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Abstract

Purpose—This work describes PETSTEP (PET Simulator of Tracers via Emission Projection): a 

faster and more accessible alternative to Monte Carlo (MC) simulation generating realistic PET 

images, for studies assessing image features and segmentation techniques.

Methods—PETSTEP was implemented within Matlab as open source software. It allows 

generating three-dimensional PET images from PET/CT data or synthetic CT and PET maps, with 

user-drawn lesions and user-set acquisition and reconstruction parameters. PETSTEP was used to 

reproduce images of the NEMA body phantom acquired on a GE Discovery 690 PET/CT scanner, 

and simulated with MC for the GE Discovery LS scanner, and to generate realistic Head and Neck 

scans. Finally the sensitivity (S) and Positive Predictive Value (PPV) of three automatic 

segmentation methods were compared when applied to the scanner-acquired and PETSTEP-

simulated NEMA images.

Results—PETSTEP produced 3D phantom and clinical images within 4 and 6 min respectively 

on a single core 2.7 GHz computer. PETSTEP images of the NEMA phantom had mean intensities 

within 2% of the scanner-acquired image for both background and largest insert, and 16% larger 

background Full Width at Half Maximum. Similar results were obtained when comparing 

PETSTEP images to MC simulated data. The S and PPV obtained with simulated phantom images 

were statistically significantly lower than for the original images, but led to the same conclusions 

with respect to the evaluated segmentation methods.

Conclusions—PETSTEP allows fast simulation of synthetic images reproducing scanner-

acquired PET data and shows great promise for the evaluation of PET segmentation methods.
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Introduction

In Positron Emission Tomography (PET) images, the segmentation of tumor from 

background has a number of important applications in both prognosis [1,2] and therapy 

[3,4]. However, implementation of automated segmentation into the clinical environment has 

been slow primarily due to the lack of standardized means with which to evaluate the various 

methods [5]. This includes the availability of data with a known ground truth. At present, 

such data are available on a limited scale and for a very large range of image types, making 

standardization problematic. The American Association of Physicists in Medicine (AAPM) 

Task Group-2111 (TG-211), Classification and evaluation strategies of auto-segmentation 

approaches for PET, is seeking to establish a methodology and a framework for evaluating 

auto-segmentation methods. In a forthcoming report, the TG-211 will be highlighting the 

need for standard evaluation data available to all and containing a large number of varied 

images for the evaluation of PET auto-segmentation tools. In particular, the use of simulated 

PET images can be beneficial for the evaluation of segmentation methods, as it theoretically 

allows generating realistic PET images simulated from different lesion uptakes with known 

ground truth [6]. However, the large variation of observed lesion geometries and uptake 

distributions requires a large number of test images to provide clinically relevant and robust 

results. For such applications, there is a need for a fast, flexible, and accessible simulation 

tool dedicated to the generation of large datasets.

Simulated PET images are useful for a number of applications, ranging from equipment 

calibration and optimization to testing of novel image processing approaches [7]. The 

advantages of simulation over both physical phantom and patient data include a greater 

knowledge, control, and flexibility in defining the tracer uptake distribution. Furthermore, it 

provides the ability to perform these studies without requiring access to a scanner, which can 

be limited. When simulating PET images with synthetic lesions, Monte Carlo (MC) 

simulation of the data followed by reconstruction of the image is most commonly used [6,8–
12]. However work presented by Manjeshwar et al. has shown that realistic synthetic lesions 

can be placed in existing PET images by using arbitrary combinations of ellipsoidal 

primitives [13] that are added, with noise, to the existing projection data. This work extends 

Manjeshwar et al. by obviating the need for access to the actual patient projection data and 

the subsequent required knowledge of and use of the associated imaging system's system 

matrix. Furthermore, this approach sidesteps the vast computation expense that generally 

accompanies MC methods [8–11], which can often require hundreds of hours of simulation 

time to recreate a single bed position from a patient's scan, especially when Graphics 

Processing Units (GPUs) are not available. This study introduces this forward-projection 

simulation method to the segmentation community in the form of a fast simulation tool for 

1http://aapm.org/org/structure/default.asp?committee_code=TG211
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generating simulated PET lesions and images for use in developing and evaluating 

segmentation methods.

In this work, we present PETSTEP (PET Simulator of Tracers via Emission Projection), a 

tool that allows the simulation of synthetic PET lesions with a high degree of flexibility, 

minimal computational time, and intrinsic data/projector matching, and we describe its 

implementation. We also compare the images provided by our software to both phantom and 

clinical data obtained from our scanner as well as to MC simulated phantom data. Finally, 

we evaluate the impact of using images simulated with our software compared to scanner-

acquired images for the evaluation of segmentation methods.

Methods

Description of PETSTEP

Generation of synthetic lesions—PETSTEP allows the generation of synthetic PET 

images based on inserting a lesion-like sub-image into an image representing the 

background. The background image may be a reconstructed PET scan of a patient or 

phantom, or it can be an idealized image2 representing the background object prior to its 

being acted on by the PET system and the subsequent reconstruction. These two cases are 

described in the following paragraphs.

Inserting synthetic lesions into images of the idealized background: The most 

straightforward case is to insert an idealized synthetic lesion directly into an idealized 

background that represents the underlying distribution of tracer uptake. In this case, it is 

assumed that neither the background image nor the lesion has been operated on by the 

system's Point Response Function (PRF), and the image is noise free. The simulation 

process includes the following steps, illustrated on Fig. 1a):

1. The lesion is added to or used to replace the background at its location, as specified 

by the user.

2. The resulting combined-object, representing the idealized background and lesion is 

blurred to mimic the effect of a real PET system's PRF. In this study we represent 

this with a spatially shift invariant PRF, commonly referred to as a Point Spread 

Function (PSF).

3. The blurred image is then forward-projected via a radon transform to produce noise 

free projection data.

4. The resulting projection data are attenuated by a forward-projection of the 

attenuation map derived from the computed tomography (CT) image. The 

attenuated data are then scaled, so that the sum of the intensities corresponds to the 

number of true counts being simulated, which are calculated from the user-defined 

maximum uptake, uptake distribution, scan time and system sensitivity.

2In this case, the use of idealized image is meant to convey that the activity distribution that is represented by the background image is 
the discretized expectation value drawn from an underlying probability density function, which can be defined as realistically as 
desired.
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5. Random events and scatter are added to the image. The random distribution is 

generated from a uniform background, whereas the scatter distribution is generated 

from the forward projection of the blurred image. The random and scatter 

distributions are scaled to the number of counts corresponding to the user defined 

scatter (SF) and random (RF) fractions,

(1)

where T is the number of true counts, S is the number of scatter counts, and R is the 

number of random counts.

6. Noise is added to the data as a Poisson distribution of values with mean value 

corresponding to the forward projected data with added random and scatter counts.

7. The noisy realizations of the projection data can then be reconstructed using filtered 

back-projection (FBP) or a maximum-likelihood scheme such as ordered-subset 

expectation-maximization (OSEM). In this study we use an OSEM scheme that 

allows for PSF correction (this can be generalized to a spatially variant PRF) [14] 

given by,

(2)

where fk is the kth iteration of the image, gj is the jth subset of the data, μ is the 

attenuation on each projection, RS are the scatter and randoms, H is the forward-

projection, HT is the back-projection, and ∗ is the convolution operator between the 

images and the system's PSF. Note that f0,0 is the initial image for the iterative 

reconstruction: an image of the unit cylinder. For reconstruction without system 

response the PSF is the delta function.

8. The resulting images can be post-filtered. In this study we use a Gaussian kernel for 

the transverse plane and 3-point smoothing in the axial direction.

Inserting synthetic lesion(s) into preexisting patient or phantom images: When inserting 

a lesion into a preexisting PET image, the lesion and background PET image must be treated 

separately, since the preexisting PET image has already been acted on by an imaging 

system's PRF, while the lesion has not. This is shown on Fig. 1b).

The background and tumor images are blurred independently. Next, both images are 

forward-projected and attenuated independently. The number of true counts specified by the 

user is reflected as the sum of both background and lesion images. However, the scatter and 

random distributions and counts are determined using the number of counts from the lesion 

only to avoid adding noise from the background image that is already present in the 

preexisting image. The noise realizations are also generated for the lesion sub-image data 

only. In addition, when reconstructing the data the initializing image f0,0 is now the original 

PET background image. In this way, as each iteration is performed, the only portions of the 

image that are updated are the lesion and its associated scatter and random noise.
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For post-filtering the image, only the inserted lesion and its associated noise are smoothed. 

This is accomplished by subtracting the preexisting image from the reconstructed one, 

performing the filtering as described above, and then adding the preexisting image back to 

the filtered image.

Implementation—The simulation code is written in Matlab using the radon transform and 

its adjoint for the forward- and back-projectors, respectively. The PETSTEP package was 

implemented as a plug-in to the open source software CERR [15].

A user interface was written to allow selecting the parameters for the segmentation. The 

package relies on the availability of some functions in CERR, in particular the contouring 

tool for drawing lesion outlines on the scans displayed. PETSTEP requires the presence of 

one CT scan and one PET scan stored in CERR format, with lesion outlines drawn on the 

PET image. If several outlines are present, the software adds the corresponding binary masks 

and multiplies the result by the maximum lesion Standardized Uptake Value (SUV) set by 

the user. This allows modeling several intensity uptake levels and complex geometric 

distributions.

The following parameters can be set by the user via a graphical user interface:

• The maximum lesion SUV.

• The blurring filter size in millimeters, corresponding to the scanner's intrinsic 

resolution.

• The scan time in seconds.

• The background activity concentration in kBq/mL.

• The count sensitivity in cps/kBq.

• The scatter and random fractions to be simulated.

• The initial projection data as angular bins and gantry diameter, according to the 

number of crystals in the scanner and the effective detector diameter.

• The filter size used for PSF correction (the default matches the blurring filter above 

and is recommended).

• The image size, representing the number of voxels in the transverse plane of the 

reconstructed image.

• The number of iterations and subsets for the OSEM reconstruction (the subset 

number should be a divisor of the angular bins, which is verified by the program).

• The size of the blurring filter applied post reconstruction.

• The type of axial filtering required (3-point smoothing: light, heavy, standard 

filtering or no axial filtering).

• The number of simulation instances required, corresponding to independent noise 

realizations.

Additionally, options are provided for the user to:
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• Use the lesion uptake data either additively or as a replacement for the original 

uptake values.

• Use an original PET scan as a 18F-fluorodeoxyglucose (FDG) uptake map as 

described in the next section.

• Select the type of reconstructions to use.

• Save the PET scans corresponding to the different noise realizations and 

reconstruction iterations in the current study.

The output of PETSTEP consists of new 3D PET images which are appended to the CERR 

file from which the simulation was started. These can include:

• The original CT image with inserted lesion density map.

• The original FDG uptake map with inserted lesion, before simulation.

• The simulated PET image for each of the reconstructions selected, and for the 

number of noise realizations specified.

• The PET scans corresponding to the different noise reconstruction iterations for 

each reconstruction and noise realization, if specified.

All parameters entered by the user are saved together with each new image generated in 

CERR. The list of parameters entered can also be saved in a text file in the current folder and 

retrieved from an existing file.

Evaluation of PETSTEP

The aim of this investigation was to evaluate the ability of PETSTEP to reproduce realistic 

FDG PET images for segmentation. For this purpose, we calibrated PETSTEP by 

determining the set of parameters allowing the closest reproduction of the scanner 

acquisition and reconstruction process. Work was based on the GE Discovery 690 (D690) 

PET/CT scanner available at both of our centers (Cardiff and New York) and MC 

simulations performed with the GATE software using a well validated model of the GE 

Discovery LS (DLS) PET/CT [16].

Comparison to phantom data—First, we aimed at reproducing images of the NEMA 

IEC body phantom acquired previously with a GE D690 PET/CT scanner at our center. The 

phantom contains six spherical plastic inserts, which were filled with a FDG activity five 

times higher than the filled-in background activity, and scanned with one bed position. 

Template images were derived by extracting the phantom geometry from the CT image, and 

assigning to background and spheres voxel values corresponding to the filled-in activities of 

the scanned plastic phantom, to model the desired spheres-to-background activity ratio. The 

scanner specific parameters, such as gantry diameter were set to values obtained from the 

manufacturer. The number of radial bins and projection angles was derived from the number 

and size of detector crystals found in the scanner specifications and the reconstructed Field 

of View (FOV). The system sensitivity was extracted from NEMA NU2 test results 

published by Bettinardi et al. [17], where the value of 7.5 true cps/kBq was obtained for a 

source length of 700 mm and was adapted to the modeled detector FOV length of 157 mm, 
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leading to a value of 33.4 true cps/kBq. The scan time and activity concentration (calculated 

as an average for the whole phantom) were matched to the experimental values. The bed 

position overlap was set to 50%, to account for axial sensitivity fluctuations across slices, of 

the D690 scanner, which has 24 detector rings (47 slices per bed position) and an axial 

coincidence acceptance of ±23 slices. The blurring filter size was set to 4.9 mm, which is the 

average of the PSF Full Width at Half Maximum (FWHM) values of the D690 PET/CT 

scanner obtained at 1 cm and 10 cm of the FOV center using the NEMA NU2 tests obtained 

at the Cardiff center. The matching PSF correction filter size was set to the same value of 4.9 

mm. Scatter and random fractions were also obtained from the NEMA NU2 tests. The 

OSEM + PSF reconstruction was chosen as the closest to the scanner reconstruction method 

Vue Point HD algorithm with SharpIR available for the D690 scanner (not including Time-

Of-Flight (TOF) correction). The image was reconstructed to a matrix size of 256 × 256 to 

match the matrix size of images from the scanner, with a 3-point axial smoothing filter of [1 

3 1]/5, and post reconstruction filter size of 6.4 mm, matching the filter used for the scanner-

acquired image.

The values used for the simulation are summarized in Table 1.

The simulated images (without TOF correction) were compared to the corresponding 

original scanned PET qualitatively and quantitatively in terms of their intensity spectrum and 

intensity variations in the background and sphere regions. The total activity in the scan was 

measured as the sum of all voxel intensities in the three-dimensional (3D) image, multiplied 

by the voxel volume in mL, as well as the mean intensity value.

The following parameters were estimated for slice No. 14, corresponding to the phantom 

background only, and for the largest sphere, S6:

• Mean intensity,

• Intensity distribution histogram maximum value,

• Relative (to mean intensity) intensity distribution histogram FWHM.

The background was masked according to its known contour. The values for S6 were 

calculated within contours generated from the known sphere dimensions and positioned via 

the high-resolution CT. Histograms were created following the Freedman–Diaconis [18] rule 

for choosing the bin width and fitted with a Gaussian distribution to estimate the mean value 

and variation (FWHM) of the image intensity in the background and S6.

Comparison to a GATE Monte Carlo reference simulation—To further validate 

PETSTEP, the MC software GATE [19] was used together with the previously validated 

DLS PET camera model [16] to simulate a voxelized representation of the NEMA IEC body 

phantom, which was simulated with a 5:1 ratio of activity concentration in the hot spheres to 

background. This was compared to a simulation of the phantom using PETSTEP, with the 

scanner and reconstruction parameters listed in Table 1, to match the DLS model. The DLS 

PET camera consists of 18 detector rings of 672 BGO crystals each. Each coincidence from 

the list-mode data was binned [20] into 1) a sinogram matrix of total prompts and 2) a 
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sinogram matrix corresponding to the coincidence type: true, scattered or random. The size 

of the sinogram matrices was 283 radial and 336 angular bins.

The system sensitivity parameter and phantom activity concentrations used in PETSTEP 

were adjusted to reproduce the count statistics obtained with the MC simulation given in 

Table 2. The prompt coincidences were reconstructed using the software STIR [21] with 

OSEM (12 subsets, 72 sub-iterations) with normalization, attenuation, scatter and random 

corrections applied (see Appendices A and B for more details). To account for difference in 

the reconstruction processes, the simulated PETSTEP image was reconstructed for 1 to 10 

iterations (for 12 subsets), and the number of iterations best matching the DLS GATE image, 

which was reconstructed with 8 iterations, was selected. The images were post-filtered with 

a 6.0 mm FWHM Gaussian transverse filter and the 3-point smoothing filter [1 2 1]/4 in the 

axial direction. The resulting image was of size 295 × 295 × 35 with a voxel size of 1.97 × 

1.97 × 4.25 mm.

The variations in the background and largest hot sphere S6 were analyzed in the same 

manner as with the clinical phantom scan (background slice No. 10), and compared across 

simulations.

Simulation of realistic clinical data

PETSTEP, calibrated for the DLS scanner, was used to model realistic head and neck (H&N) 

data. A PET uptake map was generated using an available clinical PET/CT scan. This image 

was manually segmented with CT-based thresholding to separate different anatomical 

structures. All structures delineated with thresholding were visually checked and manually 

edited when necessary. A 3D gray level image was generated by assigning a gray level value 

to each anatomical structure segmented corresponding to its mean intensity on the PET 

image. The choice of the PET scan and the design of the final template were both validated 

by a radiologist. The template is shown on Fig. 3b. Normal PET images were simulated 

from the original CT and uptake template without an added lesion.

In addition, a PET image was simulated from an original H&N scan, with the insertion of a 

synthetic lesion using the methodology described above. The simulation parameters used 

were the same as presented in Table 1, except for the maximum lesion uptake, which was set 

to 10 times the background uptake.

Finally, a highly heterogeneous lesion was generated by drawing three different overlapping 

contours in CERR on the H&N PET uptake map described above, and the simulation was 

carried out using these contours.

Evaluation of segmentation with PETSTEP

Finally, we investigated the use of images generated with PETSTEP for the evaluation of 

PET automatic segmentation (PET-AS) methods. Three different PET-AS algorithms 

described in previous works [22,23] were chosen to represent segmentation approaches 

found in the recent literature. These included: adaptive iterative thresholding (AT), a 

gradient-based deformable contouring algorithm (AC) and a fuzzy C-means clustering 

method for two clusters (FCM2). All PET-AS methods were applied to images of the NEMA 
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phantom acquired with a D690 PET/CT scanner, and to five different noise realizations of 

simulated images generated in PETSTEP as calibrated to reproduce the D690 scanner (cf. 

previous section). The segmentation was applied to all six spheres in both images using an 

initial volume corresponding to a cube centered on the true sphere with 1 cm margin in all 

directions. Segmentation results on original and simulated data (averaged over noise 

realizations) were compared in terms of their spatial conformity by calculating the 

Sensitivity (S) and Positive Predictive Value (PPV), defined as:

(3)

(4)

with TP as the true positives (voxels accurately classified), FN as the false negatives (voxels 

in true contour not included in segmented contour) and FP as the false positives (voxels in 

segmentation results not included in true contour).

Statistically significant differences between S and PPV values obtained by the different PET-

AS were compared between the two different types of images, and were determined for each 

PET-AS using the Wilcoxon signed rank test available in SPSS 20 (IBM, Chicago, USA).

Results

Evaluation of PETSTEP

Comparison to phantom data—Figure 2a and b provides a comparison of the total 

activity, background and largest sphere mean intensity and intensity distribution histograms 

for both D690 original and simulated PET image respectively. The simulated PET image 

was generated with PESTEP in 1 min 23 s, corresponding to 1.8 s per slice on average on a 

2.7 GHz Intel core computer. The number of bins used for background and S6 regions was 

135 (bin width 0.06 kBq/mL) and 26 (bin width 1.41 kBq/mL) respectively, using the 

average from the Freedman–Diaconis rule. The intensity distribution within S6 was not close 

enough to be fitted to a Gaussian distribution, and FWHM values are therefore not reported. 

The total activity measured in the simulated image was within 2% of the activity in the 

original non TOF D690 PET scan. The mean intensity in the simulated image was also 

within 2% of the original values for both sphere S6 and mean background intensities. The 

intensity distributions obtained for the background were close, with slightly higher number 

of counts for the original PET compared to the simulated image (41,045 compared to 32,723 

and 187 compared to 164 counts for background and S6 respectively) and larger background 

FWHM value obtained on the PETSTEP image (20% compared to 17% of the mean 

intensity for the original PET).

Comparison to a GATE Monte Carlo reference simulation—The number of 

iterations used in PETSTEP to best match data from the GATE MC simulation 

(reconstructed with 8 iterations) was 4. The total simulation time was 2750 h divided over 

960 AMD Opteron 6238 (Interlagos) 12-core 2.6 GHz processors. The PETSTEP simulated 
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image was generated in 3 min and 8 s on a 2.7 GHz Intel core computer, corresponding to 

approximately 5.4 s per slice. The same comparison as for the D690 is shown on Fig. 2c and 

d for the NEMA phantom image acquired with the DLS scanner simulated with MC GATE 

and with PETSTEP respectively, for the same number of bins as for the GE D690. The total 

measured activity was 2.5% higher on the simulated PETSTEP image compared to the 

GATE simulated image. The mean intensity in the simulated image was within 1% and 3% 

of the original values for the background and sphere S6 respectively. The background 

FWHMs of the PETSTEP image was slightly larger than for the GATE MC image (23% of 

the mean value compared to 20%), which corresponds to a slightly noisier image shown on 

the bottom row of Fig. 3.

Preliminary work (see Appendix C) showed that the scatter distribution as modeled in 

PETSTEP was closest to the corresponding MC simulated scatter distribution for a 20 cm 

Gaussian kernel, as determined with a minimum Root Mean Squared Error (RMSE) (see 

Figs. C1 and C2 in Appendix C).

Simulation of realistic clinical data

Figure 3 shows a comparison between sagittal slices of the original patient H&N PET image 

(panel a), the FDG uptake map extracted from the PET/CT dataset (panel b), and the 

corresponding simulated PET image (panel c). Observable differences between the original 

and simulated PET images are located in the nose, tongue and larynx area, for which the 

image intensity obtained is lower than for the original image. The simulated image was 

visibly closer to the FDG uptake map. The simulation was completed on a 2.7 GHz Intel 

core computer in 5 min and 47 s, for a 117-slice image, corresponding to the superior–

inferior length of the initial uptake map.

Figure 4a and b shows a PET image simulated from an existing PET scan, to which a 

homogeneous synthetic lesion was added, at a target-to-background ratio of 10. The new 

lesion on Fig. 4b is visible at the location of the contour drawn on the original PET (Fig. 4a). 

The lesion measured mean and peak intensities were 8.7 and 10.6 times higher than the 

background mean intensity measured in a Region of Interest of the same geometry 

positioned in the soft tissue background. Figure 4c shows the FDG uptake map derived 

automatically by PETSTEP using the initial background uptake map and the three different 

overlapping contours. The resulting image is shown on Fig. 4d, with the contour 

corresponding to the outline of the heterogeneous lesion modeled.

Evaluation of segmentation with PETSTEP

Figure 5 shows S values and PPVs obtained for the segmentation of spheres S1 to S6 on 

PETSTEP and original images by the three PET-AS methods used. Lower S values and 

PPVs were obtained for PETSTEP simulated images in 16 and 12 out of 18 cases 

respectively. Differences in S and PPV were below 24% and 29% of the value corresponding 

to the original PET in all cases. The largest differences (and cases with higher S for 

PETSTEP images) were observed for the smallest spheres, for which the standard deviation 

of values across noise realizations was also the highest (up to 9% of the value for the 

original image). FCM2 showed lower S values compared to the other methods for both types 
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of images, and PPVs of 1 for all spheres were obtained for both image types. Slightly higher 

S values were also obtained for AT compared to AC for both image types. Both results 

obtained with PETSTEP and scanner-acquired images showed higher S value for S1 than S2 

and S3 when delineated by FCM2.

The comparison of S values and PPVs obtained by segmenting the simulated (average across 

simulated instances) and original images showed a significant difference with the Wilcoxon 

signed rank test (p < 0.05, Z = −4.386 and p < 0.05, Z = −2.844 respectively).

Discussion

We have developed and implemented PETSTEP, a fast and accessible simulation tool for the 

generation of synthetic PET images from existing PET as well as from user-defined uptake 

maps. PETSTEP as implemented as open source uses functionalities already present in 

CERR and a custom user interface to allow fast simulation of full PET images from complex 

tracer uptake distributions (FDG in this study), while remaining accessible to users with 

little or no experience in PET simulation. The addition of synthetic lesions to existing PET 

images in PETSTEP is similar to work by Manjeshwar et al. (the overlay of freeform shapes 

versus ellipsoidal primitives) [13]. However, whereas in Manjeshwar et al.'s method tumors 

are forward-projected and added to the real projection data, PETSTEP forward-projects the 

existing image to create a synthetic sinogram. To our knowledge, no similar process for PET 

simulation has been documented in the literature.

PETSTEP involves forward projection with matched projectors,3 using the Matlab two-

dimensional (2D) radon and unfiltered inverse (adjoint) radon transforms. Modeling of the 

scanner system is done with filtering and addition of noise distributions. This approach 

allows matching the simulated data to scanner-acquired images using known measures such 

as counts, sampling, iterations, etc. This is more clearly seen in the case of maximum-

likelihood PET images where the resolution and noise properties are well known to be 

locally dependent of the imaged objects [8,9]. As a consequence of using this approach, the 

MC simulation required 2750 h to generate as many prompts as PETSTEP did in 3 minutes, 

computing to a factor of ~55,000 less simulation time. Although recent developments using 

GPUs can lead to acceleration factors of 400–800 for MC simulations [24], the Radon 

transform and its adjoint can also utilize GPUs for improved performance. This feature will 

be added to PETSTEP in the near future so that its rapidity compared to MC remains a key 

advantage. PETSTEP can therefore be extremely useful in the generation of large datasets 

for quantitative studies and the development of learning methods.

The “inverse crime” model, i.e. the same model is used to generate the data and to 

reconstruct the images, leads to ignoring normal data inconsistencies due to mismatched 

acquisition and projectors. However, evidence from Kim et al. [25] shows little effect on 

image improvement when better system models are used (except for the periphery of the 

object), which validates the choice of this approach in our work where lesions were at least 3 

3Matlab's Radon and inverse Radon transforms are matched in the same sense that pixel driven and ray driven projectors are matched. 
The back projector is not the true adjoint of the forward projector. The use of the inverse Radon transform uses interpolation that 
makes the match approximate, but close (O(ε) = 1E-12).
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cm from the object boundaries. Further limitations of PETSTEP include the absence of 

correlations between slices that exists in real 3D data. This is accounted for by adjusting the 

number of counts obtained from the 2D projection data to obtain similar Noise Equivalent 

Counts (NEC) as measured in 3D. This preserves the effective local NEC in the projection 

space, so that the appropriate ratios of true, scatter, and random counts are seen by each line 

of response. In addition, the radon and adjoint radon transforms available in Matlab are 

defined on a uniformly spaced grid in projection space, and therefore do not match the real 

detector system spacing. As discussed in the paragraph above the affects of this are small 

and outweighed by the improvement in image generation speed. The scatter distribution in 

PETSTEP is modeled using a large Gaussian-blurring kernel of 20 cm forward-projected 

into projection space. Since scatter is known [26] to be a slowly varying count distribution 

dependent on the real source distribution and the attenuation map, realistic local NEC can be 

achieved by using this underlying distribution in the reconstruction. This approach is 

justified by the good agreement observed between our scatter model and the MC simulation 

(cf. Appendix C). However, because of this, PETSTEP is not appropriate for studies 

specifically investigating or depending on the image scatter distribution. Finally, the 

attenuation correction is currently performed under the assumption that the whole object or 

patient scanned has a density equivalent to water. Although the use of the CT image in both 

simulation and reconstruction should limit the bias added to the image, work is in process to 

improve this approximation/correction by using a bilinear approach to calculate the 

attenuation map from the CT image. It should be noted that PETSTEP avoids extensive 

system modeling, and is therefore designed for evaluating image processing performance 

rather than true system response. Nevertheless, more advanced image reconstruction 

schemes and data models can be added easily and work is in progress to do so.

Comparison with phantom images obtained with the D690 PET/CT scanner have shown that 

PETSTEP can reproduce the intensity distributions of scanner-acquired non-TOF corrected 

PET images, with intensity distribution means within 3% (cf. Fig. 2a and b). The slightly 

higher heterogeneity observed on the simulated images (cf. Fig. 2b) in the background 

region correlates with a larger FWHM of the intensity distribution histograms. Although the 

focus of this study was not to reproduce PET images acquired with a specific scanner, such a 

calibration could be done by applying an additional post-reconstruction filter, such as a de-

blurring filter to simulate motion correction.

PETSTEP was further used and calibrated to reproduce an image of the NEMA phantom 

simulated with a MC GATE model of the DLS PET/CT scanner. For otherwise matched 

parameters the number of iterations necessary to reproduce the FWHM of the background 

obtained for the MC simulation was smaller for PETSTEP reconstruction. It is consistent 

with the fact that idealized PETSTEP model uses data matched to the projectors and is 

therefore expected to converge with a smaller number of iterations than MC data 

reconstructed with STIR. This is a known effect when using “inverse crime” models. 

However, we additionally note that PETSTEP's convergence was similar to the Discovery 

690 PET/CT system, which uses a model that is better matched to the data than STIR. This 

indicates that our “inverse crime” model for the purposes outlined in this paper is acceptably 

accurate. Furthermore, even though the MC simulation features a reconstruction algorithm 
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implemented in different software (STIR), the results are still close enough for validation of 

the scatter model implemented in PETSTEP and to compare image properties.

The flexibility of PETSTEP was demonstrated by reproducing a clinical H&N scan acquired 

on the GE D690 and by simulating PET images with both homogeneous and heterogeneous 

lesions. The H&N image simulated (cf. Fig. 3c) shows a high degree of similarity with the 

original PET. Differences in PET intensities in the nose, tongue and vocal cords were due to 

the fact that the FDG uptake map was designed to represent typical uptake in the resting 

state. In addition the FDG uptake map was limited to modeling a finite number of tissue 

structures and of uptake levels in this work. This issue is not observed on Fig. 4b, for which 

the initial image was an original PET scan. The peak target-to-background ratio measured on 

the simulated image was within 6% of the targeted ratio, whereas the mean ratio was 14% 

lower, which was expected because of blurring and partial volume effects at the edges of the 

lesion caused by the simulation process representing the system response and reconstruction. 

Furthermore, Fig. 4c and d show the ability of PETSTEP to produce images with highly 

heterogeneous lesion uptake.

The absolute evaluation of the three PET-AS methods for the segmentation of the six NEMA 

spheres using S and PPV measures provided statistically significantly different results (with 

the Wilcoxon signed rank test) for images obtained with PETSTEP and original D690 PET 

images (cf. Fig. 5a and b). Smaller S and PPV were obtained for the PETSTEP images in 16 

and 12 out of 18 cases respectively, which could be due to higher noise (background 

FWHM) observed on the PETSTEP image (cf. Fig. 2). The largest differences in S values 

obtained across images, especially for AT and AC, were observed for some of the smallest 

spheres with higher standard deviation across noise realizations, indicating that these 

differences may be due to noise fluctuations. AT and AC are indeed based on thresholding 

and on the image gradient respectively. Both processes are particularly sensitive to noise and 

intensity fluctuations for small objects. The lower performance (low S and PPV of 1) of 

FCM2 compared to other methods, observed for the scanner-acquired image, was also 

clearly visible and quantifiable when using PETSTEP data. The superiority of AT to AC 

seen on scanner-acquired images was confirmed with PETSTEP images. Other small 

differences in S and PPV observed were too weak to draw any strong conclusions on the 

relative accuracy of the methods as they were evaluated on a single image. These results 

show that images simulated with PETSTEP have the potential to provide similar conclusions 

to scanner-acquired images when used to assess and compare a range of PET-AS 

approaches. Although PETSTEP may not be capable, at this stage, of providing absolute 

segmentation results, it could be a very useful tool for the comparison within a same 

framework of PET-AS methods on a variety of complex and realistic data, which would help 

in addressing the lack of reliable inter-comparisons of PET-AS methods on relevant data 

[27]. This result is important in the light of a growing interest for PET-AS for applications 

such as RT planning. PETSTEP is currently implemented within the PET-AS set [28] 

software of the AAPM TG-211 for standardized evaluation of PET auto-segmentation 

methods.

PETSTEP simulated images also have the potential to be used beyond segmentation 

evaluation in a number of applications requiring accurate modeling of clinical systems, such 
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as investigations into lesion detection [29,30] or assessment of response to therapy [31,32]. 

Such studies often focus on image processing performance and accurate tracer uptake 

modeling, thus requiring a large number of images. In addition, PETSTEP can potentially be 

applied to any given radiotracer, although in the case of cascade photon emitting isotopes the 

tool will need to be modified. Further, we think that PETSTEP can be a useful starting point 

for a number of image-based tasks, such as resident education, tumor segmentation and 

detection, and other machine learning-based processes (radiomics).

Conclusion

We have developed a fast and flexible PET simulator tool, PETSTEP, for the generation of 

synthetic PET images representing any user-defined FDG uptake distribution. This tool is 

open source and designed to be extensible to other isotope and image studies including 

kinetic modeling. The open source nature of PETSTEP allows user defined uptake 

distributions that can, in principle, be as complex as desired. We have shown that PETSTEP 

allows the fast generation of images reproducing scanner-acquired data and can be calibrated 

to accurately reproduce high quality MC simulated images. We have also shown that 

PETSTEP provides PET images that can be used for the evaluation of PET segmentation 

algorithms, providing similar evaluation conclusions to common fillable phantoms. The high 

flexibility of PETSTEP could further be used for modeling any complex and heterogeneous 

tracer uptake and for applications such as resident education.
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Appendix

A. Scatter correction of Monte Carlo data

The scatter and random corrections were done by including an additive sinogram in the 

OSEM loop in STIR. The additive sinogram was created by taking the real scattered and 

random sinograms and applying filtered back-projection and post-filtering with the same 

filter as described for the comparison to GATE MC simulation. The images were then 

forward projected back into projection data and scaled according to the real scatter + random 

count.

B. Normalization in simulated PET image reconstruction

In PET image reconstruction, a normalization correction is used to ensure that the data in 

each line of response are properly weighted to remove the influence of detector response and 

geometric view factors. Because detector response is generally uniform in most Monte Carlo 

simulations (it should be noted that GATE does offer non-uniform detector response, 

however, it is not used here), only the geometric view factors remain. For these simulations, 
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a large cylindrical source without attenuation was used to generate a normalization 

projection file. This file was used with STIR to perform normalization correction on all 

image reconstructions. Figure B1 is provided to show the effect of normalization on the 

image reconstruction of a 50 cm diameter uniform water cylinder.

The procedure for normalization outlined here was originally implemented in a study by 

Schmidtlein et al. [16] examining the performance of the GE Discovery ST PET camera, but 

was here implemented for the GE DLS PET camera. To perform the normalization, a 100 

kBq uniform cylindrical source, 59 cm in diameter by 16 cm in height, was simulated in a 

vacuum using a back-to-back photon source for 100,000 s with decay turned off which 

resulted in approximately 380 million counts. Several symmetries of the camera were then 

exploited to amplify the number of effective counts used to create the normalization 

correction file. These involved the projection angles, the ring differences, and the radial 

positions. The block structure of the camera repeats itself every 12-projection angles 

forming a basic symmetry element that was repeated 56 times within each ring difference. If 

the spacing between the detector blocks in the z-direction is ignored then the geometric 

response between detectors within each ring difference segment can be assumed to be 

identical. Furthermore, mirror symmetry in the radial direction between odd and even 

segments was exploited. Utilizing these symmetries, the number of effective counts 

increases almost by a factor of 2000, in this case producing 660 billion effective counts.

In addition to exploiting the symmetries, the geometry of the source must also be taken into 

account. The volume of activity seen by each line of response is a volume given by,

where C(r) is the cord length at a particular radial position, Δring is the ring difference 

spacing, Wr is the distance subtended by the detector in the r-direction, and Wz is the 

distance subtended by the detector in the z-direction. Each bin of the projection file must be 

normalized with respect to the activity within its FOV. In this case, the activity is 

proportional to VLOR (r, Δring). Figure B2 illustrates these symmetries.

C. Validation of synthetic PET scatter

In order to validate the scatter model as implemented in PETSTEP, the same methodology as 

used for the GE D690 scanner was applied to the GATE simulated data. The voxelized 

NEMA IEC phantom (noiseless) used as input to GATE was blurred with six Gaussian 

kernels of different FWHMs: 50, 100, 200, 300, 400, and 500 mm. The resulting images 

were then forward-projected in STIR and the resulting sinograms were scaled according to 

the MC prompt count of the scan and the MC simulated scatter fraction. The RMSE was 

calculated for the difference between the GATE simulated sinogram and the blurred scatter 

models to evaluate the optimal model.

The comparison of the real scattered coincidences obtained by the GATE MC scan to the 

true object, blurred by different Gaussians, is seen in Fig. C1. Visual inspection as well as an 
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optimal (minimal) relative RMSE confirmed that the synthetic scatter based on a 20 cm 

Gaussian blurring produced the closest fit to the MC data (Figs. C1 and C2).

Figure B1. 
Before and after normalization correction (left to right) for image reconstrucitons of the 

central slice of a 50 cm diameter phantom and a plot of the slice's profile.

Figure B2. 
The symmetries in the DLS's detector geometry are depicted by color where similar 

elements are represented by the same color. Note that the radial symmetry is flipped when 

crossing the central segment.
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Figure C1. 
Radial profiles of the direct, central sinograms, averaged over all 336 angular bins. The real 

profile is obtained from the GATE MC simulation scan and the other 6 from the scatter 

model with Gaussian kernels of different FWHMs.

Figure C2. 
Direct, central sinogram difference (scatter model – real scatters from the GATE simulation), 

divided by the square root of the model. The scatter model is blurred with a Gaussian of 20 

cm FWHM9.
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Figure 1. 
Workflows illustrating the simulation process for inserting tumor lesions in both idealized 

PET objects (above, a) and preexisting PET objects (below, b). The left hand side of the data 

formation pseudo-equations shows the sinograms used in the image reconstruction. The 

image reconstruction pseudo-equations show the data with Poisson noise and initializing 

images for the iterative reconstruction.
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Figure 2. 
Comparison of total activity and intensity distribution histograms of the background (slice 

No. 14 for D690 and No. 10 for DLS) and sphere S6 for (a) the original non-TOF D690 PET 

image, (b) the simulated D690 PET, (c) the MC GATE simulated DLS PET image with 8 

iterations and (d) the DLS simulated in PETSTEP with 4 iterations.
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Figure 3. 
Sagittal slice No. 187 of (a) the original PET image, (b) the FDG uptake map used in the 

simulation and (c) the simulated PET image.
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Figure 4. 
Example of PETSTEP images obtained with showing (a) original PET scan with lesion 

contour (b) PET image obtained using preexisting PET image and contour, (c) PET uptake 

map with highly heterogeneous lesion and (d) PET image obtained with lesion contour.

Berthon et al. Page 23

Phys Med. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
(a) Sensitivity values and (b) Positive Predictive Values of the contours obtained by 

segmentation on original and PETSTEP simulated images. Values for the simulated case are 

given as an average on 5 noise realizations, with error bars of one standard deviation of the 

range of values obtained.
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Table 1

Parameters used for the simulation of the NEMA IEC body phantom PET scan, for both D690 and DLS 

scanners, using PETSTEP.

Parameter name D690 DLS

CT maximum contrast (% above background) 12.5 12.5

Maximum SUV N/A N/A

Blurring filter size (mm) 4.9 5.1

Activity concentration (kBq/mL) 5.9 4.5

Sensitivity (true cps/kBq) 33.4 42.0

Bed position overlap (%) 50 31.4

Scan time (s) 180 300

Random fraction 0.07 0.0003

Scatter fraction 0.37 0.40

Radial bins at FOV 381 (700 mm) 283 (550 mm)

Projection angles 288 336

Gantry diameter (mm) 810 927

Image matrix size 256 295

Reconstruction type OSEM + PSF OSEM

Number of iterations 2
8/4

a

Number of subsets 24 12

Post-reconstruction filter size (mm) 6.4 6.0

a
8 iterations for the GATE simulation, 4 iterations for the PETSTEP simulation.
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Table 2

Count statistics obtained for the DLS simulation with GATE and PETSTEP.

Property Value

Number of trues 4.13 × 107

Number of randoms 1.95 × 104

Number of scatters 2.72 × 107

Total counts 6.85 × 107
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