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Voltage-gated sodium channels (VGSCs), composed of a pore-forming a subunit and up to
two associated b subunits, are critical for the initiation of the action potential (AP) in excit-
able tissues. Building on the monumental discovery and description of sodium current in
1952, intrepid researchers described the voltage-dependent gating mechanism, selectivity
of the channel, and general structure of the VGSC channel. Recently, crystal structures of
bacterial VGSC a subunits have confirmed many of these studies and provided new insights
into VGSC function. VGSC b subunits, first cloned in 1992, modulate sodium current but
also have nonconducting roles as cell-adhesion molecules and function in neurite outgrowth
and neuronal pathfinding. Mutations in VGSC a and b genes are associated with diseases
caused by dysfunction of excitable tissues such as epilepsy. Because of the multigenic and
drug-resistant nature of some of these diseases, induced pluripotent stem cells and other
novel approaches are being used to screen for new drugs and further understand how mu-
tations in VGSC genes contribute to pathophysiology.

Voltage-gated sodium channels (VGSCs)
conduct inward current that depolarizes

the plasma membrane and initiates the action
potential (AP) in excitable cells, including neu-
rons, cardiomyocytes, and skeletal muscle cells.
Because of the intrinsic link between VGSCs and
cellular excitability, it is not surprising that mu-
tations in VGSC genes are linked with epilepsy,
cardiac arrhythmia, neuropathic pain, migraine,
and neuromuscular disorders. The goal of this
review is to provide an overview of critical dis-
coveries in VGSC physiology and discuss the
challenges of studying VGSCs in disease, includ-
ing some of the exciting techniques to address
these challenges.

VGSC DISCOVERY AND STRUCTURE

In 1952, the Nobel Laureates Alan Lloyd Hodg-
kin and Andrew Fielding Huxley first recorded
sodium current (INa) using their voltage-clamp
technique on the squid giant axon. Their ex-
periments showed three key features of INa—se-
lective Naþ conductance, voltage-dependent ac-
tivation, and rapid inactivation (Hodgkin and
Huxley 1952). The Hodgkin–Huxley model
mathematically described voltage-dependent
initiation of the AP by inward INa, followed by
fast inactivation of INa, and simultaneous acti-
vation of outward IK. Outward IK was postulat-
ed to reestablish the charge balance across the
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plasma membrane (Hodgkin and Huxley 1952).
These results were supported by studies of pe-
ripheral motor neurons by Sir John Carew Ec-
cles, who shared the Nobel Prize with Hodgkin
and Huxley. Among other contributions, he
identified deviations in membrane potential
and APs because of injections of sodium into
motor neurons (Coombs et al. 1955). In addi-
tion to this monumental discovery, refinement
of the voltage-clamp technique opened the door
for a plethora of research on membrane poten-
tial physiology.

In the 1960s, Bertil Hille and Clay Armstrong
proposed the idea that INa and IK are conducted
through specific ion channels. At that time,
many studies centered on performing voltage-
clamp recordings of squid axon with sodium-
free solutions containing organic cations (e.g.,
ammonium) to determine the size of the ion-
conducting pore. The axon membrane became
transiently permeable to these ions following
depolarization, and this permeability was abol-
ished by tetrodotoxin (TTX) (Larramendi et al.
1956; Lorente De No et al. 1957; Tasaki et al.
1965, 1966; Tasaki and Singer 1966; Binstock
and Lecar 1969). Hille added to this body of
work by using additional metal and manyorgan-
ic cations to develop a model of the narrowest
region of the ion-conducting pore of the channel
(Hille 1971, 1972). Hille’s model proposed a par-
tial dehydration of Naþ through interactionwith
a high-field-strength site at the extracellular end
of the pore followed by rehydration in the lumen
of the pore. This model is astonishingly close to
what we now know to be true about VGSCs from
crystal structure information (Payandeh et al.
2011; McCusker et al. 2012; Zhang et al. 2012).
Armstrong and Bezanilla developed signal-av-
eraging techniques to detect the movement of
“gating charges” (Armstrong and Bezanilla
1973, 1974) corresponding to what we now un-
derstand to be the movement of voltage sensors,
which respond to changes in membrane poten-
tial. Remarkably, without having any of the
knowledge that we possess today about nucleo-
tide/amino acid sequence and crystal struc-
tures, these early studies made many accurate
predictions about VGSC structure and the func-
tions of various channel domains.

Although early physiological studies pro-
vided evidence for the existence of a VGSC,
the biochemical proof that tetrodotoxin/saxi-
toxin (STX) receptors were also ion-conducting
did not yet exist. Membrane protein purifica-
tion techniques were being established, but they
required an extraordinarily large amount of
time and biological starting material compared
to today’s techniques. Photoaffinity labeling of
STX receptors with a scorpion toxin derivative
by William Catterall’s group identified a family
of VGSC proteins that were designated a and
b subunits (Beneski and Catterall 1980). Puri-
fication of VGSC protein to theoretical homo-
geneity was challenging because of the difficulty
of solubilizing a high molecular weight, highly
lipophilic membrane protein and the large
amount of biological starting material required.
Again, the Catterall laboratory was the first to
overcome these challenges and purify VGSCs
from rat brain (Hartshorne and Catterall
1981, 1984; Hartshorne et al. 1982). This work
was closely followed by purification of VGSCs
from rat and rabbit skeletal muscle (Barchi
1983; Kraner et al. 1985), and from chicken
heart (Lombet and Lazdunski 1984). Reconsti-
tution of purified VGSCs in a lipid bilayer mem-
brane allowed observation of Naþ flux and
confirmed that a functional VGSC protein had
been purified (Hartshorne et al. 1985). The evo-
lution of VGSC purification methods is dis-
cussed in detail in Catterall (1992). Purification
from rat brain revealed that VGSCs are hetero-
trimers, composed of a single a subunit and
two non-pore-forming b subunits, b1 and b2
(Hartshorne and Catterall 1981). We now know
that there are more than two VGSC b subunits.
Subsequent homology cloning and heterolo-
gous expression studies showed that each
VGSC a is associated at the plasma membrane
with a noncovalently linked b1 or b3 subunit
and a covalently linked b2 or b4 subunit (Mor-
gan et al. 2000; Yu et al. 2003).

To clone the first VGSC a subunit comple-
mentary DNA (cDNA), researchers from Sho-
saku Numa’s group took on the arduous task of
purifying brain VGSCs and obtaining partial
amino acid sequence by amino-terminal Edman
degradation as well as through cleaved peptides
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from the a subunit. They then generated and
screened multiple cDNA libraries based first
on predicted degenerate cDNA sequences and
then on cloned sequences. Assembly of the
cloned VGSC cDNA fragments revealed what
we now know to be Scn1a (Noda et al. 1984).
Heterologous expression of the cloned cDNAs
gave a functional channel, which we now recog-
nize as the VGSC a subunit Nav1.1.

VGSC b SUBUNITS ARE REQUIRED TO
RECAPITULATE PHYSIOLOGICAL
EXPRESSION OF INa

Early cloning of Nav1.2 cDNA and its expression
in oocytes resulted in INa that inactivated
more slowly than INa recorded from neurons.
Co-injection of low-molecular-weight rat brain
messenger RNA (mRNA) was required for re-
capitulation of physiological INa in terms of
rates of activation and inactivation, and voltage
dependence (Auld et al. 1988; Krafte 1990).
Cloning and expression of the VGSC b1 and
b2 subunits showed that they mimicked the
effects of low-molecular-weight mRNA on a

subunit expression in oocytes (Isom et al.
1992, 1995b). Coexpression of Nav1.2þb1 in
oocytes resulted in a larger INa that activated
and inactivated more rapidly and had a negative
shift in the voltage-dependence of inactivation
compared to a alone. Coexpression of Nav1.2
with both b1 and b2 further increased INa den-
sity (Isom et al. 1995b). As discussed by Cal-
houn and Isom, when expressed in heterolo-
gous systems, b subunits in general increase
INa density, shift the voltage-dependence of cur-
rent activation and inactivation, and accelerate
the rates of activation and inactivation. Howev-
er, the magnitude of current increase and direc-
tion of the shifts in activation and inactivation
are dependent on the particular heterologous
cell line and the identities of the b and a cDNAs
expressed (Calhoun and Isom 2014). Impor-
tantly, heterologous expression systems cannot
replicate the native cellular milieu, especially the
multiprotein VGSC complexes that are known
to form in specific subcellular domains of neu-
rons and cardiac myocytes (Calhoun and Isom
2014). For example, in Scn1b null ventricular

myocytes, peak and persistent sodium current
is increased, mediated by increased Nav1.5 ex-
pression, with no effect on channel kinetics and
voltage dependence (Lopez-Santiago et al.
2007). Furthermore, loss of Scn1b also results
in increased TTX-S current and Scn3a expres-
sion in ventricular myocytes (Lin et al. 2015).
However, in the dorsal root ganglia (DRG), crit-
ical neurons for peripheral pain sensation,
Scn1b deletion causes a depolarizing shift in
the voltage dependence of VGSC inactivation
and decreased persistent INa (Lopez-Santiago
et al. 2011). As heterologous expression systems
cannot accurately replicate these cell types, in
vivo and transgenic mouse models offer more
appropriate methods for studying the function-
al roles of VGSC physiology.

MECHANISTIC INSIGHTS ON VGSC
STRUCTURE AND FUNCTION

VGSC a subunits are highly evolutionarily con-
served. Each a subunit is composed of four
homologous domains, each containing six
transmembrane helices (S1–S6), which come
together in pseudotetrafold symmetry to form
the ion-conducting pore (Fig. 1). As discussed
earlier, long before the emergence of crystal
structures, much of VGSC structure and func-
tion was inferred through studies modeling gat-
ing and using site-specific antibodies and toxins
during electrophysiological recordings.

The sliding-helix model of VGSC voltage-
dependent activation was proposed in the
1980s by Catterall (1986a,b). The S4 segments
of each domain that serve as voltage sensors
contain arginine residues at every third
position, which pair with negatively charged
residues in nearby transmembrane segments.
On membrane depolarization, these residues
change ion-pair partners, causing each S4 helix
to rotate or slide outward, pushing a single
arginine residue in each of the four segments
out, and generating gating current that acti-
vates, or opens, the channel pore (Payandeh
et al. 2011). Data from potassium channel
structures prompted the paddle model as an
alternate mechanism of voltage-dependent ac-
tivation (Jiang et al. 2003); however, the solving
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of multiple prokaryotic a subunit crystal struc-
tures showed the validity of the sliding-helix
model for VGSCs (Payandeh et al. 2011; Vargas
et al. 2012).

Another critical property of VGSCs is volt-
age-dependent inactivation, which occurs de-
spite an ongoing depolarizing pulse. Early stud-
ies identified the intracellular loop between
domains III and IV as the inactivation gate
(Fig. 1). This was proposed to “swing” into
the pore in a voltage-dependent manner, phys-
ically blocking ion conduction, and effectively
inactivating the pore (Vassilev et al. 1988, 1989).
A short amino acid sequence in the inactivation
gate, isoleucine, phenylalanine, and methionine
(IFM), was identified as critical to the process of
inactivation. Mutation of these three residues to
glutamine resulted in a noninactivating channel
(West et al. 1992; Kellenberger 1997). These
studies, combined with a three-dimensional
nuclear magnetic resonance (NMR) structure
of the inactivation gate (Rohl et al. 1999),
helped form the current understanding of the
molecular basis for fast inactivation of VGSCs.

Recent crystal structures of bacterial VGSCs
have led to a more detailed understanding of
the pore and selectivity filter. The membrane
reentrant P-loop, located between transmem-
brane helices S5 and S6 of each domain that
line the pore, was identified as the target for
the pore-blocking TTX, suggesting its close lo-
cation to the pore (Noda et al. 1989; Terlau et al.
1991). The crystal structure of a bacterial VGSC
showed that the four P-loops together form a
ring of glutamates, located near the extracellular
end of the pore (Payandeh et al. 2011). As pre-
dicted in 1992, these highly conserved gluta-
mates form a high-field-strength site critical in
determining ion selectivity of the channel (Hei-
nemann et al. 1992). These residues stabilize
multiple ionic occupancy states, preferentially
conducting hydrated Naþ through the pore
(Payandeh et al. 2011). In contrast, potassium
channels conduct dehydrated Kþ (Doyle et al.
1998).

Capturing crystal structures of bacterial
VGSCs in different activation states has pro-
vided new insights and biochemical modeling
tools. A closed-pore conformation of the Arco-

bacter channel (NavAb), crystallized within a
lipid-based bicelle, offered the first VGSC 3D
structure (Payandeh et al. 2011). A putatively
inactive NavRh channel from the marine bacte-
rium Rickettsiales showed significant differences
from NavAb and supplied new information
about conformational rearrangements required
for inactivation (Zhang et al. 2012). Finally, the
apparently open conformation of the NavM
structure from the marine bacterium Magneto-
coccus presented further insights into channel
gating and selectivity (McCusker et al. 2012).

Despite the wealth of information provided
by these prokaryotic VGSC structures, crystalli-
zation of a eukaryotic VGSC is the essential next
step. Although prokaryotic VGSCs are homo-
tetramers, mammalian VGSC a subunits are
single polypeptides containing four nonidenti-
cal domains. Further, the extensive extracellular
and intracellular loops of mammalian channels
are not present in their prokaryotic orthologs.
Thus, major gaps in the field include the crystal
structure of a mammalian a subunit and the
co-crystal structure of an a subunit associated
with b subunits. This information will be crit-
ical in fully understanding mammalian VGSC
structure.

VGSC Diversity

Originally, VGSC a subunit proteins were
named according to the tissue from which
they were purified. For example, brain type II,
rat II, and R-II are all outdated terms for Nav1.2
(Catterall et al. 2005). To date, nine VGSCapro-
teins (Nav1.1–1.9) and five b proteins (b1–4
and b1B), encoded by SCN(X)A and SCN1B-
SCN4B genes, respectively, have been identified
in mammalian genomes.

A BLAST search of the cDNAs encoding
b1 and b2 in 1995 revealed important, and
unexpected, new information. Both proteins
contained areas of homology with known
CAMs of the immunoglobulin (Ig) superfamily,
for example, contactin and myelin P0. This led
to the hypothesis that b1 and b2 function as
CAMs in addition to channel modulation
(Isom et al. 1995b). We now know that all five
b subunit proteins contain an extracellular Ig
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domain and have CAM function, as discussed
later in this review. b1–4 (encoded by SCN1B-
SCN4B) are type 1 transmembrane proteins
with an extracellular amino terminus (contain-
ing the Ig domain) and an intracellular carboxyl
terminus (Isom et al. 1992, 1995b; Morgan et al.
2000). In contrast, b1B, a splice variant of
SCN1B, is soluble and, thus, a portion is secret-
ed. Retention of, intron 3 results in generation
of an alternate carboxy-terminal domain that
does not contain a transmembrane region (Pa-
tino et al. 2011). Recently, the three-dimension-
al crystal structures of the human Ig domains of
b3 and b4 were solved. b3 formed a trimer
when crystalized (Namadurai et al. 2014). In
contrast, the b4 Ig domain was monomeric in
crystal form (Gilchrist et al. 2013). Although
this could represent a physiological difference
in homophilic interactions, it could also be be-
cause of the removal of 31 amino acids at the
b4 amino terminus to facilitate crystallization
(Gilchrist et al. 2013). Comparisons of these
structures will give new insights into the func-
tion of b subunits, but the co-crystal structure
of a and b subunits remains the next frontier.

VGSCa andb subunits are highly expressed
in central and peripheral neurons, cardiac myo-
cytes, skeletal muscle, and some nonexcitable
cells (Maier et al. 2004; Patino and Isom 2010;
Brunklaus et al. 2014), including breast cancer
cells (Fraser et al. 2005), astrocytes, and oligo-
dendrocytes. Table 1 shows the gene name,
known tissue expression, and diseases associ-
ated with mutations for each VGSC subunit
(adapted from Patino and Isom 2010; Catterall
2012; Brunklaus et al. 2014). VGSC expression is
developmentally regulated. Forexample, Nav1.3,
b3, and b1B are most prevalent in embryonic
and neonatal rodent brain. This expression pro-
file then changes such that Nav1.1, Nav1.2,
Nav1.6, b1, b2, and b4 are predominant in the
adult brain, albeit distribution is not equiva-
lent across brain regions (Kazen-Gillespie et al.
2000; Catterall et al. 2005; Patino et al. 2011).

VGSC subcellular localization is critical for
normal physiological functions. In neurons,
VGSCs are concentrated at the axon initial seg-
ment (AIS), where the AP is initiated, and
nodes of Ranvier in myelinated axons, which

are critical for saltatory conduction. In cardio-
myocytes, VGSCs are differentially localized at
intercalated discs and transverse tubules (see
Bao and Isom 2014; Calhoun and Isom 2014
for reviews that discuss this in more detail).

Despite their high sequence similarity, each
VGSC a subunit has subtle differences in bio-
physical properties and pharmacological sensi-
tivities (as summarized in Catterall et al. 2005;
Kwong and Carr 2015). Many of the agents that
target a subunits are toxins, including TTX,
STX, m-conotoxins, and their derivatives,
such as 4,9-anhydro-TTX, which preferentially
blocks Nav1.6 (Rosker et al. 2007; Kwong and
Carr 2015). VGSCs are canonically separated
into TTX-sensitive (TTX-S) and TTX-resistant
categories (TTX-R), which are blocked by
nanomolar or micromolar concentrations of
TTX, respectively (Catterall et al. 2005). Inter-
estingly, mutation of a single residue changes
TTX sensitivity (Noda et al. 1989). Modulation
of INa by these toxins (reviewed in Gilchrist et al.
2014) can be affected by b subunit expression.
For example, expression of b1 and b3, but not
b2 or b4, tend to increase the rate of associa-
tion and binding affinity of m-conotoxins for
VGSCs. However, modulation of INa by STX
or TTX was unaffected by b subunit expression
(Isom et al. 1995a; Zhang et al. 2013). In vivo, a
combination of electrophysiology and toxicol-
ogy are used to infer which VGSCs contribute to
aspects of endogenous INa. Although challeng-
ing, in vivo studies are crucial, as heterologous
results can be difficult to translate to in vivo
physiological and pathophysiological mecha-
nisms.

Posttranslational Modifications
of a and b Subunits

VGSC a subunits are heavily glycosylated,
although the extent of glycosylation varies
among subunits (Bennett 2002). 40–50% of
these added carbohydrate residues are sialic
acid moieties such that each channel contains
�100 sialic acid residues (Miller et al. 1983;
Roberts and Barchi 1987). Differential glycosyl-
ation of VGSC subunits can affect channel gat-
ing, putatively because of the local negative
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charge of sialic acid residues. In general, when
a subunits are less glycosylated, channel gating
occurs at more depolarized voltages (Recio-Pin-
to et al. 1990; Bennett et al. 1997; Zhang et al.
1999; Tyrrell et al. 2001). For example, Nav1.9
expressed in neonatal DRG neurons is more
glycosylated than in adult DRG, suggesting de-
velopmental regulation of glycosylation. This
may account for developmental differences in
gating of persistent INa attributed to Nav1.9
(Tyrrell et al. 2001). Voltage-dependent activa-
tion and inactivation of Nav1.4, but not Nav1.5,
shifts when expressed in cells incapable of sia-
lylation, indicating that not all VGSCs are af-
fected equally (Bennett 2002). Glycosylation
accounts for about one-third of the molecular

weights of b subunits. Mature b subunits con-
tain three to four N-linked glycosylation sites in
the Ig domain (Isom et al. 1992; McCormick
et al. 1998) all of which are exposed in the b3
crystal structure (Namadurai et al. 2014). Sialic
acid residues in these sites affect b1- and b2-
mediated modulation of INa and channel sur-
face expression (Johnson et al. 2004; Johnson
and Bennett 2006). Critically, VGSC glycosyla-
tion varies developmentally and among cell
types; for example, neonatal and adult myocytes
have distinct differences in glycogen expres-
sion, as do atrial and ventricular myocytes
(Stocker and Bennett 2006). Therefore, tissue-
specific variations in b subunit processing like-
ly include altered sialylation/glycosylation and

Table 1. VGSC genes, expression patterns, and disease associations

Gene

symbol Type Tissue distribution Consequence of mutations

TTX

sensitivity

SCN1A Nav1.1 CNS, PNS, heart, DRG DS, familial autism, FHM3, FSþ, GEFSþ,
SUDEP

þ

SCN2A Nav1.2 CNS, PNS, DRG BFNIS, DS, EOEE, familial autism, GEFS, OS þ
SCN3A Nav1.3 CNS, PNS, heart, DRG Unclear þ
SCN4A Nav1.4 Skeletal muscle, heart, DRG PAM, PMC, HyperPP, HypoPP, SNEL þ
SCN5A Nav1.5 Skeletal muscle, heart, CNS,

DRG
AF, AS, BS, DCM, LQTS, PCCD, SIDS,

SSS, SUDEP
-

SCN8A Nav1.6 CNS, PNS, heart, DRG EOEE; cognitive impairment, paralysis,
ataxia, dystonia

þ

SCN9A Nav1.7 DRG CIP, IEM, PEPD, PPN þ
SCN10A Nav1.8 DRG PPN -
SCN11A Nav1.9 DRG PPN -
SCN1B b1 CNS, PNS, heart, DRG, glia

(oligodendrocytes,
Schwann cells, astrocytes,
radial glia)

AF, BS, DS, GEFSþ, LQTS, PCCD, TLE N/A

SCN2B b2 CNS, PNS, heart, DRG AF, BS N/A
SCN3B b3 CNS, PNS, heart, DRG AF, BS, PCCD, SIDS, ventricular fibrillation N/A
SCN4B b4 CNS, PNS, heart, DRG LQTS, SIDS N/A
SCN1B b1B Fetal CNS, PNS, heart, DRG BS, PCCD, epilepsy N/A

Modified, with permission, from Patino and Isom 2010, # Elsevier Ireland; Catterall 2012, # Wiley; Brunklaus et al. 2014,

# BMJ.

AF, Atrial fibrillation; AS, atrial standstill; BFNIS, benign familial neonatal-infantile seizures; BS, Brugada syndrome; CIP,

channelopathy-associated insensitivity to pain; CNS, central nervous system; DCM, dilated cardiomyopathy; DRG, dorsal root

ganglia; DS, Dravet syndrome; EOEE, early-onset epileptic encephalopathy; FHM3, familial hemiplegic migraine type 3; FSþ,

febrile seizures plus; GEFSþ, genetic epilepsy with febrile seizures plus; HyperPP, hyperkalemic periodic paralysis, HypoPP,

hypokalemic periodic paralysis; IEM, inherited erythromelaglia; LQTS, long QT syndrome; OS, Ohtahara syndrome; PAM,

potassium-aggravated myotonia; PCCD, progressive cardiac conduction disease; PEPD, paroxysmal extreme pain disorder

formally known as familial rectal pain syndrome; PMC, paramyotonia congenital; PNS, peripheral nervous system; PPN,

painful peripheral neuropathies; SIDS, sudden infant death syndrome; SNEL, severe neonatal episodic laryngospasm; SSS, sick

sinus syndrome; SUDEP, sudden unexplained death in epilepsy; TLE, temporal lobe epilepsy.
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may contribute to differential modulation of
INa by b subunits among cell types (Zhang et
al. 1999; Bennett 2002).

b1 can be phosphorylated on intracellular
tyrosine residue Y-181 (Malhotra et al. 2002,
2004). Tyrosine phosphorylation regulates b1-
mediated recruitment of ankyrin to points of
cell–cell contact (Malhotra et al. 2002) and like-
ly occurs via fyn kinase, an src family kinase
(Brackenbury et al. 2008; Nelson et al. 2014).
Receptor tyrosine phosphatase b interacts
with the intracellular domain of b1 and may
modulate b1 phosphorylation (Ratcliffe et al.
2000). In cardiac myocytes, nonphosphorylated
b1 localizes at the T-tubules with ankyrinB,
whereas phosphorylated b1 localizes at interca-
lated discs with connexin-43, N-cadherin, and
Nav1.5 (Malhotra et al. 2004). Therefore, the
phosphorylation state Y-181 regulates b1 asso-
ciation with cytoskeletal proteins, as well as its
subcellular localization.

b subunits are substrates for sequential pro-
teolytic cleavage by BACE1 (b-secretase) and
g-secretase, similar to amyloid precursor pro-
tein. BACE1 cleavage releases the extracellular
domain (ECD), followed by a g-secretase-me-
diated cleavage event to release the carboxy-
terminal fragment (CTF) (Wong et al. 2005).
These cleaved peptides may have important
physiological functions. For example, the b2-
CTF translocates to the nucleus and promotes
Scn1a mRNA and protein expression when
heterologously expressed in cultured neurons
(Kim et al. 2005, 2007). Consistent with this
proposed mechanism, total and surface ex-
pression of Nav1.1 in acutely dissociated hip-
pocampal slices is significantly reduced in
BACE1 null mice compared to wild-type (Kim
et al. 2011). The physiological importance of
BACE1 and g-secretase cleavage of the other
b subunits is not understood. As b1B can act
as a CAM, it is possible that the b1-ECD, which
contains the identical Ig loop domain, func-
tions as a ligand for cell adhesion (Patino et al.
2011). g-Secretase activity and, thus, formation
of the b1-CTF is critical for b1-mediated neu-
rite outgrowth in vitro (Brackenbury and Isom
2011). Determining whether these functions
occur in vivo represents a critical next step in

our understanding of posttranslational pro-
cessing of VGSCs.

b Subunits Are Multifunctional

Effects on Surface Expression

Coexpression of b subunits with a results in
increased INa density, in part, as a result of pro-
motion of a cell-surface expression. Following
posttranslational processing, a subunits are
stored in an intracellular pool associated with
the plasma membrane (Schmidt et al. 1985;
Schmidt and Catterall 1986). Concomitant
with plasma membrane insertion, a and b2 co-
valently associate via a disulfide bond (Chen
et al. 2012). Scn2b null mice on the C57BL/
6�129SV background have a 50% reduction
in hippocampal INa density and level of surface
a subunits (Chen et al. 2002). However, a sec-
ond study of Scn2b null mice congenic on the
C57BL/6 background saw no change in hippo-
campal INa (Uebachs et al. 2010), suggesting ge-
netic background influences on b2 function.
The effect of b2 on channel surface expression
may also depend on the particular a subunit.
Scn2b null small-fast DRG neurons have reduced
TTX-S INa, but left unchanged TTX-R INa (Lo-
pez-Santiago et al. 2006). An Scn2b-linked Bru-
gada syndrome mutation results in decreased
surface Nav1.5 protein compared to wild-type
(Riuró et al. 2013). Thus, modulation of a sub-
unit surface expression by b2 may contribute to
disease mechanisms. This is not unique to b2;
b1 and b1B also promote VGSC surface expres-
sion (reviewed in Calhoun and Isom 2014).

Effects of b4 on Resurgent INa

Resurgent INa is caused by the transient opening
of VGSCs during recovery from inactivation fol-
lowing the AP. This specialized current is an
important adaptation for high-frequency firing
neurons, such as cerebellar Purkinje neurons
(Raman and Bean 1997). For this to occur, a
“blocking protein,” putatively the ICD of b4,
must bind to open channels during depolariza-
tion and unbind on repolarization, shortening
the typical refractory period and producing a
resurgent INa. Without b4 expression, resurgent
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current is lost from cerebellar Purkinje neurons,
but is rescued by a b4 ICD peptide (Grieco et al.
2005). This same b4 peptide is sufficient to in-
voke resurgent INa in Nav1.7-expressing HEK
cells (Theile and Cummins 2011). With b4
knockdown in cerebellar granule neurons, re-
surgent INa is decreased, but is rescued by the
b4 peptide (Bant and Raman 2010). Other b

subunits may also contribute to modulation of
resurgent INa, as Scn1b null cerebellar granule
neurons have reduced resurgent INa (Bracken-
bury et al. 2010).

Cell Adhesion and Neurite Outgrowth

b Subunits are multifunctional. They play crit-
ical roles in neurite outgrowth, migration, and
maintenance of nodes of Ranvier. b Subunits
are CAMs and, as such, recruit other signaling
proteins to the VGSC complex. Most is known
about the CAM interactions of b1 and b2,
which participate in trans-homophilic adhe-
sion, via the Ig loop, with b1 or b2 molecules
on adjacent cells (Malhotra et al. 2000). b1 or
b2 trans-homophilic adhesion recruits the cy-
toskeletal protein ankyrin to points of cell–
cell contact (Malhotra et al. 2000). Ankyrin
recruitment is abolished by phosphorylation
of b1-Y181 (Malhotra et al. 2002). b1–b1
trans-homophilic adhesion promotes neurite
outgrowth via a pathway requiring fyn kinase,
the CAM contactin, g-secretase activity, and
localized INa (Brackenbury et al. 2008, 2010;
Brackenbury and Isom 2011). Becauseb1B con-
tains the identical Ig loop, it similarly promotes
neurite outgrowth of neurons expressing b1
(Patino et al. 2011). Together, these properties
may contribute to neuronal development in
vivo; Scn1b null mice have neuronal pathfinding
dysfunction and differences in subcellular local-
ization of a subunits at AIS (Chen et al. 2004;
Brackenbury et al. 2008).

b1, and likelyb1B, interacts heterophilically
with other CAMs and extracellular matrix pro-
teins, including contactin, neurofascin-186,
NrCAM, N-cadherin, and tenascin-R (Kazari-
nova-Noyes et al. 2001; Ratcliffe et al. 2001;
Malhotra et al. 2004; McEwen and Isom 2004;
Patino et al. 2011). Some of these interactions

affect b1-modulation of a surface expression.
For instance, coexpression of NF186 or contac-
tin with Nav1.2 and b1 increases Nav1.2 surface
expression compared with Nav1.2 and b1 alone,
although NF186 and contactin have no im-
pact on Nav1.2 expression in the absence of
b1 (Kazarinova-Noyes et al. 2001; McEwen
and Isom 2004). Heterophilic interactions
with tenascin-R, an extracellular matrix protein
secreted by oligodendrocytes during myelina-
tion, repels cells expressing b1 or b2 and, there-
fore, may play a role in restricting VGSCs to
nodes of Ranvier in myelinated axons (Xiao
et al. 1999). The cell-adhesive properties of b1
and b1B have likely clinical relevance, as most
known SCN1B epilepsy mutations are located in
or near the Ig loop domain (reviewed in O’Mal-
ley and Isom 2015).

Much less is known about the CAM func-
tions of b3 and b4. Studies of b3 homophilic
adhesion give conflicting results: the b3 Ig do-
main appears to interact with full-length b3
when expressed heterologously (Yereddi et al.
2013), yet another group reported that b3 ex-
pression could not induce aggregation of Dro-
sophila S2 cells, unlikeb1 andb2 (McEwen et al.
2009). b3 and b1 likely do not associate, as b3
does not interact with a peptide containing
the b1-ECD (McEwen and Isom 2004). b4 did
not promote neurite outgrowth of cerebellar
granule neurons, but this observation does
not preclude other CAM interactions (Davis
et al. 2004).

PATHOPHYSIOLOGICAL ROLES OF VGSCs

Mutations in VGSC genes are associated with
many types of genetic epilepsy, peripheral neu-
ropathy, long QT syndrome, neuromuscular
disorders, and other diseases associated with
dysfunction of excitable tissues. Recent reviews
discuss the complex pathophysiological mech-
anisms of sodium channelopathies associated
with pain and cardiac disease (Dib-Hajj et al.
2010; Adsit et al. 2013; Bao and Isom 2014;
O’Malley and Isom 2015). Here, we will focus
on the role of VGSCs in the genetic epilepsies
and cancer as examples of disease resulting from
aberrant or loss of VGSC function in mammals.

Voltage-Gated Naþ Channels
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Epilepsy

Epilepsy results from an imbalance between ex-
citation and inhibition in the brain. More than
two million Americans have epilepsy, which can
be caused by genetic mutations or brain injury
(Hirtz et al. 2007). Epilepsy significantly im-
pacts the quality of life for both patients and
caregivers because of the unpredictability of sei-
zures and the risk of comorbidities including
cognitive decline, intellectual disability, devel-
opmental delay, and sudden unexpected death
in epilepsy (SUDEP).

Mutations in genes encoding VGSC a and
b subunits are associated with epilepsies with
a wide range of phenotypic severities, includ-
ing genetic epilepsy with febrile seizures plus
(GEFSþ), an inherited epilepsy with a wide
range of phenotypes, and Dravet syndrome
(DS), one of the most devastating pediatric ep-
ileptic encephalopathies. An intriguing discus-
sion of the complex mechanisms underlying DS
was published recently (Chopra and Isom
2014). In 1998, the first VGSC mutation associ-
ated with epilepsy was identified in SCN1B in a
patient with GEFSþ. However, GEFSþ is incom-
pletely penetrant and family members with the
same SCN1B mutation present with a wide
range of epilepsy severities (Wallace et al.
1998), a now familiar characteristic of the ge-
netic epilepsies. Since this initial discovery, a
large number of mutations in SCN1A, SCN2A,
SCN8A, and SCN1B (Escayg et al. 2000;
O’Malley and Isom 2015) have been implicated
in multiple types of epilepsy (see Table 1) (re-
viewed in part by Shi et al. 2012; Steinlein 2014;
Wagnon and Meisler 2015). More than 1200
mutations have been identified in SCN1A alone
(Meng et al. 2015). Identifying the pathophysi-
ological mechanisms underlying DS is of par-
ticular importance, as traditional antiepileptic
drugs often aggravate seizures in DS patients
and development of new therapeutics to help
these patients is especially critical. Although
70%–80% of DS patients have an identified
heterozygous de novo SCN1A mutation (Mari-
ni et al. 2011), homozygous mutations in
SCN1B have also been reported (Patino et al.
2009; Ogiwara et al. 2012).

Studies of DS SCN1A mutations have
shown that a majority result in loss-of-function
(Meng et al. 2015). Studies of Scn1aþ/2 null
mice and knockin mice expressing human
mutations have led to the “interneuron hy-
pothesis,” suggesting that selective INa loss in
GABAergic interneurons causes epilepsy via
loss of inhibitory tone (Yu et al. 2006). How-
ever, this has become controversial (Chopra and
Isom 2014; Isom 2014). More recent studies of
DS patient-derived induced pluripotent stem
cell (iPSC) neurons showed either that both
inhibitory and excitatory (Liu et al. 2013) or
excitatory neurons (Jiao et al. 2013) are hyper-
excitable compared to nonepileptic controls
(Mistry et al. 2014). These studies suggest that
SCN1A haploinsufficiency may result in com-
pensatory up-regulation of other VGSC a sub-
units. Hyperexcitability of both inhibitory and
excitatory neurons may lead to seizures in DS
via increased network excitability or synchroni-
zation of firing.

Scn1b null mice also model DS; they expe-
rience spontaneous seizures and early lethality.
At least one DS SCN1B mutation causes b1 to
be retained intracellularly, preventing surface
expression and, thus, function (Patino et al.
2009). Scn1b null mice have differences in neu-
ronal pathfinding that are observed before
seizure onset (Brackenbury et al. 2013). Thus,
SCN1B-linked DS mutations may alter neuro-
nal excitability by affecting a subunit surface
expression/function as well as by altering neu-
ronal development via changes in cell adhesion.

A major concern for epilepsy patients and
their families is the risk of SUDEP. Research sug-
gests that a “perfect storm” of seizures, cardiac
arrhythmias, respiratory dysfunction, and au-
tonomic and/or parasympathetic dysfunction
contributes to SUDEP (Auerbach et al. 2013;
Kalume, 2013; Massey et al. 2014). Heterozy-
gous Scn1a-R1407X knockin GEFSþ/DS mice,
as well as Scn1b null DS mice, have increased
transient and persistent INa in cardiac myocytes,
which may provide substrates for cardiac ar-
rhythmias and contribute to SUDEP (Lopez-
Santiago et al. 2007; Auerbach et al. 2013). Fully
understanding the mechanisms underlying
SUDEP will be essential to epilepsy treatment.
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One of the greatest challenges in epilepsy
research is the need for novel antiepileptic
drugs. Even with optimal treatment, 20–30%
of all epilepsy patients are pharmacoresistant,
defined as being unresponsive to at least two
different, tolerated antiepileptic drugs (Kwan
et al. 2010, 2011). Even in nonrefractory pa-
tients, antiepileptic drugs treat disease symp-
toms rather than preventing disease progression
and often have intolerable side effects. A major
goal of studying epilepsy-associated VGSC mu-
tations is to further understand epileptogenesis
(how a brain becomes epileptic) to inform new
antiepileptic drug discovery.

Emerging Roles for VGSCs in Cancer

An exciting area of research is the role of VGSCs
in nonexcitable cells, including multiple cancer
cell types. Almost two decades ago, researchers
observed that cancer cell lines with higher
VGSC expression have increased cell motility
and metastatic potential. Furthermore, the in-
vasive capacity of these cells could be reduced
by incubation with TTX (Grimes et al. 1995;
Laniado et al. 1997). Since then, both a and
b subunits have been detected in many cancer
cell lines and in some patient biopsies. VGSC
a subunits are expressed in some cervical, ovar-
ian, breast, and colon tumors in vivo (Fraser
et al. 2005; Gao et al. 2010; House et al. 2010;
Hernandez-Plata et al. 2012), although some
prostate, breast, cervical, and lung cancers ex-
press b subunits (reviewed in Patel and Brack-
enbury, 2015). Studies have identified both
positive and negative associations between
VGSC expression and metastatic potential.
Nav1.5 expression in breast cancer cells corre-
lates positively with increased risk of recurrence
and metastasis (Fraser et al. 2005; Yang et al.
2012), and a similar trend has been described
for colon, prostate, and ovarian cancers. How-
ever, there is an inverse correlation between a

expression and clinical grade in glioma and no
correlation in lung cancer cell lines (Schrey et al.
2002; Onganer and Djamgoz 2005; Roger et al.
2007). Expression of a subunits can potentiate
lateral motility, adhesion, process extension,
and other cellular behaviors associated with

metastasis (Brackenbury 2012). It is not clear
how increased expression of the pore-forming
a subunits potentiates invasive changes in the
tumor cells. Three potential models have been
proposed: increased Naþ influx enhances Hþ

efflux, thus activating pH-dependent extracel-
lular matrix degradation and invasion; regula-
tion of an “invasion gene network,” particularly
by SCN5A, and increased intracellular Ca2þ,
which enhances formation of invasive projec-
tions (reviewed in Brackenbury 2012).

SCN1B and SCN2B expression are associat-
ed with metastatic potential in prostate cancer
cells (Diss et al. 2008; Jansson et al. 2012). How-
ever, studies of the invasive potential of SCN1B-
expressing breast cancer in vitro have been con-
tradicted by in vivo studies. b1 expression is
associated with less invasive breast cancer cell
lines (Chioni et al. 2009); however, in a mouse
model of breast cancer, overexpression of b1
increased tumor growth, metastasis, and angio-
genesis (Nelson et al. 2014). b1 trans-homo-
philic adhesion mediates process outgrowth
from breast cancer cells (Nelson et al. 2014),
thus it is proposed that b1 promotes metastasis
by a mechanism similar to b1-mediated neurite
outgrowth.

NEW FRONTIERS AND NOVEL TECHNIQUES

The list of pathogenic VGSC gene mutations is
growing rapidly. The explosion of whole-ge-
nome sequencing has led to multi-institution
efforts, such as the NINDS-funded Epi4K Pro-
ject (www.ninds.nih.gov/news_and_events/news_
articles/pressrelease_childhood_epilepsy_genes_
08112013.htm), with the goal of sequencing the
genomes of 4000 patients with epilepsy, and the
England Department of Health funded 100,000
Genomes Project (genomicsengland.co.uk)
(Kearney 2014; Siva 2015). However, even with
familial genetic information in hand, determin-
ing whether mutations are causative and under-
standing their pathophysiology are not simple
tasks. A given patient can have mutations in
several genes, which may be causative, benign,
or modify another mutation. A single causative
mutation may result in a wide range of pheno-
types among individuals, for example, DS and
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GEFSþ patients may express the same SCN1A or
SCN1B mutation. Genetic background is criti-
cal. Scn1aþ/2 mouse models of DS have phe-
notypes of varying severity depending on genet-
ic background (Yu et al. 2006; Miller et al. 2014).
This issue can now be addressed directly with
the induced-pluripotent stem cell (iPSC) tech-
nique. Patient iPSCs, usually derived from a skin
cell biopsy, can theoretically be differentiated
into any cell type, including cardiomyocytes,
and specific neuronal subtypes (Parent and An-
derson 2015). With this remarkable technique,
we now have the opportunity to study disease-
causing mutations in human cells within the
context of the patient’s unique genomic back-
ground (Takahashi et al. 2007). Furthermore,
endogenous genes that may contribute to pa-
thology remain present. Brain organoids made
from human iPSC-derived cells with a mutation
in a gene involved in pluripotent cell mainte-
nance were used to model microcephaly, pro-
viding proof-of-concept for use of organoids
to model other neurological diseases (Lancaster
et al. 2013). Another advantage of iPSCs is the
opportunity to perform drug screening on
differentiated human cells, alongside animal
models, thus providing insight into toxicity
and species-specific effects before clinical trials
(reviewed in Ko and Gelb 2014). Patient-derived
iPSC cells are critical for precision medicine
approaches. For instance, antiepileptic drug
effectiveness or toxicity may be optimized on
patient-derived iPSC-neurons before patient
treatment. As the iPSC technique is further re-
fined and developed, it will provide additional,
critical tools in therapeutic development.

Another challenge to the field is the non-
specificity of clinically available VGSC-targeted
drugs. There are six different potential sites for
small molecule targeting on VGSCs, as shown
by the wide variety of toxin binding sites. How-
ever, most of the current antiarrhythmic, anti-
epileptic, and analgesic VGSC drugs on the
market, for example, lamotrigine, phenytoin,
and lidocaine, target the “local anesthetic” site
located in domain IVS6 (Kwong and Carr
2015). This site is highly conserved among a

subunits; thus, these drugs have little selectivity
for specific VGSCs and often cause adverse ef-

fects. Development of VGSC agents that target
other binding sites remains an important task.
Although, in most cases, toxins cannot be used
directly for therapeutics, they can greatly in-
form drug design; small molecules can be de-
veloped that preserve beneficial effects while
reducing harm. Drugs targeting specific toxin
binding sites may allow more selective blockade
of specific a subunits to treat disease, such as
neuropathic pain, cardiac arrhythmias, epilep-
sies, and perhaps even cancer (Stevens et al.
2011; Xiao et al. 2014).

Transgenic zebrafish are an economical and
rapid vertebrate system that can be used to
screen small molecule libraries and FDA-ap-
proved drugs for novel applications. Zebrafish
with mutations in scn1Lab, the gene ortholo-
gous to SCN1A, have spontaneous seizures
that are resistant to many antiepileptic drugs
and appear to model DS. Peter de Witte’s group
showed that DS zebrafish responded to fenflur-
amine (Zhang et al. 2015). Scott Baraban used
locomotion tracking in mutant zebrafish to
monitor behavioral seizures in a drug screen,
which was validated using diazepam, valproate,
and stiripentol, antiepileptic drugs effective in
some DS patients. Out of 320 compounds test-
ed, clemizole, an FDA-approved antihistamine,
suppressed spontaneous seizures in vivo (Bara-
ban et al. 2013). This approach can be adapted
for screening potential therapeutics for any
monogenic epilepsy, especially if combined
with the CRISPR/Cas9 technique. Discovered
in 2010 as a bacterial defense mechanism
against phages (Deveau et al. 2010), the
CRISPR/Cas9 system has since been adapted
to easily and quickly introduce heritable genetic
mutations in mice, rats, zebrafish, and rabbits
(Chang et al. 2013; Li et al. 2013; Yang et al.
2014a). Compared to zinc-finger nucleases
and transcription activator-like effector nucle-
ases (TALENs), CRISPR/Cas creates double-
stranded DNA breaks in a sequence-specific
manner at sites complementary to a “single-
guide RNA.” Because these are easy to design,
the CRISPR/Cas9 system vastly improves the
precision, speed, and accuracy of creating trans-
genic cell lines (including iPSCs) and animal
models for single gene mutations (Yang et al.

L.C. Kruger and L.L. Isom

12 Cite this article as Cold Spring Harb Perspect Biol 2016;8:a029264



2014b). These and other cutting edge tech-
niques will allow us to discover novel disease
mechanisms and therapeutics for diseases
linked to VGSC mutations for another six de-
cades (Catterall 2012).
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