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Summary

A fundamental challenge in calcium imaging has been to infer spike rates of neurons from the 

measured noisy fluorescence traces. We systematically evaluate different spike inference 

algorithms on a large benchmark dataset (>100.000 spikes) recorded from varying neural tissue 

(V1 and retina) using different calcium indicators (OGB-1 and GCaMP6). In addition, we 

introduce a new algorithm based on supervised learning in flexible probabilistic models and find 

that it performs better than other published techniques. Importantly, it outperforms other 

algorithms even when applied to entirely new datasets for which no simultaneously recorded data 

is available. Future data acquired in new experimental conditions can be used to further improve 

the spike prediction accuracy and generalization performance of the model. Finally, we show that 

comparing algorithms on artificial data is not informative about performance on real data, 

suggesting that benchmarking different methods with real-world datasets may greatly facilitate 

future algorithmic developments in neuroscience.
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Introduction

Over the past two decades, two-photon imaging has become one of the most widely used 

techniques for studying information processing in neural populations in vivo (Denk et al., 

1990; Kerr and Denk, 2008). Typically, a calcium indicator such as the synthetic dye Oregon 

green BAPTA-1 (OGB-1) (Stosiek et al., 2003) or the genetically encoded GCaMP6 (Chen 

et al., 2013) is used to image a large fraction of cells in a neural tissue. Individual action 

potentials lead to a fast rise in fluorescence, followed by a slow decay with a time constant 

of hundreds of milliseconds (Chen et al., 2013; Kerr et al., 2005). Commonly, neural 

population activity from dozens or hundreds of cells is imaged using relatively slow 

scanning speeds (<15 Hz), but novel fast scanning methods (Cotton et al., 2013; Grewe et 

al., 2010; Valmianski et al., 2010) (up to several 100 Hz) have opened additional 

opportunities for studying neural population activity at increased temporal resolution.

A fundamental challenge has been to infer the time-varying spike rate of neurons from the 

measured noisy calcium fluorescence traces. To solve this problem of spike inference, 

several different approaches have been proposed, including template-matching (Greenberg et 

al., 2008; Grewe et al., 2010; Oñativia et al., 2013), deconvolution (Park et al., 2013; Yaksi 

and Friedrich, 2006) and approximate Bayesian inference (Pnevmatikakis et al., 2016, 2013; 
Vogelstein et al., 2010, 2009). These methods have in common that they assume a forward 

generative model of calcium signal generation which is then inverted to infer spike times. 

Forward models incorporate strong a-priori assumptions about the shape of the calcium 

fluorescence signal induced by a single spike and the statistics of the noise. Alternatively, 

simple supervised learning techniques have been used to learn the relationship between 

calcium signals and spikes from data (Sasaki et al., 2008).

However, it is currently not known which approach is most successful at inferring spikes 

under typical experimental conditions used for population imaging, as a detailed quantitative 

comparison of different algorithms on large datasets has been lacking. Rather, most 

published algorithms have only been evaluated on relatively small experimental datasets 

often collected zooming in on individual cells. Also, performance measures differ between 

studies. In addition, the question of how well we can reconstruct the spikes of neurons given 

calcium measurements has been studied theoretically or using simulated datasets (Lütcke et 

al., 2013; Wilt et al., 2013). While such studies offer the advantage that many model 

parameters are under the control of the investigator, they still rely on model assumptions and 

thus do not answer the question of how well we can reconstruct spikes from actual 

measurements.

Here, we pursue two goals: (1) we systematically evaluate a range of spike inference 

algorithms on a large dataset including simultaneous measurements of spikes and calcium 

signals in primary visual cortex and the retina of mice using OGB-1 and GCaMP6 as 

calcium indicators collected ex-vivo and in anesthetized and awake animals and (2) 

introduce a new data-driven approach based on supervised learning in flexible probabilistic 

models to infer spikes from calcium fluorescence traces. We show that our new method 

outperforms all previously published techniques even when tested on data collected under 

new experimental conditions not used for training.
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Results

A flexible probabilistic model for spike inference

Here we introduce a new algorithm for spike inference from calcium data. We propose to 

model the probabilistic relationship between a segment of the fluorescence trace xt and the 

number of spikes kt in a small time bin, assuming they are Poisson distributed with rate 

λ(xt):

Instead of relying on a specific forward model, we parameterize the firing rate λ(xt) using a 

recently introduced extension of generalized linear models, the factored spike-triggered 

mixture (STM) model (Theis et al., 2013) (Fig. 1a; see Methods):

We train this model on simultaneous recordings of spikes and calcium traces to learn a set of 

K linear features wk and M quadratic features um (‘supervised learning’), which are 

predictive of the occurrence of spikes in the fluorescence trace. Importantly, this model is 

sufficiently flexible to capture non-linear relationships between fluorescence traces and 

spikes, but at the same time is sufficiently restricted to avoid overfitting when little data is 

available. Below we will evaluate whether this model is too simple or already more complex 

than necessary by comparing its performance to that of multi-layer neural networks and 

simple LNP-type models.

In contrast to many methods that result in a single most likely spike train (a ‘point estimate’) 

using a probabilistic model provides us with an estimate of the expected firing rate, λ(xt), 

and a distribution over spike counts, as fully Bayesian methods do (Pnevmatikakis et al., 

2013; Vogelstein et al., 2009). An advantage of access to a distribution over spike trains is 

that it allows us, for example, to estimate the uncertainty in the predictions. Example spikes 

trains consistent with the calcium measurements can be easily generated from our model 

without spending considerable computational resources. While generating a single ‘most 

likely spike train’ is also possible, its interpretation is less clear, as the result depends on the 

parametrization.

Benchmarking spike inference algorithms on experimental data

To quantitatively evaluate different spike inference approaches including our model, we 

acquired a large benchmark dataset with a total of 90 traces from 73 neurons, in which we 

simultaneously recorded calcium signals and spikes (Fig. 1b; in total >100,000 spikes). 

These cells were recorded with different scanning methods, different calcium indicators, in 

different brain states and at different sampling rates (see Table 1 and Methods). We used 

four datasets for our main analysis: Dataset 1 consisted of 16 neurons recorded in-vivo in V1 
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of anesthetized mice using fast 3D AOD-based imaging (Cotton et al., 2013) at ~320 Hz 

with OGB-1 as indicator. Dataset 2 consisted of 31 neurons recorded in-vivo in anesthetized 

mouse V1 using raster scanning at ~12 Hz with OGB-1 as indicator. Dataset 3 consisted of 

19 segments recorded from 11 neurons in-vivo in anesthetized mouse V1 using the genetic 

calcium indicator GCaMP6s with a resonance scanner at ~59 Hz. Finally, dataset 4 consisted 

of 9 retinal ganglion cells recorded ex-vivo at ~8 Hz using raster scanning with OGB-1 as 

indicator (Briggman and Euler, 2011). In addition, we collected a small dataset of 6 cells 

from V1 of awake mice using again the genetic calcium indicator GCaMP6s (Reimer et al., 

2014) to demonstrate the performance during awake imaging (see below). We resampled the 

calcium traces from all datasets to a common resolution of 100 Hz. Importantly, all of our 

datasets were acquired at a zoom factor commonly used in population imaging such that the 

signal quality should match well that commonly encountered in these preparations (see 

Table 1).

We compared the performance of our algorithm (STM) and that of algorithms representative 

of the different approaches (see Table 2 and Methods), including simple deconvolution 

(YF06, Yaksi and Friedrich, 2006), MAP (VP10, known as ‘fast-oopsi’, Vogelstein et al., 

2010) and Bayesian inference (PP13, (Pnevmatikakis et al., 2013); VP09, Vogelstein et al., 

2009) in generative models, template-matching by finite rate of innovation (OD13, Oñativia 

et al., 2013) and supervised learning using a support vector machine (SI08, Sasaki et al., 

2008). To provide a baseline level of performance, we evaluated how closely the calcium 

trace followed the spike train without any further processing (raw).

We focus on two measures of spike reconstruction performance to provide a quantitative 

evaluation of the different techniques: (i) the correlation between the original and the 

reconstructed spike train and (ii) the information gained about the spike train based on the 

calcium signal (see Methods). For completeness, we computed (iii) the area under the ROC 

curve (AUC), which has also been used in the literature. The AUC score is a less sensitive 

measure of spike reconstruction performance, as e.g. an algorithm could consistently 

overestimate high rates compared to low rates and yet yield the same AUC (for a more 

technical discussion, see Methods).

To provide a fair comparison between the different algorithms, we evaluated their 

performance using leave-one-out cross-validation: we estimated the parameters of the 

algorithms on all but one cell from a dataset and tested them on the one remaining cell, 

repeating this procedure for each cell in the dataset (see Methods). For the algorithms based 

on generative models, we selected the hyperparameters during cross-validation (VP10, 

VP09) or using a sampling based approach (PP13; see Methods).

Supervised learning sets benchmark

We found that the spike rates predicted by our algorithm matched the true spike train closely, 

for cells from each dataset including both indicators OGB-1 and GCaMP6 (Fig. 1c–f). The 

other tested algorithms generally showed worse prediction performance: For example, YF06 
typically resulted in very noisy estimates of the spike density function (Fig. 1c–f) and both 

VP10 and PP13 missed single spikes (Fig. 1d–f, marked by asterisk) and had difficulties 

modeling the dynamics of the GCaMP6 indicator (Fig. 1e).
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A quantitative comparison revealed that our STM method reconstructed the true spike trains 

better than its competitors, yielding a consistently higher correlation and information gain 

for all four datasets (Fig. 2a, b; evaluated at 25 Hz; for statistics, see figure). The median 

improvement in correlation across all recordings achieved by the STM over its two closest 

competitors was 0.12 (0.07–0.14; median and bootstrapped 95%-confidence interval, N=75) 

for SI08 – the other supervised learning approach based on SVMs – and 0.1 (0.08–0.13) for 

PP13 – Bayesian inference in a generative model – yielding a median improvement of 33% 

and 32%, respectively. Similarly, the STM explained 6.8 (5.0–7.7; SI08) and 9.6 (8.1–12.1; 

PP13) percent points more marginal entropy (measured by the relative information gain).

When evaluated with respect to AUC, the performance of the STM model and these two 

algorithms was about the same (Suppl. Fig. 1), yielding a median difference in AUC of 

−0.01 (−0.02–0.01) and 0.01 (−0.01–0.02). This is likely because the AUC is the least 

sensitive of the three measures, as discussed above. As a side remark, note that AUC is 

closely related to the cost function optimized by SI08, which is based on a support vector 

machine. To show that the features extracted by our STM algorithm are more informative 

about the spike rate than those used by SI08, one can use a SVM on top of these features and 

obtain on 3 out of 4 datasets higher performance than SI08 (Suppl. Fig. 1).

To evaluate timing accuracy, we asked what correlation between the inferred and true rate 

was achieved when ignoring timing details finer than a certain bin width (between 10 and 

several hundreds of milliseconds; Fig. 3): the correlation value reported for a bin width of 50 

ms reflects only firing rate changes at a time scale larger than 50 ms as it compares observed 

spike counts with average predicted firing rates in 50 ms bins, while finer variations are 

ignored. In contrast, achieving a similar correlation value for 10 ms bins requires much 

higher timing accuracy, as the relative rate fluctuations in the finer time bins matter. This 

method is similar to the one used in (Greenberg et al., 2008), but in addition takes false 

positives/false negatives into account. Note that the binning affects the evaluation of the 

algorithm, not the spike inference. For all bin widths, the inference step was performed at 

the common sampling rate of 100 Hz (independent of scanning rate).

Not surprisingly, correlation decayed as a function of bin width for all algorithms, as the 

resolution of increasingly fine detail becomes an increasingly challenging problem. 

However, the STM model performed better than the other algorithms in particular for small 

bin widths, providing higher temporal resolution (Fig. 3; also Suppl. Fig. 2). Consequently, 

if the desired average correlation between inferred and true spike rates deemed acceptable 

was 0.4, our method was able to achieve that using time bins of ~17 ms, whereas competing 

methods required ~29 and ~58 ms (PP13 and SI08, respectively; evaluated on dataset 1, Fig. 

3a). Interestingly, VP10 (‘fast-oopsi’) performed similar to our method for low sampling 

rates, but its performance deteriorated consistently on all datasets to the performance level of 

VF06 with increasing sampling rates (Fig. 3).

The performance of the STM model could not be further improved using a more flexible 

multilayer neural network for modeling the non-linear rate function λt (Fig. 4 and Suppl. 

Fig. 3). To test this, we replaced the STM model by a neural network with two hidden 

layers, but found that this change resulted in only marginal performance improvement (Fig. 
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4). In addition, we tested whether a much simpler linear-nonlinear model would suffice to 

model λt. We found that the STM model performed significantly better than the simple LNP 

model (Fig. 4 and Suppl. Fig. 3). Therefore, the choice of the STM seems to provide a good 

compromise between flexibility of the model structure and generalization performance. In 

comparison to the neural network, the STM is derived from a fully interpretable probabilistic 

generative model (Theis et al., 2013).

Importantly, already a small training set about 5–10 cells or 10.000 spikes was sufficient to 

achieve good performance with the STM model trained de novo (Fig. 5a,b and Suppl. Fig. 

4a–d). We tested the prediction performance of the STM model with training sets of various 

sizes and found that it saturated between 5 and 10 cells for all datasets, arguing that a few 

simultaneously recorded cells may suffice to directly adapt the algorithms to new datasets 

acquired in other laboratories or with new imaging methods. In addition, we analyzed the 

training performance as a function of the number of spikes used for training and found that 

beyond ~10.000 spikes in the training set predictions do not improve much (Fig. 5b and 

Suppl. Fig 4c,d). Of course, these two factors are not independent: Recording 10.000 spikes 

from a single neuron will likely not yield the same quality predictions as recording 1.000 

spikes from 10 neurons each. Finally, the superior performance of the STM was largely 

independent of the firing rate of the neuron within the limited range of firing rate in our 

sample of cells (Fig. 5c,d and Suppl. Fig. 4e).

Generalization of performance to new datasets

In addition, we tested how well our algorithm performs if no simultaneous spike-calcium 

recordings are available for a new preparation or if a researcher wants to apply our algorithm 

without collecting simultaneous spike-calcium recordings, such that de-novo training of the 

model is impossible.

Remarkably, the STM model was able to generalize to new data sets that were recorded 

under different conditions than the data used for training. To test this, we trained the 

algorithms on three of the datasets and evaluated it on the remaining one (Fig. 6a) – that is, 

we applied the algorithm to an entirely new set of cells not seen during training. The STM 

algorithm still showed better performance than the other algorithms (Fig. 6b,c and Suppl. 

Fig. 5a), including superior performance on the GCamp6 dataset when trained solely on the 

three OGB datasets (Fig. 6b,c).

Next, we tested whether the algorithm’s performance would also transfer to recordings in 

head-fixed awake animals running on a Styrofoam ball (Fig. 7a) (Reimer et al., 2014). Brain 

movements and brain state fluctuations caused by the animal running on the ball may induce 

additional variability in the recordings, which renders spike inference under these conditions 

more difficult. Example neurons showed good spike inference performance for the STM 

model in periods without (Fig. 7b) and with movement (Fig. 7c). Overall, the STM trained 

on all neurons recorded in anesthetized animals or ex-vivo retina (n=75 traces from 70 cells) 

performed better than or comparable to the other algorithms on the awake data recorded 

using GCamp6s (n=15 traces from 6 cells; Fig. 7d,e and Suppl. Fig. 5b), further 

underscoring its generalization abilities. In addition, when we split the data into parts with 

and without motion (410.1 s vs. 2056.9 s), we found that the STM model’s performance was 
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not impaired during periods where the mouse moved (Fig. 7f, correlation 0.27±0.03 vs. 

0.27± 0.02, mean ± SEM).

We finally tested the different algorithms on three data sets using different GCamp-

indicators acquired focusing on individual cells (in contrast to our population imaging 

dataset; n=29 cells; data publicly available from Svoboda lab, see Methods). Similarly to 

above, our algorithm was trained on two of these datasets and tested on the third. In addition, 

we included all cells from datasets 1–4 in to the training set, as there are only comparably 

few spikes in the Svoboda lab datasets. Focusing on individual cells makes the data less 

noisy, resulting on overall much higher correlation and AUC values (Suppl. Fig. 6). The 

STM algorithm performed well and on a par with VP10 regarding all three measures used 

for evaluation (Suppl. Fig. 6).

Taken together, our analysis indicates that good performance can be expected for our 

algorithm when it is directly applied on novel datasets without further training (see 
Discussion). A pre-trained version of our algorithm is available for download (see Methods).

Comparisons on artificial data

Finally, we evaluated the performance of the algorithms on simulated data and show that this 

was not predictive of the performance of the algorithms on the real datasets (Fig. 7). To test 

this, we simulated data from a simple biophysical model of calcium fluorescence generation 

(Fig. 7a, see Methods, Vogelstein et al., 2009). We then applied the same cross-validation 

procedure as before to evaluate the performance of the algorithms (Fig. 7b). Not 

surprisingly, we found that all algorithms based on this or a similar generative model (PP13, 

VP10, YF06) performed well. Interestingly, even the algorithms that performed least well 

for the real data (OD13, VP09) showed good performance on the artificial data. The STM 

model was among the top-performing algorithms, in contrast to the other supervised learning 

algorithm (SI08). A direct comparison of the performance on the simulated dataset and the 

experimental data clearly illustrates that the former is not a good predictor of the latter (Fig. 

7c).

Discussion

Here we provide a benchmark comparison of different algorithms for spike rate inference 

from calcium imaging recordings on ground truth data. We evaluate the algorithms for a 

wide range of recording conditions including OGB-1 and GCamp6 as calcium indicators, 

anesthetized and awake imaging, different scanning techniques, neural tissues, and with 

respect to different metrics. In addition, we introduced a new algorithm for inferring spikes 

from calcium traces based on supervised training of a flexible probabilistic model and 

showed that this model performs currently better than all previously published algorithms 

for this problem under most conditions. Importantly, once trained, inferring spike rates using 

our algorithm is very fast, so even very large datasets can be processed rapidly. Interestingly, 

two of the three best algorithms rely on supervised learning to infer the relationship between 

calcium signal and spikes, suggesting that a data-driven approach offers distinct advantages 

over approaches based on forward models of the relationship between the two signals.
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The superior performance of our algorithm carried over to new datasets not seen during 

training, promising good spike inference performance even when applied to a new dataset 

where no simultaneous recordings are available. To use the algorithm ‘out of the box’, we 

provide it for download pre-trained with all experimental data used in this paper (see 

Methods). In particular, its performance carried over to data recorded in awake animals, 

where brain movements or brain state fluctuations may render spike inference more difficult. 

In our recordings, motion in the Z-axis was small, on the order of 1–2 μm (Reimer et al., 

2014 their Supplementary Information); if there was more brain movement in a given 

preparation and thus more neuropil contamination, generalization may be impaired. In 

addition, changing brain states during movement of the mouse compared to quiet restfulness 

(Niell and Stryker, 2010) may change the relationship between spikes and calcium signals. 

While we did not observe such effects in our data (Fig. 7), it is certainly possible that they 

will become apparent with more data from awake animals with more frequent periods of 

running (here only ~20% of the data).

The fact that our algorithm can be used without extra training data is crucial, as this is often 

considered an important advantage of algorithms based on generative models. Note that for 

entirely new experimental conditions (e.g. a new calcium indicator), the performance of 

neither class of algorithms is guaranteed, however, and both need to be evaluated on a 

dataset with simultaneous recordings. For unsupervised methods, if such an evaluation 

reveals poor performance, e.g. because the assumed generative model does not match the 

structure of the dataset at hand (as seen e.g. with the GCamp6 data; Fig. 1e and 2), the only 

way to improve the algorithm would be to adapt the generative model and modify the 

inference procedures accordingly. In contrast, any simultaneous data collected in the future 

can be readily used to retrain our supervised algorithm and further improve its spike 

prediction and generalization performance. In fact, our choice of the spike triggered mixture 

model for estimating spike rates from calcium traces is motivated by its ability to 

automatically switch between different sub-models whenever the statistics of the data 

change (Theis et al., 2013). This property of the model might also allow the algorithm to 

accommodate different spike-calcium relationships in different brain states in awake 

animals, if they were to be found with more data from awake animals.

Interestingly, our evaluation shows that the correlation between inferred and real spike rates 

obtained at a temporal resolution of 40 ms is at best 0.4–0.6, depending on the dataset with 

substantial variability between cells (Fig. 5c–d). This means that so far even the best spike 

inference algorithms make a substantial amount of errors, and one should be aware that for 

population imaging the inferred rates correspond to fairly coarse estimates of the true spike 

trains. It will be an interesting question whether new algorithmic ideas, new indicators (Chen 

et al., 2013; Inoue et al., 2014; St-Pierre et al., 2014; Thestrup et al., 2014) or scanning 

techniques will bring these values closer to 1, or whether these low correlations reflect a 

general limitation of population imaging approaches. Factors contributing to this limitation 

may include technical aspects of the imaging procedure such as neuropil contamination or 

activity-induced changes in blood vessel diameter and biophysical issues connected to the 

intracellular calcium dynamics. Our evaluation further shows that good spike inference 

performance on model data by no means guarantees good performance on real population 

imaging data (Fig. 8). We believe theoretical model based studies (Lütcke et al., 2013; Wilt 
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et al., 2013) will remain useful to systematically explore how performance depends on 

model parameters, such as noise level or violations of the generative model, but will need to 

be followed up by systematic quantitative benchmark comparisons on datasets such as 

provided here.

Our proposed method is solely concerned with the problem of spike inference, and does not 

infer the regions of interests (ROIs) from observed data or infers tuning properties of 

neurons simultaneously. Recently, several methods have been proposed to jointly infer ROIs 

and spikes (Diego and Hamprecht, 2014; Maruyama et al., 2014; Pnevmatikakis et al., 

2016). These methods have the benefit that they exploit the full spatio-temporal structure of 

the problem of spike inference in calcium imaging and offer an unbiased approach for ROI 

placement. Since ROIs can also be placed using supervised learning (Valmianski et al., 

2010), it should be feasible to develop supervised paradigms for simultaneous ROI 

placement and spike inference or combinations of unsupervised and supervised methods. 

Likewise, a recent study has combined spike rate inference with the estimation of response 

properties of neurons, such as tuning functions (Ganmor et al., 2016) and it would be 

interesting to evaluate the use of supervised techniques for this problem as well.

We presented the first quantitative benchmarking approach to evaluating spike inference 

algorithms on a large dataset of population imaging data. We believe that such a 

benchmarking approach can also be an important catalyst for improvements on various 

computational problems in neuroscience, from systems identification to neuron 

reconstruction, as it is already used successfully in machine learning and related fields to 

drive new algorithmic developments. To catalyze the development of better spike inference 

algorithms for calcium imaging data, we will organize a competition, which will be 

announced separately.

Methods

Experimental procedures

Datasets 1 and 2: Primary visual cortex (V1) – OGB-1—We recorded calcium traces 

from neural populations loaded with Oregon green BAPTA-1 (OGB-1, Invitrogen) as 

calcium indicator in layer 2/3 of anesthetized wild type mice (male C57CL/6J, age: p40–

p60) with a custom-built two-photon microscope using previously described methods 

(Cotton et al., 2013; Froudarakis et al., 2014). We used glass pipettes for targeted two-

photon-guided loose cell patching of single cells. More details are provided in the 

Supplementary Material. All procedures performed on mice were conducted in accordance 

with the ethical guidelines of the National Institutes of Health and were approved by the 

Baylor College of Medicine IACUC.

Datasets 3 and 5: Primary visual cortex (V1) – GCaMP6—We recorded calcium 

traces from neural populations in layer 2/3 of (1) isoflurane-anesthetized and (2) awake wild 

type mice (male C57CL/6J, age: 2–8 months; N=2 and N=1 mice for anesthetized and 

awake, respectively) using a resonant scanning microscope (ThorLabs) using methods 

described previously (Reimer et al., 2014). During awake experiments, the mouse was 

placed on a treadmill with its head restrained beneath the microscope objective (Reimer et 
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al., 2014). Simultaneous loose-patch and two-photon calcium imaging recordings were 

conducted as described above. Data was split into segments involving movement or no 

movement by thresholding velocity traces. More details are provided in the Supplementary 

Material.

Dataset 4: Retina—Imaging experiments in whole-mount retina of dark-adapted wild-

type mice (both genders, C57BL/6J, p21–42) electroporated with OGB-1 were performed as 

described previously (Briggman and Euler, 2011) using a MOM-type two-photon 

microscope (Euler et al., 2009). For juxtacellular spike recordings, OGB-1 labeled somata 

were targeted with a glass-pipette under dim IR illumination to establish a loose (<1GΩ) 

seal. All procedures were performed in accordance with the law on animal protection 

(Tierschutzgesetz) issued by the German Federal Government and were approved by the 

institutional animal welfare committee of the University of Tübingen. More details are 

provided in the Supplementary Material.

Dataset from Svoboda lab—We used a publicly available dataset provided by the 

GENIE project, Svoboda lab, at Janelia farm on crcns.org (Akerboom et al., 2012; Chen et 

al., 2013; Svoboda, 2014). This dataset contains 9 cells recorded with GCaMP5, 11 cells 

recorded with GCaMP6f and 9 cells recorded with GCaMP6s. The total number of spikes 

was 2735, 4536 and 2123, respectively, and therefore much lower than for our datasets. 

Typically, these cells were recorded focusing on a single cell rather than recording from an 

entire population with lower zoom as in our dataset. For a detailed description of the data, 

see (Akerboom et al., 2012; Chen et al., 2013).

Preprocessing

We resampled all fluorescence traces and spike trains to 100 Hz (using scipy.signal.resample 

from the SciPy Python package). This allowed us to apply models across datasets 

independent of which dataset was used for training. We removed linear trends from the 

fluorescence traces by fitting a robust linear regression with Gaussian scale mixture 

residuals. That is, for each fluorescence trace Ft, we found parameters a, b, πk, and σk with 

maximal likelihood under the model

and computed F̃t = Ft − at − b. We used three different noise components (K = 3). 

Afterwards, we normalized the traces such that the 5th percentile of each trace’s 

fluorescence distribution is at zero, and the 80th percentile is at 1. Normalizing by 

percentiles instead of the minimum and maximum is more robust to outliers and less 

dependent on the firing rate of the neuron producing the fluorescence.

Supervised learning in flexible probabilistic models for spike inference

We predict the number of spikes kt falling in the t-th time bin of a neuron’s spike train based 

on 1000 ms windows of the fluorescence trace centered around t (preprocessed fluorescence 
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snippets xt). We reduced the dimensionality of the fluorescence windows via PCA, keeping 

at least 95% of the variance (resulting in 8 to 20 dimensions). Keeping 99% of the variance 

and slightly regularizing the model’s parameters gave similar results. Only for the Svoboda 

dataset we found it was necessary to keep 99% of the variance to achieve optimal results.

We assume that the spike counts kt given the preprocessed fluorescence snippets xt can be 

modeled using a Poisson distribution,

We tested three models for the firing rate λ(xt) function:

1. A spike-triggered mixture (STM) model (Theis et al., 2013) with exponential 

nonlinearity,

where wk are linear filters, um are quadratic filters weighted by βkm for each of K 
components, and bk is a offset for each component. We used three components and 

two quadratic features (K = 3, M = 2). The performance of the algorithm was not 

particularly sensitive to the choice of these parameters (we evaluated K = 1, … 4 

and M = 1, …, 4 in a grid search using one dataset).

2. As a simpler alternative, we use the linear-nonlinear-Poisson (LNP) neuron with 

exponential nonlinearity,

where w is a linear filter and b is an offset.

3. As a more flexible alternative, we used a multi-layer neural network (ML-NN) with 

two hidden layers,

where g(y) = max(0, y) is a point-wise rectifying nonlinearity and W1 and W2 are 

matrices. We tested MLPs with 10 and 5 hidden units, and 5 and 3 hidden units for 

the first and second hidden layer, respectively. Again, the performance of the 

algorithm was not particularly sensitive to these parameters.

Parameters of all models were optimized by maximizing the average log-likelihood for a 

given training set,
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using limited-memory BFGS (Byrd et al., 1995), a standard quasi-Newton method. To 

increase robustness against potential local optima in the likelihood of the STM and the ML-

NN, we trained four models with randomly initialized parameters and geometrically 

averaged their predictions. The geometric average of several Poisson distributions again 

yields a Poisson distribution whose rate parameter is the geometric average of the rate 

parameters of the individual Poisson distributions.

Other algorithms

SI08—This approach is based on applying a support-vector machine (SVM) on two PCA 

features of preprocessed segments of calcium traces. We re-implemented the features 

following closely the procedures described in (Sasaki et al., 2008). As the prediction signal, 

we used the distance of the input features to the SVM’s separating hyperplane, setting 

negative predictions to zero. We cross-validated the regularization parameter of the SVM but 

found that it had little impact on performance.

PP13—The algorithm performs Bayesian inference in a generative model, using maximum 

a posteriori (MAP) estimates for spike inference and MCMC on a portion of the calcium 

trace for estimating hyperparameters. We used a Matlab implementation provided by the 

authors of (Pnevmatikakis et al., 2013), which has contributed to the later published 

(Pnevmatikakis et al., 2016). We also tried selecting the hyperparameters through cross-

validation, which did not substantially change the overall results.

VP10—The fast-oopsi or non-negative deconvolution technique constrains the inferred 

spike rates to be positive (Vogelstein et al., 2010), performing approximate inference in a 

generative model. We used the implementation provided by the author 1. We adjusted the 

hyperparameters using cross-validation by performing a search over a grid of 54 parameter 

sets controlling the degree of assumed observation noise and the expected number of spikes 

(Fig. 2a–b). In Fig. 5b–c the hyperparameters were instead directly inferred from the 

calcium traces by the algorithm.

YF06—The deconvolution algorithm (Yaksi and Friedrich, 2006) removes noise by local 

smoothing and the inverse filter resulting from the calcium transient. We used a Matlab 

implementation provided by the authors. Using the cross-validation procedure outlined 

above, we automatically tuned the algorithm by testing 66 different parameter sets. The 

parameters controlled the cutoff frequency of a low-pass filter, a time constant of the filter 

used for deconvolution, and whether or not an iterative smoothing procedure was applied to 

the fluorescence traces.

1https://github.com/jovo/fast-oopsi
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OD13—This algorithm performs a template-matching based approach by using the finite 

rate of innovation-theory as described in (Oñativia et al., 2013). We used the implementation 

provided on the author’s homepage2. We adjusted the exponential time constant parameter 

using cross-validation.

VP09—This algorithm performs Bayesian inference in a generative model as described in 

(Vogelstein et al., 2009). We used the implementation provided by the author3. Since this 

algorithm is based on the same generative model as fast-oopsi but is much slower, we used 

the hyperparameters inferred by cross-validating fast-oopsi in Fig. 2a–b and the 

hyperparameters automatically inferred by the algorithm in Fig. 5b–c.

Performance evaluation

Unless otherwise noted, we evaluated the performance of the algorithms on spike trains 

binned at 40 ms resolution. For Fig. 3 and Suppl. Fig. 2, we changed the bin width between 

10 ms and 500 ms. We used cross-validation to evaluate the performance of our framework, 

i.e. we estimated the parameters of our model on a training set, typically consisting of all but 

one cell for each dataset, and evaluated its performance on the remaining cell. This 

procedure was iterated such that each cell was held out as a test cell once. Results obtained 

using the different training and test sets were subsequently averaged.

Correlation—We computed the linear correlation coefficient between the true binned spike 

train and the inferred one. This is a widely used measure with a simple and intuitive 

interpretation, taking the overall shape of the spike density function into account. However, 

the correlation coefficient is invariant under affine transformations, which means that 

predictions optimized for this measure cannot be directly interpreted as spike counts or 

firing rates. In further contrast to information gain, it also does not take the uncertainty of 

the predictions into account. That is, a method which predicts the spike count to be 5 with 

absolute certainty will be treated the same as a method which experts the spike count to be 

somewhere between 0 and 10 assigning equal probability to each possible outcome.

Information gain—The information gain provides a model based estimate of the amount 

of information about the spike train extracted from the calcium trace. Unlike AUC and 

correlation, it takes into account the uncertainty of the prediction.

Assuming an average firing rate of λ and a predicted firing rate of λt at time t, the expected 

information gain (in bits per bin) can be estimated as

assuming Poisson statistics and independence of spike counts in different bins. The 

estimated information gain is bounded from above by the (unknown) amount of information 

2http://www.commsp.ee.ic.ac.uk/%7Epld/software//ca_transient.zip
3https://github.com/jovo/smc-oopsi
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about the spike train contained in the calcium trace, as well as by the marginal entropy of the 

spike train, which can be estimated using

We computed a relative information gain by dividing the information gain averaged over all 

cells by the average estimated entropy,

where  is the information gain measured for the n-th cell in the dataset.

This can be interpreted as the fraction of entropy in the data explained away by the model 

(measured in percent points). Since only our method was optimized to yield Poisson firing 

rates, we allowed all methods a single monotonically increasing nonlinear function, which 

we optimized to maximize the average information gain over all cells. That is, we evaluated

where f is a piecewise linear monotonically increasing function optimized to maximize the 

information gain averaged over all cells (using an SLSQP implementation in SciPy).

AUC—The AUC score can be computed as the probability that a randomly picked 

prediction for a bin containing a spike is larger than a randomly picked prediction for a bin 

containing no spike (Fawcett, 2006). While this is a commonly used score for evaluating 

spike inference procedures (Vogelstein et al., 2010), it is not sensitive to changes in the 

relative height of different parts of the spike density function, as it is invariant under 

arbitrary strictly monotonically increasing transformations. For example, if predicted rates 

were squared, high rates would be over proportionally boosted compared to low rates, while 

yielding equivalent AUC scores.

Statistical analysis

We used generalized Loftus & Masson standard errors of the means for repeated measure 

designs (Franz and Loftus, 2012) and report the mean ± 2 SEM. To assess statistical 

significance, we compare the performance of the STM model to the performance of its next 

best competitor, performing a one-sided Wilcoxon signed rank test and report significance or 

the respective p-value above a line spanning the respective columns. If the STM is not the 

best model, we perform the comparison between the best model and the STM. We fitted a 

Gaussian Process model with a Gaussian kernel in Fig. 5c and d using the implementation 
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provided by scikit-learn. The kernel width is chosen automatically via maximum-likelihood 

estimate (Pedregosa et al., 2011).

Generation of artificial data

We simulated data by sampling from the generative model used by Vogelstein et al. (2010). 

That is, we first generated spike counts by independently sampling each bin of a spike train 

from a Poisson distribution, then convolving the spike train with an exponential kernel to 

arrive at an artificial calcium concentration, and finally adding Poisson noise to generate a 

Fluorescence signal xt.

The firing rate λ for each cell was randomly chosen to be between 0 and 400 spikes per 

second. The parameters γ, a, and b were fixed to 0.98, 100 and 1, respectively, and data was 

generated at a sampling rate of 100 Hz.

Code availability

We provide a Python implementation of our algorithm online (https://github.com/lucastheis/

c2s). The package includes a pre-trained version of our algorithm, which is readily usable 

even without simultaneous recordings and has been trained on our entire dataset. The pre-

trained algorithm has been trained on all five datasets presented in this paper as well as the 

publicly available data from the Svoboda lab. To accommodate the wider range of data, we 

made the model slightly more flexible allowing 6 linear and 4 quadratic components as well 

as accounting for 99% of the variance in the dimensionality reduction step.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We evaluate algorithms for spike inference from two-photon calcium recordings.

• A new supervised algorithm performs best across neural tissues and indicators.

• Its performance transfers to new datasets without a need for retraining.

• Simulated data is not informative about performance on real data.
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Figure 1. Spike inference from calcium measurements
a) Schematic of the probabilistic STM model.

b) Simultaneous recording of spikes and calcium fluorescence traces in primary visual 

cortex of anesthetized mice. Green: Cells labeled with OGB-1 indicator. Red: Patch pipette 

filled with Alexa Fluor 594. Scale bar: 50 μm.

c) Example cell recorded from mouse V1 under anesthesia using AOD scanner and OGB-1 

as indicator. From top to bottom: Calcium fluorescence trace, spikes, spike rate in bins of 40 

ms (grey), inferred spike rate using the STM model (black), SI08, PP13, VP14 and YF06. 
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All traces were scaled independently for clarity. On the right, correlation between the 

inferred and the original spike rate.

d) Example cell recorded from mouse V1 under anesthesia using galvanometric scanners 

and OGB-1 as indicator. For legend, see c).

e) Example cell recorded from mouse V1 under anesthesia using resonance scanner and 

GCaMP6s as indicator. Note the different indicator dynamics. For legend, see c).

f) Example cell recorded from the ex-vivo mouse retina using galvanometric scanners and 

OGB-1 as indicator. For legend, see c).
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Figure 2. Quantitative evaluation of spike inference performance
a) Correlation (mean± 2 SEM for repeated measure designs) between the true spike rate and 

the inferred spike rate for different algorithms (see legend for color code) evaluated on the 

four different datasets with anesthetized/ex-vivo data (with n=16, 31, 19 and 9, respectively). 

Markers above bars show the result of a Wilcoxon sign rank test between the STM model 

and its closest competitor (see Methods, * denotes P<0.05, ** denotes P<0.01). The 

evaluation was performed in bins of 40 ms.

b) As in a) but for information gained about the true spike train by observing the calcium 

trace.

Theis et al. Page 21

Neuron. Author manuscript; available in PMC 2017 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Timing accuracy of spike rate inference
Correlation (mean ± 2 SEM for repeated measure designs) between the true and inferred 

spike rate as a function of temporal resolution for all four datasets with anesthetized/ex-vivo 

data (a–d) with n=16, 31,19 and 9, respectively. Grey dashed arrows in a) highlight the 

temporal resolution needed to achieve a correlation of 0.4 with different algorithms (see 

text).
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Figure 4. Evaluating model complexity
a) Correlation (mean ± 2 SEM for repeated measure designs) between the true and inferred 

spike rate comparing the STM model (black) with a flexible multilayer neural network (dark 

grey) and a simple LNP model (light grey) evaluated on the four different datasets collected 

under anesthesia/ex-vivo (with n=16, 31, 19 and 9, respectively). Markers above bars show 

the result of a Wilcoxon signed rank test between the STM model and the LNP model (see 

Methods, * denotes P<0.05, ** denotes P<0.01). The evaluation was performed in bins of 40 

ms.

b) Information gained about the true spike train by observing the calcium trace performing 

the same model comparison described in a).
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Figure 5. Dependence on training set size and firing rate
a) Mean correlation for STM model on the four different datasets collected under 

anesthesia/ex-vivo as a function of the number of neurons/segments in the training set.

b) Mean correlation for STM model as a function of the number of neurons/segments in the 

training set as a function of the number of spikes in the training set. Large training sets (on 

the right) lead to less spikes in the test set, making the evaluation noisier.

c) Correlation as a function of average firing rate of a cell. Dots mark correlation of STM 

model for individual traces. Solid lines indicate mean of a Gaussian process fit to correlation 

values for each of the indicated algorithms. Shaded areas are 95%-CI.

d) As in c. for relative information gain.
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Figure 6. Spike inference without training data
a) Schematic illustrating the setup: The algorithms are trained on all cells from three datasets 

(here: all but the GCaMP dataset) and evaluated on the remaining dataset (here: the GCaMP 

dataset), testing how well it generalizes to settings it has not seen during training.

b) Correlation (mean± 2 SEM for repeated measure designs) between the true spike rate and 

the inferred spike density function for a subset of the algorithms (see legend for color code) 

evaluated on each of the four different datasets collected under anesthesia/ex-vivo (with 

n=16, 31, 19 and 9, respectively), trained on the remaining three. Markers above bars show 

the result of a Wilcoxon sign rank test between the STM model and its closest competitor 

(see Methods, * denotes P<0.05, ** denotes P<0.01). The evaluation was performed in bins 

of 40 ms.
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c) Information gained about the true spike train by observing the calcium trace performing 

the generalization analysis described in a).
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Figure 7. Spike inference on awake data
a) Photograph and illustration of a mouse sitting on a Styrofoam ball during a combined 

imaging/electrophysiology experiment.

b) Example recording as in Fig. 1 but for data recorded in awake animals using GCaMP6s as 

indicator. During this recording, the mouse moved very little (green trace). Algorithms were 

trained on anesthetized data and tested on awake data.

c) As in b) but for a period with substantial movement of the mouse (right).

d) Correlation (mean ± 2 SEM for repeated measure designs) between the true spike rate and 

the inferred spike density function for a subset of the algorithms (see legend for color code) 
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evaluated on awake data (n=15 segements), trained on all anesthetized data. Markers above 

bars show the result of a Wilcoxon sign rank test between the STM model and its closest 

competitor (see Methods, * denotes P<0.05, ** denotes P<0.01). The evaluation was 

performed in bins of 40 ms.

e) As in d) but for information gain.

f) Evaluation of the effect of movement for the STM model. Recordings were separated into 

periods with and without motion (A: all, M: Moving, S: stationary). Mouse movement left 

the performance unchanged.
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Figure 8. Evaluating algorithms on artificial data
a) Example trace sampled from a generative model, true spikes and binned rate as well as 

reconstructed spike rate from four different algorithms (conventions as in Fig. 1). Numbers 

on the right denote correlations between true and inferred spike trains.

b) Correlation (mean ± 2 SEM for repeated measure designs) and information gain 

computed on a simulated dataset with 20 traces. For algorithms see legend.

c) Scatter plot comparing performance on simulated data with that on real data (averaged 

over cells from all datasets collected under anesthesia/ex-vivo), suggesting little predictive 

value of performance on simulated data.
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Table 2

Algorithms

Algorithm Approach Technique Reference

STM Supervised STM This paper

SI08 Supervised PCA+SVM (Sasaki et al., 2008)

PP13 Generative MCMC sampling (Pnevmatikakis et al., 2013)

OD13 Template matching Finite rate innovation (Oñativia et al., 2013)

VP10 Generative MAP estimation (Vogelstein et al., 2010)

VP09 Generative SMC sampling (Vogelstein et al., 2009)

YF06 Generative Deconvolution (Yaksi and Friedrich, 2006)
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