 4 than Fusobacteriacae. This is no mistake, nor a 
disadvantage, because the proposed graph representation was 
meant to determine the strongest connections among taxa and 
samples, stages, or environments in a manner in which every 
taxon has the same priority. However, it should not be utilized 
for any studies describing overall diversity, especially when a 
nonzero threshold t is used.

The presented workflow is a suitable complement to 
the current techniques, eg, UniFrac-PCoA, and can provide 
advantageous and clear visualization. It is applicable to any 
kind of microbiota studies, but its main use can be found in 
descriptive studies where more environments, developmental 
stages of microbiota composition, or microbial communi-
ties are being compared. As it is mainly meant as descriptive 
approach considering the relation between sample and micro-
biota composition, no relations among taxa can be revealed.

Conclusion
Amplicon-based metagenomics is a standard approach 
for investigating the diversity of microbial communities. 
Although several different techniques can be used for a visu-
alization analysis of microbiome data, there is still room for 
further improvement, especially for processing data with 
assigned taxonomy by a reference database. In this article, 
we proposed a novel workflow for the reconstruction of a 

bipartite graph that can present the common and unique 
parts of different samples or communities very clearly. As we 
demonstrated, the overall layout of the graph can be greatly 
improved by data reduction coupled with moving to higher 
taxonomical levels without affecting the result of the analysis 
in an inappropriate way. It also allows additional analysis of 
the detected communities by merging the samples without 
affecting the detected patterns. The results of community 
detection are also robust against any reduction of data by 
considering only taxa with abundance higher than a selected 
threshold, because every taxon is given the same priority dur-
ing graph construction. Our graph’s representation revealed 
the same pattern as the standard UniFrac-PCoA technique 
for the reference dataset. However, it provided additional 
information about the unique and the common parts of the 
microbiota composition during the different stages. On the 
other hand, information about the overall diversity was lost, 
especially when a nonzero threshold was used. Thus, our 
approach can supply the UniFrac-PCoA analysis with dif-
ferent aspects of the data that would otherwise require com-
bination of several additional techniques.
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