
Role of Sodium Channels in Epilepsy

David I. Kaplan1, Lori L. Isom2, and Steven Petrou1,3,4

1The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville,
Victoria 3052, Australia

2Department of Pharmacology, The University of Michigan, Ann Arbor, Michigan 48109-0632
3The Centre for Neural Engineering, The Department of Electrical Engineering, The University
of Melbourne, Parkville, Victoria 3052, Australia

4The Australian Research Council Centre of Excellence for Integrative Brain Function, The University
of Melbourne, Parkville, Victoria 3052, Australia

Correspondence: steven.petrou@florey.edu.au

Voltage-gated sodium channels (VGSCs) are fundamentally important for the generation
and coordinated transmission of action potentials throughout the nervous system. It is, there-
fore, unsurprising that they have been shown to play a central role in the genesis and alle-
viation of epilepsy. Genetic studies on patients with epilepsy have identified more than 700
mutations among the genes that encode for VGSCs attesting to their role in pathogenesis.
Further, many common antiepileptic drugs act on VGSCs to suppress seizure activity. Here,
we present an account of the role of VGSCs in epilepsy, both through their pathogenic
dysfunction and as targets for pharmacotherapy.

SUBTYPES AND STRUCTURE

Voltage-gated sodium channels (VGSCs) are
responsible for the generation and propaga-

tion of action potentials (APs). Through tran-
siently increasing membrane permeability to
sodium ions, these specialized proteins facili-
tate diffusion down an electrochemical gradient,
bringing the membrane toward the sodium
equilibrium potential (Hille 2001). This depo-
larization forms the upstroke of the AP. The
existence of ion-permeable channels, responsi-
ble for voltage gating of sodium ions across the
membrane, was first hypothesized by Hodgkin
and Huxley in 1952 (Hodgkin and Huxley
1952). In the time that followed, the existence
of VGSCs has been proven beyond refute, and
a broad family of channel subtypes have been

identified and characterized (Payandeh et al.
2011; Catterall et al. 2012). There are nine dif-
ferent pore-forming a-subunits (NaV1.1–1.9
encoded for by the genes SCN1A-SCN5A and
SCN8A-SCN11A). Eacha-subunit is comprised
of a single �260-kDa protein composed of four
repeat domains (I–IV), each containing six
transmembrane a-helical segments (S1–S6).
The S4 segment acts as a voltage sensor because
of a high concentration of positively charged ar-
ginine residues that compel the segment to move
through the electric field of the membrane (Cat-
terall 1986; Guy and Seetharamulu 1986; Keller
et al. 1986). Domains III and IVof thea-subunit
are connected by an intracellular loop that forms
the channel inactivation gate, acting through
a hinged lid mechanism (McPhee et al. 1998).
Mutagenesis studies suggest thata phenylalanine
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residue (F1489) on the intracellular loop binds
to an inactivation gate receptor, which causes
the loop to occlude the channel pore during
the inactivation process (Patton et al. 1992;
West et al. 1992; Kellenberger et al. 1997; Smith
and Goldin 1997). The a-subunit is often cou-
pled to one or two non-pore-forming b-sub-
units. There are five differentb-subunit proteins
(b1,b1B,b2,b3, andb4) encoded by four genes
(SCN1B–SCN4B; b1B is a splice variant of
SCN1B) (Brackenbury and Isom 2011). VGSC
b-subunits are much smaller than a-subunits
(30–50 kDa), each consisting of an extracellular
immunoglobulin (Ig) loop, a single transmem-
brane domain, and a short intracellular domain.
The physical interaction between the a- and b-
subunits is not well characterized; however, evi-
dence suggests that residues in the A/A0 strand
of the b1-subunit Ig fold are involved in the
a-subunit interaction and residues in theb1 car-
boxyl terminus are critical for association with
NaV1.1 (McCormick et al. 1998; Spampanato
et al. 2004b). In addition, b2- and b4-subunits
covalentlyassociatewitha-subunits viaextracel-
lular disulfide bonds (Chen et al. 2012; Buffing-
ton and Rasband 2013). b-subunits modulate
the kinetics and voltage dependence of the a-
subunits and have also been shown to affect the
voltage-gated potassium channels, as well as par-
ticipate in nonconducting roles, including cell–
cell and cell–matrix adhesion, directing neuro-
nal proliferation, migration, and fasciculation,
and modulating the effects of pharmacological
compounds on VGSCs (Isom et al. 1992, 1995;
Patton et al. 1994; Yu et al. 2003; Brackenbury
and Isom 2011; Marionneau et al. 2012; Nguyen
et al. 2012). Aside from the VGSCs, there is also
a specialized sodium channel involved in sens-
ing sodium levels. NaX is related to the family
of VGSCs; however, it differs in its primary
structure and is not voltage dependent (Hiyama
et al. 2002).

THE ROLE OF SODIUM CHANNELS
IN THE NERVOUS SYSTEM

Within the central nervous system (CNS),
VGSCs are critically important for regulating
neuronal excitability and, therefore, network ac-

tivity. They are expressed ubiquitously through-
out central neuron compartments with an in-
creased density at nodes of Ranvier and axon
initial segments (AIS). In myelinated neurons,
the aggregation of VGSCs at the nodes of Ran-
vier is necessary for speeding AP propagation
by saltatory conduction (Conti et al. 1976;
Kaplan et al. 2001). The AIS serves as the site
of AP initiation because of its reduced threshold
of excitation relative to adjacent regions (Stuart
et al. 1997a; Palmer and Stuart 2006). This has
been attributed to the high concentration and
unique properties of VGSCs at this site (Colbert
and Johnston 1996; Kole et al. 2008). Immu-
nohistochemistry studies have been instrumen-
tal in determining the distribution of different
VGSCs along the AIS. One such study, using
adult rat retinal ganglion cells, showed that
NaV1.6 channels are densely expressed at the
distal AIS, whereas NaV1.1 channels are aggre-
gated in a spatially distinct region of the proxi-
mal AIS (Van Wart et al. 2007). Work looking
at cortical pyramidal neurons in rats showed
localization of NaV1.6 and NaV1.2 channels at
the AIS distributed in a gradient along the
length of the segment with increased NaV1.6 at
the distal AIS and NaV1.2 more proximal (Hu
et al. 2009). This gradient has functional conse-
quences as the NaV1.6 channels have a hyperpo-
larized voltage dependence of activation relative
to the NaV1.2 channels (Hu et al. 2009). When
depolarizing current from synaptic inputs en-
ters the AIS, NaV1.6 channels in the distal com-
partment will reach their activation threshold
more readily than NaV1.2 and, consequently,
open to generate APs. Transmembrane current
generated during these APs will then travel both
down the axon and back toward the soma, de-
polarizing the membrane and activating the
NaV1.2 channels to induce a backpropagating
AP. This AP is actively propagated through the
dendritic arbor by VGSCs expressed through-
out the soma and dendrites (Lorincz and Nusser
2010). The backpropagating AP is important
for relating neuronal output to synaptic input,
which is necessary for regulating synaptic plas-
ticity (Stuart et al. 1997b). Changes in plasti-
city can dramatically alter network dynamics
by changing the functional topology of a net-
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work. Dendritic VGSCs have also been proposed
to contribute to AP generation in the dendrites;
however, it still remains unclear as to the rele-
vance of this behavior in vivo (Magee and John-
ston 1995; Golding and Spruston 1998). Taken
together, these data show the complex relation-
ship between VGSC distribution and network
excitability and hint at the vulnerability of brain
networks to changes in the function of these
channels by mutation or drug action.

EPILEPSY MUTATIONS IN SODIUM
CHANNELS

Genetic studies of patients with epilepsy have
identified an extensive array of mutations pre-
dominantly among the genes that encode for
the ion channels, earning epilepsy its classifica-
tion as a “channelopathy.” A substantial propor-
tion of these mutations are in VGSC genes with
the vast majority discovered in SCN1A, and few-
er in SCN2A, SCN8A, and SCN1B (Wallace et al.
1998, 2002; Mulley et al. 2005; Striano et al.
2006; Herlenius et al. 2007; Patino et al. 2009;
Shi et al. 2009; Allen et al. 2013; O’Brien and
Meisler 2013; Sawyer et al. 2014).

Mutations in SCN1A are occasionally as-
sociated with generalized epilepsy with febrile
seizures (FSs) plus (GEFSþ) and much more
frequently with the severe epileptic encepha-
lopathy (EE), Dravet syndrome (DS). GEFSþ

mutations in SCN1A are mostly missense mu-
tations, whereas, in DS, 40% are missense mu-
tations, 40% are truncation, and the remainder
are splice-variant changes (Marini et al. 2011).
Although earlier work suggested that mutations
in SCN2A are primarily associated with the
self-limiting and relatively mild, benign familial
neonatal infantile seizures (BFNIS), recent evi-
dence implicates SCN2A as an important EE
gene (Ogiwara et al. 2009; Liao et al. 2010; Allen
et al. 2013; Baasch et al. 2014; Hackenberg et al.
2014). A spate of de novo SCN8A mutations
among patients with EEs have been identified
(Veeramah et al. 2012; Estacion et al. 2014;
Larsen et al. 2015). A recent study using high-
throughput genetic screening identified 17
mutations in SCN8A among patients with EE
(Larsen et al. 2015). Seizure onset occurred at

around 5 months of age and all patients had
impaired development. Seizure types varied
with many patients developing multiple seizure
types after initial seizure onset. Mutations in
SCN1B have been identified in patients with
DS, GEFSþ, and temporal lobe epilepsy (Schef-
fer et al. 2007; Patino et al. 2009; Ogiwara et al.
2012). Most of the epilepsy-associated muta-
tions discussed in this article are examples of
highly penetrant dominant mutations. How-
ever, it seems increasingly apparent that, in
many cases, epilepsy arises as a consequence of
combinatorial effects of multiple mutations that
are not individually deleterious. This point is
nicely illustrated in a study by Klassen and col-
leagues (2011) who performed Sanger sequenc-
ing on 237 ion-channel genes in 152 patients
with idiopathic epilepsy and 139 healthy con-
trols. This study identified thousands of single-
nucleotide polymorphisms (SNPs). Interesting-
ly, these were distributed among both epilepsy
patients and controls with no clear separation.
Further, when the investigation was limited to
genes that were known to be associated with
epilepsy, the investigators found a significant
number of missense mutations among the con-
trol group. These findings suggest that common
genetic epilepsies are caused by an accumula-
tion of mutant ion channels, rather than highly
penetrant rare variants.

FUNCTIONAL ANALYSIS OF SODIUM
CHANNEL MUTATIONS: IMPLICATIONS
FOR DIFFERENT SPATIAL SCALES

Since the discovery of the first epilepsy-associ-
ated genetic mutation, an extensive body of
work has focused on understanding the func-
tional consequence of these mutations in model
systems. VGSC mutations have been investi-
gated on multiple spatial scales, from the level
of single channels heterologously expressed
in nonneuronal cell lines, extending to network
and whole animal experiments from genetically
engineered models. Each of these models offers
unique insights into the functional mechanisms
of mutations, which can help to build a com-
prehensive understanding of the mechanisms
underlying genetic epilepsies.

Sodium Channels and Epilepsy

Cite this article as Cold Spring Harb Perspect Med 2016;6:a022814 3

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg



CHANGES IN SODIUM CHANNEL
BIOPHYSICS: INSIGHTS FROM CELL
CULTURES

Mutant channels can be transfected into het-
erologous expression systems to interrogate
changes in channel biophysics. Using quiescent
cell lines, currents generated by a heterologously
expressed mutant channel can be readily isolat-
ed. With this approach, a growing number of
VGSC mutations identified in patients with ep-
ilepsy have been analyzed. However, these results
must be interpreted with caution as a nonneuro-
nal cell line may lack essential components that
affect VGSC function and cannot fully reca-
pitulate the internal milieu of a neuron. More-
over, differences in recording conditions, cell
line type, and passage history confound com-
parison of results across different studies.

SCN1A MUTATIONS

Of the SCN1A mutations, more than one-half
are truncation mutations, resulting in haploin-
sufficiency, whereas the remainder are missense
mutations that have effects on the kinetics or
voltage dependence of channel gating. Work
looking at the effects of such missense muta-
tions from patients with GEFSþ showed variable
results. Early studies using heterologous expres-
sion systems suggest mutations result in a gain of
function as a result of impaired channel inacti-
vation (Lossin et al. 2002). This idea was soon
challenged by characterization of several loss-
of-function GEFSþ mutations caused by vari-
ous different biophysical modifications, such
as positive shifts in the voltage dependence of
activation or increased slow inactivation (Lossin
et al. 2003). To date, no uniform change in
NaV1.1 biophysics has been identified in GEFSþ

mutations; however, given that these channels
are interneuron specific, it is assumed that the
disease-causing mechanism will converge at a
higher spatial level (Ogiwara et al. 2007; Escayg
and Goldin 2010). Under specific circumstanc-
es, VGSC gain of function could suppress neu-
ronal excitation. In interneurons, this could
lead to disinhibition as a chronically depolar-
ized neuron would reduce channel availability
and impair AP firing.

SCN2A MUTATIONS

Missense mutations in SCN2A are associated
with BFNIS. Characterization of two BFNIS
mutations using tsA201 cell lines has shown a
depolarizing shift in the voltage dependence
of inactivation and an increased persistent cur-
rent causing an overall gain of function (Kear-
ney et al. 2001; Liao et al. 2010; Lauxmann et al.
2013). This hypothesis is consistent with disease
progression with onset at 11 weeks postnatal
and remission within 1 year. NaV1.2 channels
are expressed in two different splice forms, neo-
natal and adult. The adult splice form is more
excitable than the neonatal; subsequently, a
more excitable mutant channel could induce
seizures in a neonate, but be benign in an adult.
In a recent study by Gazina and colleagues
(2015), a mouse was generated that only ex-
pressed the adult isoform of the NaV1.2 channel,
even in infancy. These NaV1.2adult mice showed
an increase in AP firing in cortical neurons and
were more susceptible to seizures. In a related
study by Xu and colleagues (2007b), the effects
of a BFNIS mutation on the adult and neonatal
splice forms of the NaV1.2 channel are com-
pared in HEK293t cells. The mutation results
in a gain of function that is more pronounced
for the neonatal form of the channel than for
the adult. Further, the gain of function caused
by the mutation in the neonatal form increases
channel excitability to a level similar to that of
the adult wild-type channel. This, indeed, sug-
gests that the functional consequence of the
mutation is severely diminished in the adult
offering an explanation for the self-limiting
nature of the disease (Xu et al. 2007b). Biophys-
ical characterizations of SCN2A mutations in
EEs are currently lacking, and it remains to be
seen what, if any, functional changes are corre-
lated with these severe and clinically important
disorders.

SCN8A MUTATIONS

De novo mutations in SCN8A have been asso-
ciated with EEs resulting in a broad spectrum
of different seizure types, including absence ep-
ilepsy. A de novo mutation in the SCN8A gene
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was identified in a child with EE who died from
sudden unexpected death in epilepsy (SUDEP)
at age 15 (Veeramah et al. 2012). The patient
carried a heterozygous missense mutation, re-
sulting in a N1768D variant NaV1.6 protein.
When the mutant protein was expressed in
ND7/23 cells, voltage-clamp assays revealed a
gain of function with an increase in persistent
current, ramp current, a depolarizing shift in
steady-state inactivation, and incomplete chan-
nel inactivation. Another patient showing de-
velopmental delay, intellectual disability, and
intractable epilepsy was discovered to carry
a heterozygous mutation c.2300C.T in the
SCN8A gene, resulting in a T767I variant (Esta-
cion et al. 2014). Functional analysis revealed
a gain of function with a hyperpolarizing
shift of 10 mV in the voltage dependence of
activation, as well as an increase in ramp cur-
rent. Together, these studies would suggest
gain of function as a common mechanism for
SCN8A-related epilepsies; however, an addi-
tional study of a de novo missense mutation
in a young girl with EE, resulting in a R233G
protein variant, showed a loss of function mea-
sured as a significant reduction in current am-
plitude (de Kovel et al. 2014). Mutations in
SCN8A have also been identified in forms of
epilepsy other than EE. Absence seizures have
distinct 3-Hz spike-wave discharges and high-
frequency bursts associated with behavioral
arrest and transient impairment of cognition.
Through a chemical mutagenesis screen, mu-
tations in the mouse Scn8a gene were shown
to cause absence seizures with spike-wave dis-
charges measured through electroencephalog-
raphy (EEG) (Papale et al. 2009). Voltage-clamp
analysis of the mutant channels showed an over-
all loss of function indicated by a depolarizing
shift in the voltage dependence of activation, a
hyperpolarizing shift in the voltage dependence
of inactivation, and accelerated entry into fast
inactivation (Oliva et al. 2014). Severity of the
absence phenotype varied depending on the
strain of mouse used, and this was shown to
be dictated by the variant of other VGSC sub-
types expressed in the same neuron. A general
trend that can be concluded from this work is
that SCN8A gain-of-function mutations tend

to result in EE, whereas loss of function seems
to induce absence seizures.

SCN1B MUTATIONS

Mutations in SCN1B, encoding the b1-/b1B-
subunits, have been associated with a number
of different forms of epilepsy. To study these
proteins in heterologous expression systems,
they must be coexpressed with an a-subunit.
All of the SCN1B mutations identified in epi-
lepsy patients (except for one identified in the
specific carboxy-terminal domain of b1B) (Pa-
tino et al. 2011) are located in the extracellular Ig
fold involved in cell–cell adhesion and a-sub-
unit interaction. Unsurprisingly, characteriza-
tion of these mutations suggests a loss of func-
tion of the b-subunit, resulting in a slowing of
a-subunit inactivation, a hyperpolarizing shift
in sodium current voltage dependence of inac-
tivation, and increased resilience to use-depen-
dent loss of availability (Meadows et al. 2002;
Tammaro et al. 2002; Xu et al. 2007a; Patino
et al. 2009). It has also been shown that b1 in-
teracts with and modulates certain potassium
channel subtypes, best illustrated in a study in
which b1 was knocked down in mice, resulting
in a reduction in A-type potassium current
density, an increase in AP half-width, and an
increase in repetitive firing (Marionneau et al.
2012). GEFSþ-related mutations of SCN1B can
interfere with b1 modulation of potassium cur-
rents (Nguyen et al. 2012). b1 accelerates the
activation and reduces cumulative inactivation
of the potassium channel KV1.3; however, these
effects are lost with two GEFSþ mutations of
SCN1B, the C121W, and R85C mutations. A
mutation in the region of the SCN1B gene
unique to the b1B splice variant has been sug-
gested to cause aberrant neuronal migration as
it causes intracellular retention of the subunit,
which must be secreted to act as a cell-adhesion
molecule (CAM) (Patino et al. 2011). Deter-
mining the effect of these mutations on chan-
nel gating is crucially important; however, for a
comprehensive picture of how VGSC mutations
induce epilepsy, it is necessary to scale out to
models that capture the broader aspects of seiz-
ure behavior.
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SUMMARY OF BIOPHYSICAL
PATHOMECHANISMS IN EPILEPSY

Functional analyses of epilepsy mutations in
VGSCs have revealed a complex picture; how-
ever, a specific pattern relating channel mu-
tation to epileptic syndrome has begun to
emerge. Changes in channel biophysics tend
to be cell-type dependent with VGSCs in in-
terneurons, for example, NaV1.1 or NaV1.6,
showing loss of function because of haploin-
sufficiency, depolarizing shifts in the voltage
dependence of activation, and hyperpolarizing
shifts in voltage dependence of inactivation.
Contrastingly, changes in pyramidal cell chan-
nels, for instance, NaV1.2 or NaV1.6, tend to be
gain of function, such as depolarizing shifts in
the voltage dependence of inactivation and an
increase in persistent current. Broadly, SCN1A
haploinsufficiency tends to cause DS, as does
SCN1B loss of function. Gain of function in
SCN2A relates to BFNIS. Gain of function in
SCN8A has been associated with EE, whereas
loss of function relates to absence. Additional
potential pathomechanisms have been pro-
posed, but not yet specifically identified, in
patients with epilepsy. Mutations in the VGSC
voltage sensor, which substitute the charged ar-
ginines with neutral residues, can result in a leak
current through the voltage sensor, referred to
as the “omega” or “gating pore” current (Soko-
lov et al. 2005). Although this has not yet been
reported in patients with epilepsy, a mutation in
NaV1.4 associated with hypokalaemic periodic
paralysis has been shown to have an increased
omega current, implicating this mechanism
among channelopathies (Sokolov et al. 2007).
One other gating phenomenon that has been
proposed as a pathomechanism of epilepsy is
resurgent sodium current. For certain subtypes
of VGSCs, a small transient inward current can
be elicited with repolarization of the membrane
following a prolonged depolarizing pulse (Ra-
man and Bean 1997). Increased resurgent
current amplitude has been associated with an
increase in AP firing frequency, implicating it as
a potential pathomechanism in epilepsy (Mar-
tin et al. 2007; Jarecki et al. 2010; Hargus et al.
2013).

STEM-CELL MODELS

A common criticism of the use of heterologous
expression systems to explore mutant channel
biophysics is the lack of neuronal context, which
may mask pathologically important functional
changes. With recent developments in stem-
cell- and genome-editing technologies, this lim-
itation can be potentially overcome. In a study
by Liu and colleagues (2013), fibroblasts ob-
tained from skin biopsies of patients with DS
were used to generate induced pluripotent stem
cells (iPSCs), which were then differentiated
into forebrain neurons with bipolar and pyra-
midal morphologies. Electrophysiological as-
says revealed a marked increase in neuronal
excitability in DS-patient-derived excitatory
and inhibitory neurons relative to nonepileptic
patient control iPSC-derived neurons. Voltage-
clamp recordings showed a twofold increase in
sodium current density at 3–5 weeks in DS neu-
rons relative to controls, and current clamp ex-
periments showed a reduced threshold of AP
generation, increased evoked firing frequency,
and spontaneous firing in excitatory and inhib-
itory DS patient neurons. The observation of
similar effects in both pyramidal and bipolar
neurons suggested an overall increase in neuro-
nal excitability caused by the mutations. In a
related study, glutamatergic neurons were de-
rived from iPSCs from a patient with DS, a pa-
tient with FS, and a healthy control (Jiao et al.
2013). In both the DS and FS patients’ cell lines,
spontaneous APs were recorded, and voltage-
clamp analysis showed an increase in sodium
current amplitude and incomplete inactivation.
These effects were more pronounced in the DS
cell line, and treatment with phenytoin ap-
peared to reverse them. Using patient-derived
iPSCs preserves the genetic background that
contributes to the epilepsy phenotype. Conse-
quently, in spite of similar changes observed in
two different DS patients in the Liu et al. (2013)
study, differences between the control and pa-
tient-derived cells could be caused by a variety
of background genetic differences. To constrain
the number of variables, new methods using
targeted genome editing in stem cells are being
developed. A number of single-nucleotide ge-
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nome-editing methods are now available, in-
cluding clustered regularly interspersed palin-
dromic repeats (CRISPRs), which can be used
to introduce a known epilepsy mutation into
iPSCs derived from a healthy control or to
repair mutations in patient-derived stem cells
(Cong et al. 2013). Comparing the behavior of
these cells with control iPSCs from the same
patient will reveal the effect of the specific mu-
tation on neuronal biophysics independent of
the genetic background. Efforts are underway
to extend the iPSC method to generate human
brain-like structures to examine synapse forma-
tion and function, as well as network properties,
allowing for the more detailed and physiologi-
cally relevant investigation of epilepsy mecha-
nisms (Lancaster et al. 2013).

SCALING OUT: EPILEPSY AS A NETWORK
PHENOMENON

Animal Models of Sodium Channel Mutations

Understanding how mutations affect channel
biophysics is crucial to disentangling a complex
disease such as epilepsy. As a network scale
disorder, it is important to analyze the impact
of mutant VGSCs in this context. This is best
achieved through the generation of genetically
modified animal models harboring epilepsy
mutations identified in patients. In one such
study, a knockin mouse line was generated
with a nonsense mutation R1407X of the
SCN1A gene that had been independently iden-
tified in four patients with DS (Ogiwara et al.
2007). When mice were homozygous for the
mutation, they generated spontaneous seizures
and died prematurely. Immunohistochemistry
suggested that the NaV1.1 channels were local-
ized to the AIS of parvalbumin-positive inhib-
itory interneurons. Patch-clamp recording of
these neurons in the Scn1aRX/þ mice showed
no change in AP threshold, amplitude or half-
width; however, the decrement in spike ampli-
tude was significantly increased in the mutant
mice. This speaks to a reduction in sodium-
channel availability in these neurons, reducing
their excitability and, consequently, reducing
global inhibition in the mouse brain. This

work supports the hypothesis that SCN1A-
based DS results from an imbalance of the ex-
citation:inhibition (E/I) ratio caused by the se-
lective loss of VGSCs in inhibitory neurons (Fig.
1) (Yu et al. 2006; Ogiwara et al. 2007). To ex-
plore mechanisms in GEFSþ, a missense SCN1A
mutation, R1648H, identified in GEFSþ pa-
tients, was knocked into mice with mixed genet-
ic backgrounds, and electrophysiological assays
were used to compare the biophysical proper-
ties of inhibitory and excitatory neurons in this
model (Martin et al. 2010). Voltage-clamp anal-
ysis showed that in wild-type animals sodium
current density was substantially greater in in-
hibitory bipolar cells than in excitatory pyrami-
dal neurons with a ratio of 2.7, whereas in the
Scn1aRH/RH and Scn1aRH/þmice, this ratio was
closer to one as a result of a reduced sodium
current in bipolar cells. Consistent with this re-
sult, bipolar cells in Scn1aRH/RH mice showed
significantly reduced excitability compared
with those in the wild-type mice. This result
suggests that GEFSþmay share a similar imbal-
ance of E/I as in DS, albeit with differences that
account for the different clinical presentations.
Beyond SCN1A, mutations in other VGSC genes
have also been investigated using rodent models.
In a recent study, a de novo missense mutation in
SCN8A that had been identified in a patient with
EE and SUDEP was knocked into a mouse line
and shown to be sufficient to recapitulate the
epileptic phenotype (Wagnon et al. 2015). This
gain-of-function mutation resulted in increased
persistent current in transfected neurons and
was proposed to account for neuronal hyperex-
citability in the mice. Mice that were heterozy-
gous for the mutation showed no symptoms for
the first 2–3 months of age, at which point seiz-
ure onset ensued and death occurred within a
month. Generalized tonic–clonic seizures were
observed that would last no more than 1 minute
and were accompanied by distinct EEG signa-
tures. Taken together, these studies show the
power of animal models of genetic epilepsies
for exploring pathogenesis.

Using mice to understand the implications
of epilepsy mutations has obvious benefits; they
are mammalian, their genome has been thor-
oughly analyzed, and a wealth of tools and pro-
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tocols are available. However, there are addition-
al animal models that can often be more appro-
priate to answer certain questions about genetic
epilepsies. Zebrafish have become a popular
animal model in the neurosciences and, more
recently, within epilepsy research (Hortopan
et al. 2010). A line of zebrafish carrying a muta-
tion in the scn1Lab gene (the zebrafish gene most
equivalent to human SCN1A) have been shown

to recapitulate the epilepsy phenotype both
in terms of behavior and electrographic activity
(Baraban et al. 2013). Using these fish, a semi-
automated high-throughput drug screen was
developed to identify effective antiepileptic
drugs (AEDs). Drosophila melanogaster has also
been used as an epilepsy model and has the ad-
vantage that it can breed rapidly and has long
served as a tool for genetic studies, with a host of
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methods for genome editing. It has recently been
used to investigate a number of epilepsy muta-
tions in SCN1A (Sun et al. 2012; Schutte et al.
2014). In one such study, a GEFSþ mutation,
K1270T, was knocked into the para VGSC gene
of Drosophila (Sun et al. 2012). These flies de-
veloped thermogenic seizures and electrophysi-
ological analysis revealed temperature-depen-
dent changes in VGSC biophysics, implicating
a possible mechanism. Despite the simplicity
of working with these nonmammalian animal
models, using species so phylogenetically dis-
tant from humans introduces distinct obstacles
for translation into clinical outcomes.

Downstream Effects on Cellular Physiology

VGSC mutations can lead to a host of down-
stream effects that may not be intuitively ap-
parent from electrophysiological analysis, high-
lighting the value of using genetically modified
animal models to understand the pathomechan-
isms of VGSC mutations. Mutations in SCN1B
have been identified in patients with GEFSþ.b1-
subunits, encoded by SCN1B, are both VGSC
modulators and CAMs necessary for neurite
growth, cell migration, and normal cell mor-
phology (Brackenbury and Isom 2011).

The generation of an Scn1b null mouse line,
Scn1b2/2, has offered great insight into the role
of this protein and its involvement in epilepsy
(Chen et al. 2004). Scn1b2/2 mice appear atax-
ic and show spontaneous seizures, lasting from
seconds to minutes, which have been correlated
with high-voltage, synchronous discharges on
the EEG (Chen et al. 2004). Further character-
ization of this mouse line has shown significant
cytoarchitectural defects, including a reduction
in the number of nodes of Ranvier in neurons of
the optic nerve, aberrant pathfinding in the cor-
ticospinal tract and cerebellum, reduced density
of neurons in the dentate gyrus, and increased
cell proliferation in the hilus (Chen et al. 2004;
Brackenbury et al. 2013). Importantly, path-
finding differences occur in Scn1b null brain
before seizure onset, suggesting that hyperexcit-
ability may result from these defects. This work
offers a broad picture of the importance of the
b1-subunit, and shows how its absence leads to

an epileptic phenotype, consistent with the
finding that inheritance of two mutant SCN1B
alleles in human patients results in DS (Patino
et al. 2009; Ogiwara et al. 2012). In light of this, it
is not surprising that a specific SCN1B mutation
identified in humans with epilepsy could induce
epilepsy in a mouse. Mice carrying the GEFSþ

missense mutation b1-C121W have been well
characterized, revealing a host of downstream
effects. These mice show a FS phenotype in
which seizures are induced by an increase in
core temperature with a reduced threshold rela-
tive to wild-type littermates (Fig. 2) (Wimmer
et al. 2010). Electrophysiological analysis of
subicular pyramidal neurons showed an in-
crease in excitability in heterozygous CW mice
relative to wild-type CC littermates. In response
to 400 msec suprathreshold current injections,
cells fired initial bursts followed by tonic AP
firing. In the CW mice, bursts were more
protracted and tonic-firing frequency was in-
creased. Further, the threshold for AP initiation
was, on average, 2.7 mV more hyperpolarized in
CW mice relative to CC mice. Using fluorescent
labeling of b1-subunits in combination with
immunofluorescent staining against the AIS
protein ankyrin-G, they showed that the native
b1(C121) protein is aggregated at the AIS,
whereas the b1(W121) mutant is excluded
from this compartment. Changes in VGSC func-
tioning at the AIS can have significant impli-
cations for neuronal excitability, as this is the
site of AP initiation. Scaling out even further,
changes in neuronal excitability can have unpre-
dictable effects on network behavior. This no-
tion is explored in a related study in which the
same mouse line was used to investigate network
properties of the C121W mutation (Fig. 2)
(Hatch et al. 2014). Tetanic stimulation of the
CA1 in a slice preparation resulted in a brief
oscillation as recorded by an extracellular re-
cording electrode. In CW mice, the duration
of oscillations was extended and the latency
to oscillation following the stimulus was re-
duced. This effect was also shown to be exacer-
bated with increased bath temperature. These
studies begin to paint a picture of the elabo-
rate consequences of small changes in channel
structure.
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BRIDGING THEORY AND EXPERIMENT:
COMPUTATIONAL MODELING
OF SODIUM CHANNEL MUTATIONS

Computational Models Can Reveal
a Pathological Mechanism

Changes in channel biophysics induced by mu-
tations can be quantified through voltage-
clamp analysis. Through the use of animal
models, the effects of channel mutations on
both neuronal and network excitability can be
measured. A challenge arises when trying to
causally relate these changes, measured on dif-
ferent spatial scales. Computational modeling
of neuronal biophysics has emerged as a useful
means of overcoming this challenge. Biophysi-
cal properties of channels, neurons, and net-
works can be measured through common elec-
trophysiological techniques. These properties
can then be described mathematically and sim-
ulated on a computer (Hodgkin and Huxley
1952; Lytton 2008). A prime example of com-
putational modeling is shown in a previously
discussed study looking at the C121W hetero-
zygous mouse (Wimmer et al. 2010). The AIS is
a small compartment, notoriously difficult to
access with a patch-clamp electrode. To circum-
vent this limitation, the investigators produced
a biophysically realistic computational model of
a pyramidal neuron using NEURON simulation
software, and systematically altered the behavior
of AIS VGSCs in an attempt to recreate the ef-
fects of the mutation on AP dynamics measured
at the soma (Hines and Carnevale 1997). Neg-
atively shifting the voltage dependence of acti-
vation for VGSCs in the AIS, they were able to
mirror the increase in excitability measured in
the CW mouse. This illustrates the importance
of AIS VGSCs to neuronal and network excit-

ability and offers an explanation of how loss of
b1 modulation at the AIS could result in aber-
rant AP firing. Computational models can also
be used to investigate the implications to neu-
ronal activity of different changes in channel
biophysics induced by epilepsy mutations.
Spampanato and colleagues (2001, 2003,
2004a) used previously quantified changes in
NaV1.1 biophysics caused by three different
GEFSþ mutations to generate a NEURON sim-
ulation of the somatic compartment to explore
the consequences on AP firing. Despite having
distinct effects on channel biophysics, all three
mutations converged at the scale of the neuron
and resulted in an increase in AP firing, indicat-
ing how different mutations can lead to a single
convergent pathology. Modeling can also be
used to predict the effects of mutations at the
network scale. In one study, a physiologically
realistic model of the dentate gyrus was used
to study the effects of functional changes in
different ion channels (Santhakumar et al.
2005). Previous studies had shown that the
most common changes in channel biophysics
caused by epilepsy mutations were small shifts
in the voltage dependence of activation and in-
activation. In one such study, these properties
were systematically varied in all voltage-depen-
dent channels both independently and in com-
bination with one another. Network excitability
was most sensitive to changes in VGSC activa-
tion with even small hyperpolarizing shifts hav-
ing a profound effect. Again, this study presents
the power of VGSCs in regulating network ex-
citability, and the potential for pathological be-
havior when they malfunction. Conversely, it
alludes to the potential of exploiting VGSCs
to reestablish physiological network activity
(Thomas et al. 2009).

Figure 2. (Continued) Increasing temperature results in a shift of the voltage of half activation, which is most
significant in the NaV1.2 þ b1 (CW). (C) Current clamp recordings showing the voltage response of mouse
subicular neurons to current injections in WT (left) and C121W heterozygous (right) mice. (D) For most current
injections, the C121W mouse showed an increase in action potentials (APs) frequency (E) and the average
number of APs per burst. (F) Through tetanic stimulation, network oscillations could be induced in the mouse
hippocampus. (G) The latency and (H ) interspike interval of these oscillations was reduced in the C121Wmouse
(figure created from data in Wimmer et al. 2010, Egri et al. 2012, and Hatch et al. 2014). ISI, Interspike interval.
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SODIUM CHANNELS AS A TARGET
FOR AEDs

The Modulated Receptor Model

Given the central role of VGSCs in regulating
neuronal excitability, it is intuitively satisfying
that many common AEDs exert their action on
the CNS by targeting VGSC function. The prin-
cipal mode of action of these AEDs appears to
be use-dependent block, in which inhibition
of sodium currents is stronger when the mem-
brane potential experiences repeated excursions
to depolarized levels more frequently, exposing
new drug-binding sites and allowing for selec-
tive block of channels only when they are in
active neurons (Adler et al. 1986; McLean and
Macdonald 1986; Ragsdale et al. 1991). Such
activity occurs during seizures, in which neu-
rons fire bursts of high-frequency APs, and
AEDs may prevent seizures by impeding these
high-frequency bursts through gradual inhibi-
tion of VGSCs (McNamara 1994). This manner
of drug–channel interaction has been described
by the modulated receptor hypothesis, which
posits that for channels that transition through
multiple states, a drug will bind to the channel
with varying affinities depending on the state
(Hondeghem 1987). Modulated receptor be-
havior is characterized through voltage-clamp
assays in which complex protocols are designed
to tease apart the precise kinetics of drug–chan-
nel interaction. In a seminal study by Kuo and
Bean (1994), the investigators showed that the
AED phenytoin binds preferentially to VGSCs
in the fast inactivated state, but with a slow
binding rate. Using acutely dissected rat hip-
pocampal neurons, they first showed that the
degree of sodium current inhibition by pheny-
toin is greater at depolarized potentials. This
suggests that the drug binds the channel in the
inactivated state, as this is the state most signifi-
cantly occupied when the membrane is depo-
larized. As previously mentioned, VGSC inacti-
vation is usually described as having fast and
slow components. The fast component occurs
within 5–10 msec, whereas the slow compo-
nent can take hundreds of milliseconds to ini-
tiate. Given the delayed onset of phenytoin
block, it would seem that the drug binds pref-

erentially to the slow inactivated state; however,
Kuo and Bean show that the drug, in fact, binds
to the fast inactivated state, but with slow kinet-
ics, so that the binding appears to be linked to
slow inactivation. To do this, they held the
membrane at voltages at which fast inactivation
is almost complete but there is very little slow
inactivation, and showed that phenytoin ex-
posure still slows recovery from inactivation.
This implied that phenytoin is acting on the
channel despite minimal slow inactivation. Fur-
ther studies have shown that other related AEDs
act on VGSCs with similar kinetics (Kuo and
Bean 1994; Yang and Kuo 2002).

Mechanisms Beyond Use-Dependent Block

Use-dependent block of VGSCs is clearly an ef-
fective way to control seizures; however, evi-
dence from the clinic suggests that some forms
of epilepsy are not responsive to these drugs and
can even be exacerbated by them (Snead and
Hosey 1985; Genton et al. 2000; Thomas and
Petrou 2013). In some of these cases, the most
effective drugs have broad pharmacological ef-
fects including, but not exclusively, modulation
of VGSC biophysics. Riluzole is currently used
for the treatment of amyotrophic lateral sclero-
sis; however, it was originally developed as an
AED. It has been shown to induce a hyperpolar-
izing shift in the voltage dependence of inacti-
vation in tetrodotoxin (TTX)-sensitive VGSCs,
as well as reduce resurgent sodium current and
partially block P/Q-type calcium channels in
presynaptic terminals reducing glutamate re-
lease (Song et al. 1997; Wang et al. 2004; Theile
and Cummins 2011). In addition, an indirect
mechanism involving the inactivation of a per-
tussis-sensitive guanosine triphosphate (GTP)-
binding protein has been implicated (Doble
1996; Song et al. 1997; Wang et al. 2004). The
AED lacosamide (LCM) is used to treat partial
seizures and has been shown to enhance VGSC
slow inactivation (Errington et al. 2008). Elec-
trophysiological studies have shown that LCM
enhances slow inactivation; however, evidence
suggests this is not its only mechanism of action.
Radioligand-binding studies and molecular dy-
namics simulations have implicated the protein
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CRMP-2, which plays a role in axonal sprout-
ing, suggesting a plasticity-related effect, how-
ever, this is disputed (Wang et al. 2010; Wolff
et al. 2012). Blocking VGSCs during hyperexci-
tation appears to be a logical means of suppress-
ing seizures, yet, as discussed earlier, some epi-
lepsies are thought to result from specific loss of
VGSCs in inhibitory neurons, causing an imbal-
ance of E/I. Under these circumstances, a VGSC
activator could conceivably rescue the loss of
channel function in inhibitory neurons. Com-
pounds that selectively activate NaV1.1 are novel
candidates for achieving this targeted activation
(Jensen et al. 2014). Given their predominant
expression among inhibitory interneurons,
activation of NaV1.1 is postulated to increase
global inhibition and potentially prevent sei-
zures. In genetic disorders of SCN1A, such as
DS, these selective openers would specifical-
ly target any cell in which SCN1A expressed
and, presumably, would restore function at the
neuronal level to provide a whole brain thera-
peutic effect. Further research into this method
is needed, yet promising results are beginning to
emerge.

CONCLUSION

VGSCs are fundamentally important for the
generation and propagation of APs and play a
pivotal role in the regulation of network excit-
ability. To date, the vast majority of identified
epilepsy-associated mutations lie in the genes
that encode VGSCs. There have been exten-
sive efforts to understand the functional conse-
quences of these mutations using a range of
experimental models on varying spatial and
temporal scales. Analysis of changes in VGSCs’
biophysics using heterologous expression sys-
tems have been instrumental in characterizing
mutant channels, offering some insight into the
relationship between channel mutations and
epileptic phenotypes. The development of ani-
mal models has helped to facilitate this process
by exposing some of the higher organizational
scale consequences of channel mutations. Some
common epilepsies may be attributable to the
combined effects of multiple mutations that
cannot be readily modeled in heterologous

expression studies and would, thus, rely on a
combination of biological and computational
models for investigation of pathomechanisms.
Despite this complexity, the efficacy of AEDs
that target VGSCs emphasizes their dispropor-
tionate control over the electrical stability of the
brain. Epilepsy is a spectrum of disorders in
which many factors converge to induce a com-
plex phenotype. Changes in VGSC biophysics
contribute to the factors that determine seizure
susceptibility as they are exquisitely sensitive
sites for determining neuronal excitability.
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