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The bioavailability of members of the transforming growth factor b (TGF-b) family is con-
trolled bya number of mechanisms. Bona fide TGF-b is sequestered into the matrix in a latent
state and must be activated before it can bind to its receptors. Here, we review the molecules
and mechanisms that regulate the bioavailability of TGF-b and compare these mechanisms
with those used to regulate other TGF-b family members. We also assess the physiological
significance of various latent TGF-b activators, as well as other extracellular modulators of
TGF-b family signaling, by examining the available in vivo data from knockout mouse
models and other biological systems.

The bioavailability of transforming growth
factor b (TGF-b) family ligands is not on-

ly regulated by the release of the growth factor
from cells, but it is also controlled by extracel-
lular mechanisms that modulate, inhibit, acti-
vate, or enhance the binding of these signaling
molecules to their receptors.

This is especially true of the bona fide TGF-
b dimer; as when TGF-b is secreted from cells it
is tightly bound in a latent complex consisting
of its dimeric pro-peptide (referred to as la-
tency-associated peptide [LAP]), and a latent
TGF-b-binding protein (LTBP). This tripartite
complex of TGF-b, LAP, and LTBP is called the
large latent complex (LLC). Within this com-
plex, LAP confers latency to the cytokine and
the LTBP functions to direct and sequester the
growth factor into the extracellular matrix
(ECM) and assists in the conversion of the la-

tent TGF-b to its active form, a process known
as activation.

In the last decade, it has become clear that
the properties of the TGF-b LLC are critical in
modulating the action of the cytokine and that
controlled release of TGF-b from the ECM by
activation is central to understanding TGF-b
signaling in a larger biological context. Here,
we review the extracellular regulation of TGF-b
and examine the available in vivo data to place
these regulatory mechanisms in a physiological
context.

BIOSYNTHESIS AND LATENCY OF TGF-b

TGF-b Processing, Latency, and Interaction
with LTBPs

TGF-b is initially translated as a �50-kDa pro-
protein containing both growth factor and
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LAP. This pro-protein is vectorially discharged
into the endoplasmic reticulum where it dimer-
izes and folds (Fig. 1, lower right). Within the
endoplasmic reticulum, the dimeric pro-TGF-b
is linked to a single LTBP by a pair of disulfide
bonds between LTBP and LAP (Miyazono et al.
1991; Gleizes et al. 1996; Saharinen et al. 1996).
The pro-peptide (LAP) is subsequently cleaved
from the mature cytokine in the trans-Golgi by
furin or furin-type enzymes (Fig. 1, lower left)

(Dubois et al. 1995; Hyytiainen et al. 2004). The
complex of TGF-b and LAP is referred to as the
small latent complex (SLC).

One of the remarkable properties of the
TGF-b latent complex is the fact that the inter-
action of LAP with the growth factor is of such
high affinity that all TGF-b isoforms are secret-
ed as part of a latent complex, either LLC or
SLC. The one known exception is Camurati–
Engelmann disease, in which patients have spe-
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Figure 1. Scheme for the secretion and extracellular regulation of transforming growth factor b (TGF-b).
Starting at the bottom right (1), TGF-b and latent TGF-b-binding protein (LTBP) are translated into the
endoplasmic reticulum (ER) where pro-TGF-b dimerizes and is then disulfide bonded to LTBP to form a
ternary complex. The TGF-b dimer is cleaved from its pro-peptide (latency-associated peptide [LAP]) in the
trans-Golgi network, but TGF-b and LAP remain strongly associated via noncovalent interactions forming the
large latent complex (LLC) (lower left) (2). Once secreted (middle left) (3), the LTBP may bind various matrix
fibers that sequester latent TGF-b until it is released by an activator (upper left) (4). The latent complex is then
activated (upper right) (5), by one of several potential mechanisms, releasing the mature TGF-b. Active TGF-b
may bind to cell-surface receptors (lower right) (6), although other factors may also bind the active growth factor
at this stage and either inhibit or promote receptor binding.
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cific mutations in TGF-b1 LAP or in the TGF-
b1 signal peptide that yield increased levels of
secreted, constitutively active TGF-b that may
be the cause of the bone thickening observed in
this rare condition (Saito et al. 2001; Janssens
et al. 2003).

LTBPs may serve a chaperone-like function
for pro-TGF-b by enhancing its folding and se-
cretion (Miyazono et al. 1991). Without LTBP,
the cysteines in LAP that bind LTBP may form
incorrect disulfide bonds, and this complex
would be degraded within the cell (Brunner
et al. 1989). This may account for the enhanced
secretion of TGF-b in the presence of LTBP
(Miyazono et al. 1991; Rifkin 2005) and is con-
sistent with the heightened secretion of TGF-b1
C33S compared with wild-type protein (Annes
et al. 2004). However, some cell types, such as the
osteosarcoma line UMR-106, produce only the
SLC, and the ROS 17/2.8 line produces a mix-
ture of both SLC and LLC (Dallas et al. 1994).

Significant amounts of mature TGF-b are also
secreted when HEK-293T cells are transfected
with TGF-b expression constructs alone (Wal-
ton et al. 2010). Thus, the pro-TGF-b dimer can
properly fold and be processed on its own, but
covalent interaction with an LTBP may still en-
hance the rate of folding and secretion.

Unlike the TGF-b LAP interactions, which
are noncovalent, the binding of LAP with LTBP
is mediated by a pair of disulfide bonds between
the most amino-terminal cysteines in LAP and
a unique cysteine pair in LTBP. The LTBPs are
large multidomain glycoproteins that consist of
tandem arrays of calcium-binding epidermal
growth factor–like domains (cbEGFs), 8-Cys
type domains (which can be subcategorized
into TGF-b-binding [TB] domains and hybrid
domains), and regions with no clear domain
homology that introduce flexibility into these
proteins (Fig. 2) (Robertson et al. 2014). LTBPs
bind LAP through a pair of cysteines in the third
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Figure 2. The multidomain structure of latent transforming growth factorb (TGF-b)-binding proteins (LTBPs).
Domain structures of the four LTBPs found in the human genome, along with human fibrillin-1 for comparison.
Some regions associated with specific functions are highlighted in LTBP-1. The key at the bottom of the figure
describes the different domain types. L in LTBP-1 and -4 denotes the long form. The question marks on domains
in LTBP-1L and LTBP-3 denote that it is unclear from their sequences whether these EGF domains bind calcium.
EGF, Epidermal growth factor domain; cbEGF, calcium-binding epidermal growth factor domain.
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8-Cys domain (or second TB domain) (Gleizes
et al. 1996; Saharinen et al. 1996), but within the
LTBP family (LTBP-1, -2, -3, and -4), there is
variability with respect to the ability to bond to
LAP (Saharinen and Keski-Oja 2000). LTBP-1
and -3 bind well to all three TGF-b isoforms, as
shown by cotransfection assays, whereas LTBP-2
does not bind at all, and LTBP-4 binds only to
TGF-b1-LAP and does so inefficiently. LTBP-4-
binding to LAP may be enhanced in an amino-
terminally extended LTBP-4 splice form, but the
nature and significance of this binding are un-
clear (Kantola et al. 2010).

The binding of LTBP to the TGF-b pro-pep-
tide is primarily determined by the availability at
the protein surface of a cysteine pair in the third
8-Cys (second TB) domain. LTBP-1, -3, and -4
each contain a dipeptide insertion found only in
TB domains that bind to LAP (Saharinen and
Keski-Oja 2000). The dipeptide is missing in the
third 8-Cys domain of LTBP-2 and in all other
8-Cys domains of the LTBPs and the structural-
ly related fibrillins. Addition of the dipeptide
into the LTBP-2 third 8-Cys domain converts a
nonbinding domain into a LAP-binding do-
main. The initial docking interaction between
LAP and LTBP involves a number of acidic and
basic residues, the importance of which has been
highlighted by mutagenesis studies (Chen et al.
2005; Walton et al. 2010). The higher number of
negatively charged residues arranged around the
reactive cysteines may explain the more effective
binding of the third 8-Cys domains of LTBP-1
and -3 to SLC compared with LTBP-4. Secretion
of LTBP-3 is dependent on association with
TGF-b (Penttinen et al. 2002), but LTBP-1, -2,
and -4 are secreted efficiently without bound
TGF-b (Saharinen et al. 1999).

The potential functions of all four LTBPs in
vivo have been investigated using LTBP-null
mice (Robertson et al. 2015). LTBP-1 and -4
exist as both long (L) and short (S) forms gen-
erated by the use of separate promoters and ini-
tiation codons. Deleting exons specific to the
generation of the long form of LTBP-1 in mice
results in cardiac outflow tract defects that cause
embryonic lethality, potentially a result of de-
creased levels of TGF-b (Todorovic et al. 2007,
2011). Interestingly, deleting an exon shared by

both long and short forms of LTBP-1 resulted in
only minor craniofacial abnormalities (Drews
et al. 2008). The lack of a more severe phenotype
appears to be a result of compensatory splicing
around the deleted exon (Todorovic and Rifkin
2012), and a study of mice with conditional de-
letion of exon 8, which prevents expression of
both isoforms of LTBP-1, showed similar lethal
cardiovascular defects to those seen with LTBP-
1L-null mice (Horiguchi et al. 2015). Gene tar-
geting of LTBP-2 on the other hand results in
only minor defects, such as disorganization and
detachment of the ciliary zonules (Inoue et al.
2014). These results are consistent with LTBP-
2’s inability to bind LAP and suggest LTBP-2
may be important for microfibril assembly.

LTBP-3-null mice are viable but display
bone defects, including osteopetrosis and pre-
mature ossification of the skull synchondroses
(Dabovic et al. 2002; Colarossi et al. 2005), phe-
notypes that indicate reduced TGF-b signaling.
Interestingly, morpholino gene silencing of
LTBP-3 in zebrafish causes cardiovascular de-
fects not seen in the mouse model (Zhou et al.
2011). These defects were phenotypically simi-
lar to those caused by inhibition of TGF-b
signaling and were rescued by expression of a
constitutively active TGF-b receptor, demon-
strating the importance of LTBP-3 in facilitating
TGF-b action.

Studies of mice with a disrupted Ltbp4 gene
revealed multiple developmental defects includ-
ing impaired alveolar septation, cardiomyopa-
thy, and rectal prolapse (Sterner-Kock et al.
2002), phenotypes reflected in human patients
with LTBP-4 deficiency (Urban et al. 2009). Re-
duced deposition of extracellular TGF-b and re-
ductions in phospho-Smad2 in various tissues
were also seen in this study. However, detailed
examination of the lungs of Ltbp4-null animals
revealed a surprising increase in phospho-
Smad2 (Dabovic et al. 2009). Furthermore,
breeding these mice onto a Tgfb22/2 back-
ground rescued the alveolar septation defect
(Dabovic et al. 2009), suggesting that this defect
was actually caused by increased TGF-b signal-
ing. This rescue effect was specific to TGF-b2 as
a Tgfb12/2 or Tgfb32/2 background did not
rescue the lung defect (Dabovic et al. 2014). To
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investigate the importance of the LTBP-4–LAP
interaction, a mouse was generated in which the
cysteines (Cys 1235 and 1260) in LTBP-4 respon-
sible forputativebinding toLAP weremutatedto
serine to inhibit disulfide bond formation. These
mice appeared phenotypically normal (Dabovic
et al. 2014), which suggests that sequestering
TGF-b via LAP is not a significant function of
LTBP-4. Additional evidence shows that the pri-
mary role of LTBP-4 appears to be the regulation
of elastic fiber assembly through its interactions
with fibulin-5 and fibrillin (Noda et al. 2013;
Dabovic et al. 2014). This makes LTBP-1 and
LTBP-3 the LTBPs of greatest interest when con-
sidering the extracellular pool of latent TGF-b.

Latency is dependent solely on the presence
of LAP as mutant TGF-b1 LAP (C33S) that
cannot bind LTBP still maintains TGF-b in
the latent state (Gentry and Nash 1990; Annes
et al. 2004). This SLC is efficiently secreted with-
out LTBP (Yoshinaga et al. 2008). However, the
Cys33 residue in LAP plays an important role in
TGF-b1 function in vivo, as mice with the C33S
TGF-b1 mutation develop inflammation that is
similar to that observed in TGF-b1-null mice
(although not as severe), implying defective ac-
tivation of SLC (Yoshinaga et al. 2008). These
mutant mice also develop gastrointestinal tu-
mors (Yoshinaga et al. 2008; Shibahara et al.
2012). If the primary function of this cysteine
is binding to LTBP, these results reflect the cru-
cial importance of SLC–LTBP interactions for
proper extracellular TGF-b function.

Substitution of Cys223 and Cys225 in TGF-
b1 LAP with serines, on the other hand, pre-
vents the dimerization of LAP and results in the
secretion of constitutively active TGF-b (Brun-
ner et al. 1989). This mutant form of TGF-b has
been used in many transgenic studies that show
the destructive potential of the release of con-
stitutively active TGF-b and highlight the im-
portance of latency in proper TGF-b function
(Sellheyer et al. 1993; Sanderson et al. 1995).
However, although these transgenic studies pro-
vide useful information on the effects of a gen-
eralized abundance of active TGF-b, they are
less informative for examining the more target-
ed mechanisms of latent TGF-b localization
and activation that occur in normal tissues.

Interactions between the LLC and the ECM

Besides promoting effective secretion of latent
TGF-b from cells, another major function of
LTBPs is localization of latent TGF-b to the
ECM (Fig. 1, upper left) (Koli et al. 2005).
This feature has many important implications
for latent TGF-b activation and TGF-b bio-
availability.

The best-studied interactions of an LTBP
with the ECM are those of LTBP-1. Initial stud-
ies using immunofluorescence to monitor
binding of recombinant fragments to matrix
showed that LTBP-1 possessed two ECM-bind-
ing regions at the amino terminus and one at
the carboxyl terminus (Unsold et al. 2001). Fur-
ther experiments showed specific interactions
with fibronectin (Dallas et al. 2005a; Fontana
et al. 2005; Kantola et al. 2008) and fibrillin
fibers (Isogai et al. 2003; Ono et al. 2009; Mas-
sam-Wu et al. 2010), as well as the formation
of transglutaminase cross-links with the ECM
(Nunes et al. 1997). The specific ECM compo-
nent to which LTBP-1 is cross-linked was not
determined.

The last three carboxy-terminal domains of
LTBP-1 interact with the amino terminus of fi-
brillin (Isogai et al. 2003; Ono et al. 2009), and
this region of LTBP-1 contains flexible linkers
that may facilitate this interaction (Robertson
et al. 2014). The carboxyl termini of LTBP-2 and
LTBP-4 are closely homologous with the car-
boxyl terminus of LTBP-1 and interact with fi-
brillin in a similar manner (Isogai et al. 2003;
Ono et al. 2009). LTBP-3, on the other hand, has
strikingly different sequence features at its car-
boxyl terminus (Robertson et al. 2011, 2014),
and a recombinant fragment of this region of
LTBP-3 does not interact with the fibrillin ami-
no terminus in solid phase assays, suggesting
that the LTBP-3 carboxyl terminus may have
distinct properties (Isogai et al. 2003). The in-
teraction of LTBP-1 with fibronectin has not
been well characterized, and, in some assays,
this interaction is mediated by heparan sulfate
proteoglycans (Chen et al. 2007). Fibronectin is
essential for the incorporation of LTBP-1 into
extracellular fibers in cell culture. Studies con-
ducted by Ono et al. showed LTBP-1 ECM in-
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corporation by murine neonatal fibroblasts
(cultured for 13 days) was dependent on fibril-
lin-1 (Ono et al. 2009). However, more recently,
Zilberberg et al. (2012) showed that fibrillin-1 is
not essential for incorporation of LTBP-1 into
the ECM of aortic smooth muscle cells or pri-
mary lung fibroblasts. But fibrillin-1 is still re-
quired for matrix incorporation of LTBP-3 and
LTBP-4 in these cultures (Zilberberg et al.
2012), suggesting a link between LTBP-3 and
the fibrillin matrix, although no direct inter-
action between these molecules has yet been
shown. The assembly of fibrillin fibers is also
dependent on fibronectin in most cell cultures
(Kinsey et al. 2008; Sabatier et al. 2009), making
it difficult to tease apart the relative importance
of the fibrillin and fibronectin networks in LTBP
incorporation and TGF-b regulation.

The functional significance of TGF-b’s
ECM localization is still unclear. Some clues
may derive from studies of Marfan syndrome
(MFS), a genetic condition caused by mutations
in the fibrillin-1 gene resulting in a number of
symptoms, including tall stature, arachnodac-
tyly, ectopia lentis, and aortic dilatation. Fibril-
lin is an important structural component of the
ECM (Jensen et al. 2012), but interestingly the
reduction of fibrillin-1 levels in MFS also leads
to increased levels of active TGF-b (Neptune
et al. 2003). Defects in MFS mice, such as im-
paired alveolar septation, mitral valve prolapse,
and aortic dissection, can be prevented by inhi-
bition of TGF-b signaling (Judge et al. 2004; Ng
et al. 2004; Habashi et al. 2006, 2011; Cohn et al.
2007). One hypothesis is that an insufficiency of
fibrillin-1 fibers leads to a shortage of available
sites to anchor latent TGF-b in the matrix, re-
sulting in excess soluble LLC available for acti-
vation. An alternative hypothesis is based on the
observation that fibronectin contributes to la-
tent TGF-b activation by integrins by providing
cell-ECM traction (see below). Therefore, per-
turbing the strength or structure of the ECM by
reducing fibrillin-1 levels in MFS could directly
affect latent TGF-b activation via traction, rath-
er than passively releasing more latent cytokine
from the matrix. It is also conceivable that per-
turbations of LTBP–fibrillin interactions are
not directly involved in MFS pathology and

that cellular responses to a defective matrix ac-
tually cause the increase in TGF-b activity. Ad-
ditionally, direct inhibition of TGF-b in young
mice can actually worsen the aortic phenotype
(Cook et al. 2015), whereas loss of LTBP3 in
fibrillin-deficient mice protects them from de-
veloping aortic aneurysms (Zilberberg et al.
2015). Both studies show that the relationship
between fibrillin and TGF-b may be more com-
plex and nuanced than first thought.

Disruptions of the ECM associated with
enhanced levels of active TGF-b have been re-
ported in a variety of genetic diseases of con-
nective tissue, including multiple myopathic
states (Cohn et al. 2007), fibromuscular dyspla-
sia (Ganesh et al. 2014), and geleophysic and
acromicric dysplasias (Le Goff et al. 2011; Le
Goff and Cormier-Daire 2012). This may indi-
cate that a primary response to abnormal ma-
trix is the activation of latent TGF-b. One report
of particular interest shows dysregulated TGF-b
signaling in mouse models of osteogenesis im-
perfecta (OI), a brittle bone disease usually
caused by mutations in type I collagen genes
(Grafe et al. 2014). Mouse models of both dom-
inant and recessive forms of OI showed increas-
es in TGF-b signaling, and bone density was
significantly improved by treatment with the
TGF-b neutralizing antibody 1D11 (Grafe et
al. 2014). These observations reinforce the idea
of latent TGF-b activation as a process respon-
sive to generalized perturbations in matrix
structure and integrity.

Recently, LTBP-1 has been shown to bind
and colocalize with extracellular deposits of
Notch3 present in the cerebral arterioles of ce-
rebral autosomal dominant arteriopathy with
subcortical infarcts and leukoencephalopathy
(CADASIL) patients, and although the precise
implications for TGF-b signaling are unclear,
this further highlights the potential sensitivity
of the LLC to extracellular perturbations (Kast
et al. 2014).

Other Sources of Latent TGF-b

As well as LTBPs, latent TGF-b binds covalently
to the trans-membrane leucine-rich repeat pro-
tein glycoprotein-A repetitions predominant
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protein (GARP) (Wang et al. 2012). GARP ex-
pression appears restricted to regulatory T cells
and platelets (Wang et al. 2008; Stockis et al.
2009; Tran et al. 2009), whereas LTBPs are ex-
pressed ubiquitously (Rifkin 2005). GARP-like
leucine-rich repeat proteins do not appear until
the evolution of bony fish (Robertson and Rif-
kin 2013), although TGF-b and LTBPs evolved
earlier, as they are found in sea urchins, acorn
worms, and lancelets (Robertson et al. 2011;
Robertson and Rifkin 2013), suggesting that
LTBPs may have more general functions in
TGF-b biology, with GARP activities restricted
to T-cell and platelet-based functions. In fact,
use of anti-GARP antibodies has been reported
to suppress the activity of regulatory T-cells and
aid with anticancer immunotherapy (Cuende
et al. 2015).

E-selectin-ligand-1 binds intracellular pro-
TGF-b (Olofsson et al. 1997); however, its role
appears to be that of a negative regulator of
TGF-b by inhibiting pro-TGF-b intracellular
processing and secretion (Yang et al. 2010).
The existence of other extracellular latent TGF-
b complexes, independent of LTBPs, cannot be
ruled out. Mice lacking expression of TGF-b1
and TGF-b3 (Mu et al. 2008), or TGF-b2 and
TGF-b3 (Dunker and Krieglstein 2002) display
significant deleterious effects in embryonic de-
velopment, but double-null mutations of LTBP-
3 and LTBP-4 are viable after birth and do not
show clear phenotypic similarities with TGF-
b-null mutations (Dabovic et al. 2011). As pre-
viously mentioned LTBP-1-null mice display
lethal defects in embryonic heart development
(Todorovic et al. 2007, 2011; Horiguchi et al.
2015), but direct phenotypic similarities with
TGF-b-null mice are not clearly apparent. Inac-
tivation of both LTBP-1 and LTBP-3 in the same
mice has not yet been reported, but these may be
the most informative for testing the overall sig-
nificance of LTBPs in TGF-b regulation in vivo.

Latency and ECM Interactions of Other TGF-b
Family Members

TGF-b is not alone in its localization to ECM
fibers; many other members of the TGF-b fam-
ily and their pro-peptides form associations

with ECM components. Fibrillin, in particular,
interacts directly with the pro-peptides of a
number of TGF-b family members, including
bone morphogenetic protein 2 (BMP-2), BMP-
4, BMP-7, BMP-10, and growth and differen-
tiation factor 5 (GDF-5) (Sengle et al. 2008a).
Surface plasmon resonance studies showed
that the pro-peptides of these growth factors
interact with the amino-terminal regions of fi-
brillin-1 and -2 with similar affinities (Gregory
et al. 2005; Sengle et al. 2008a), and some pro-
peptides associate with other regions of the fi-
brillin molecule. The binding sites for BMP-7
and BMP-5 have been localized more precisely
in the fibrillin amino terminus and have been
shown to be dependent on the presence of the
fibrillin unique amino-terminal (FUN) domain
(Sengle et al. 2008a, 2011; Yadin et al. 2013).
However, not all pro-domains of the TGF-b
family members interact with the amino termi-
nus of fibrillin. For example, the myostatin
(GDF-8) pro-domain does not bind this region,
but it does associate with the ECM via perle-
can domain V glycosaminoglycan (GAG) side
chains (Sengle et al. 2011).

Although the interactions between latent
growth factors and fibrillin have been clearly
shown in vitro, their in vivo significance is
unclear. BMP-7 and BMP-4 colocalize with fi-
brillin-1 in tissue sections (Gregory et al. 2005;
Sengle et al. 2008a), suggesting that these in-
teractions occur in vivo, but their importance
is unknown. Functional hypotheses might be
proposed similar to those suggested for LLC
binding to fibrillin; for example, BMP binding
to fibrillin may localize and direct growth fac-
tor signals to certain regions of the ECM, and
so determine specific features of tissue develop-
ment (Ramirez and Rifkin 2009). TGF-b, BMP-
10, and myostatin are latent when complexed
with their pro-domains and unable to induce
signaling without the help of an activator, for
example, BMP-1 can activate BMP-10 by cleav-
ing its pro-domain (Lee and McPherron
2001; Sengle et al. 2011). However, BMP-4, -5,
-7, and -9 pro-domain complexes are not la-
tent, and their pro-domains can be displaced
from the growth factor allowing these molecules
to bind to their receptors without activation
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(Brown et al. 2005; Sengle et al. 2008b, 2011).
The fibrillin interaction might confer “latency”
to growth factors not rendered latent by their
pro-peptides alone, as localization to the ECM
may shield the growth factors from cell-surface
receptors. Signaling then could be regulated by
displacement of the growth factor from fibrillin
or contact of fibrillin microfibrils with the cell.
Alternatively, fibrillin interaction could pro-
mote growth factor activity by preventing in-
hibitor binding.

Increased BMP activity in fibrillin-1 defi-
cient osteoblasts is consistent with the hypoth-
esis that fibrillin may inhibit BMPs activity
(Nistala et al. 2010), but whether this involves
a direct mechanism of fibrillin-binding BMP
pro-domains was not tested.

Clues to the in vivo mechanisms by which
fibrillins regulate BMP activity are also sparse
but there are some suggestive data. For example,
fibrillin-2-null mice display syndactyly, whereas
BMP-7-deficient mice display polydactyly (Ar-
teaga-Solis et al. 2001). Heterozygous Bmp7þ/2

or Fbn2þ/2 mice are normal, but a combined
heterozygous deficiency of BMP-7 and fibrillin-
2 yields mice with both polydactyly and syn-
dactyly. These enhanced digit abnormalities in
double heterozygotes may indicate a form of
epistasis. In fibrillin-2 deficient mice transcrip-
tion of several genes, including Msx, was ren-
dered insensitive to implanted BMP-4 beads.
These results suggest that fibrillin-2 and BMPs
play interrelated roles in specific developmental
pathways, but the full significance of their inter-
action is unclear.

In summary, there are several pieces of
in vivo and in vitro evidence connecting the
ECM and signaling by other molecules of the
TGF-b family, but the precise mechanisms at
work are not yet understood.

ACTIVATION OF LATENT TGF-b

The latent TGF-b complex can be considered as
a sensor that remains in the ECM until triggered
by a specific signal to release TGF-b (Annes
et al. 2003); a process referred to as activation
(Fig. 1, upper right). A number of different la-
tent TGF-b activators have been described,

ranging from extremes of pH, to proteases, to
cell-surface integrins.

ACTIVATION BY PROTEINS

Integrins

Cell-surface integrins are well-established acti-
vators of latent TGF-b (Munger et al. 1999;
Annes et al. 2002; Mu et al. 2002). Integrins
avb6 and avb8 are the best described activators,
but other av integrins, such as avb1, avb3, and
avb5, have also been implicated as interacting
with LAP and activating latent TGF-b (Munger
et al. 1998; Lu et al. 2002; Ludbrook et al. 2003;
Wipff et al. 2007; Wipff and Hinz 2008; Munger
and Sheppard 2011; Tatler et al. 2011; Hinz
2013; Sarrazy et al. 2014).

The best-studied mechanism for integrin-
mediated activation of latent TGF-b is direct
activation by traction between cells and matrix
(Fig. 3A). Early studies showed that overexpres-
sion of b6 integrin-activated latent TGF-b1,
even in the presence of protease inhibitors
(Munger et al. 1999). Further studies showed
that latent TGF-b1 activation by avb6 was de-
pendent on covalent attachment of LAP to
LTBP-1 (Annes et al. 2004), the presence of spe-
cific ECM-binding regions in the hinge domain
of LTBP-1 (Annes et al. 2004), and the presence
of a fibronectin matrix (Fontana et al. 2005).
The integrin-binding RGD (Arg-Gly-Asp) se-
quence in LAP and the cytoplasmic sequences
of b6 integrin that anchor it to the actin cyto-
skeleton were also required for TGF-b activa-
tion (Munger et al. 1999; Annes et al. 2004).
These results are consistent with an activation
mechanism whereby the conformation of LAP
anchored to the ECM by LTBP and bound to the
cell surface by integrins is distorted by traction
between matrix and cells, liberating active TGF-
b (Annes et al. 2004; Fontana et al. 2005; Wipff
et al. 2007). This mechanism has been further
elaborated by experiments describing the integ-
rin-dependent release of active TGF-b by con-
tracting myofibroblast cytoskeletons (Wipff
et al. 2007), as well as from cell-free matrix in
a force-dependent manner by ferromagnetic
beads coated with either integrins or anti-LAP
antibodies (Buscemi et al. 2011). Indeed, the
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state of the latent complex may be sensitized for
activation by previous modifications of the ma-
trix (Klingberg et al. 2014). The traction mech-
anism is supported by the crystal structure of
TGF-b bound to LAP, which shows that Cys33,
required for LTBP attachment, and the RGD
motif are on opposite sides of the molecule,
with TGF-b sandwiched between two arms of
a LAP “straightjacket” (Shi et al. 2011). This
straightjacket can be deformed by traction ap-
plied to the molecule, as shown by atomic force
microscopy experiments (Buscemi et al. 2011).

The mechanism of latent TGF-b activation
by avb8 is more obscure. Latent TGF-b activa-
tion by this integrin was reported to be blocked

by the presence of matrix metalloproteinase
(MMP) inhibitors and did not require the
cytoplasmic domain of avb8, indicating a trac-
tion-independent mechanism (Mu et al. 2002).
This suggests an alternative protease-dependent
mechanism, perhaps involving recruitment of
MMPs by integrins to facilitate LAP cleavage
and release of TGF-b (Fig. 3B). Alternatively,
binding by the integrin may induce changes in
LAP structure that promote protease cleavage.
MT1-MMP (membrane-type matrix metallo-
proteinase 1) was suggested as a potential can-
didate protease, as it both conferred the ability
to activate latent TGF-b, when transfected into
the avb8-expressing cancer line H1264 and co-
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Figure 3. Proposed mechanisms of latent transforming growth factor b (TGF-b) activation by integrins. Two
mechanisms have been proposed by which integrins activate latent TGF-b. (A) Traction between cells and
extracellular matrix (ECM) is transmitted to latency-associated peptide (LAP) via latent TGF-b-binding pro-
teins (LTBPs) bound to the matrix and cell-surface integrins bound to the cell’s actin cytoskeleton. This deforms
LAP and releases active TGF-b. (B) Integrins bind LAP at the cell surface and this may make LAP more accessible
to proteases, such as membrane-type matrix metalloproteinase 1 (MT1-MMP), that cleave LAP and release the
active growth factor, by localizing it and recruiting proteases into its vicinity, or by changing the structure of LAP
so that it is rendered more protease sensitive.
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localizes with integrinavb8 at substrate contacts
(Mu et al. 2002). However, as described below,
inactivation of MMPs does not produce a TGF-
b, null-like phenotype.

As well as activating latent TGF-bwithin the
LLC, both integrins avb6 and avb8 can activate
latent TGF-b bound to GARP on the surface of
cells expressing this complex (Wang et al. 2012;
Edwards et al. 2014). This form of latent TGF-b
may play an important role in regulating im-
mune responses, as GARP is primarily expressed
by T-cells.

The critical nature of integrin-mediated la-
tent TGF-b activation in vivo was illustrated by
a mouse model in which the integrin-binding
RGD motif in TGF-b1-LAP was replaced with
an RGE sequence (Yang et al. 2007; Aluwihare
et al. 2009). These mice phenocopy TGF-b1-
null mice and display severe multiorgan inflam-
mation and absence of epidermal Langerhans
cells. As the mutant TGF-b is secreted normally,
this phenocopy shows that the integrin-binding
RGD motif in TGF-b1 LAP is essential for la-
tent TGF-b1 activation. TGF-b3 also contains
an RGD motif, the importance of which has not
been conclusively tested in vivo. However, mice
with null mutations in both avb6 and avb8

integrins display cleft palate, also observed in
TGF-b3 knockout mice. Pharmacological in-
hibition of avb6 in mice lacking avb8 causes
inflammation similar to that seen in TGF-b1-
deficient mice (Yang et al. 2007; Aluwihare et al.
2009). These observations suggest that integrins
play a key role in the in vivo activation of both
TGF-b1 and 3. Replacement of the TGF-b3
coding sequence with a TGF-b1 sequence into
the Tgfb3 locus partially rescues the palate clo-
sure defect seen in TGF-b3-null mice (Yang and
Kaartinen 2007), indicating that TGF-b1 LAP
shares some critical properties with TGF-b3
LAP, as latent TGF-b1 can be appropriately ac-
tivated in place of TGF-b3 in this context.

In addition to being important for latent
TGF-b activation during development, inte-
grins also play a significant role in diseases like
fibrosis, in which TGF-b is a major mediator
(Leask and Abraham 2004). Conditional dele-
tion of the av integrin gene significantly atten-
uated hepatic, pulmonary, and renal fibrosis in

mouse models (Henderson et al. 2013), and
deletion of integrin b6 helps protect against ra-
diation-induced lung fibrosis (Puthawala et al.
2008). TGF-b is also an important mediator of
immune tolerance, and conditional deletion of
b8 integrin in dendritic cells causes severe in-
flammatory bowel disease and autoimmunity
(Travis et al. 2007). Integrin b8 expressed by
effector regulatory T cells is also important for
suppressing aberrant T-cell-mediated inflam-
mation (Worthington et al. 2015), consistent
with the role of this integrin in activating
TGF-b and promoting immune tolerance. In-
tegrinb8 expressed by lung fibroblasts also plays
a critical role in activating TGF-b to regulate
dendritic cell trafficking in lung tissue, which
can in turn contribute to fibrosis and inflam-
mation (Kitamura et al. 2011). In addition, in-
tegrin b8 expressed on dendritic cells regulates
maturation of TH17 cells, which contribute to
autoimmunity (Melton et al. 2010), and inte-
grinb8-mediated TGF-b activation also inhibits
epithelial proliferation in bronchial tissue (Fjell-
birkeland et al. 2003). Therapeutic strategies
using monoclonal antibodies to target TGF-b
activation by integrins have shown promise in
treating fibroinflammatory airway disease in
animal models (Minagawa et al. 2014).

As well as playing roles in fibrosis and in-
flammation, TGF-b activation by integrin b8

plays a role in wound closure in vitro (Neurohr
et al. 2006) and may act as an angiogenic control
switch regulated by perivascular astrocytes
(Cambier et al. 2005). Specific expression of
integrin b8 by nonmyelinating Schwann cells
in bone marrow may assist in maintaining dor-
mancy in hematopoietic stem cells by generat-
ing a highly localized niche of active TGF-b
near blood vessels (Yamazaki et al. 2011).

Unlike TGF-b1 and 3, TGF-b2 lacks an RGD
motif and was not activated in experiments test-
ing latent TGF-b activation by specific integrins
(Annes et al. 2002). TGF-b2 contains other con-
served motifs in the RGD region that are not
found in TGF-b1 and -b3 (Robertson and Rif-
kin 2013), which suggests the possibility that
TGF-b2 is the target of specific activators that
bind TGF-b2 LAP in a similar fashion to inte-
grin binding to TGF-b1 and TGF-b3 LAP RGD.
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Proteases

A number of proteases of various classes can
activate latent TGF-b in vitro, including cys-
teine proteases like calpain (Abe et al. 1998),
aspartyl proteases like cathepsin D (Lyons
et al. 1988), and numerous serine and metal-
loproteases (Maeda et al. 2001; Jenkins 2008).
However, the relevance of these assorted prote-
ases for latent TGF-b activation in vivo is un-
clear, as mice deficient in individual proteases
fail to display TGF-b, null-like phenotypes.
Although this may seem to suggest a minor bi-
ological role for protease-mediated activation,
it may also reflect the general ability of multiple
proteases to activate latent TGF-b, creating sig-
nificant redundancy in vivo.

Many of the MMPs, including MMP2,
MMP9, MMP3, MMP13, and MMP14 (MT1-
MMP) (Jenkins 2008), activate latent TGF-b in
vitro. MMP2 and MMP9 activate latent TGF-b
when localized by CD44 to the surface of tumor
cells during angiogenesis (Yu and Stamenkovic
2000), and MMP3 from chondrocyte-derived
matrix vesicles activates latent TGF-b1 (Maeda
et al. 2001). Interestingly, although MMP2 is
present in these chondrocyte vesicles, it did
not activate TGF-b in this context.

Mice deficient in many of these proteases
have been generated, but none clearly show
TGF-b-related phenotypes. Inactivation of
MMP3 yields mice with no visible abnormalities
(Mudgett et al. 1998; Johnson et al. 2011), and
loss of MMP13 yields only mild skeletal defects
in mice (Stickens et al. 2004). Mice lacking ex-
pression of both MMP2 and MMP9 are viable
(Garg et al. 2009), as are mice lacking MMP9
and MMP13 expression (Stickens et al. 2004),
although these mice are runted because of
defects in their growth plates. MT1-MMP
(MMP14)-deficient mice suffer from osteope-
nia, dwarfism, and fibrosis, but this is likely a
result of deficiencies in collagen turnover and
not because of insufficient TGF-b activation
(Holmbeck et al. 1999). MMP2- and MT1-
MMP-deficient mice display respiratory failure,
abnormal blood vessel development, imma-
ture muscle fibers, and die immediately after
birth (Oh et al. 2004). However, none of these

phenotypes are reminiscent of defective TGF-b
signaling.

The BMP-1/tolloid MMPs also play a role
in latent TGF-b activation. However, rather
than directly degrading LAP, they catalyze the
cleavage of LTBP-1 from the ECM, releasing la-
tent TGF-b bound to LTBP-1, which requires
activation by other factors, such as MMPs
(Ge and Greenspan 2006). Mice with null mu-
tations in BMP-1 and the closely related tolloid1
(Tll1) protease display excessive accumulation
of LTBP-1 in embryonic tissues and reduced
phospho-Smad2/3 staining, suggesting defec-
tive activation of latent TGF-b (Ge and Green-
span 2006). Mice deficient in BMP-1 or Tll1
expression die before birth and these proteins
process a variety of other matrix and signal-
ing molecules; therefore, it is difficult to attain
a clear assessment of their importance for latent
TGF-b activation in vivo (Pappano et al. 2003).

Various serine proteases, including kalli-
kreins and plasmin, activate TGF-b (Lyons
et al. 1990). Plasmin mediates TGF-b activation
in cocultures of endothelial cells and pericytes
(Antonelli-Orlidge et al. 1989; Sato and Rifkin
1989), in cultures of endothelial cells treated
with retinoids (Kojima and Rifkin 1993), and
on the surface of activated macrophages (Nunes
et al. 1995; Yehualaeshet et al. 1999; Jenkins
2008). Activation in endothelial-pericyte cocul-
tures was inhibited by antibodies to LTBP-1
(Flaumenhaft et al. 1993) and inhibitors of the
mannose-6-phosphate receptor (Dennis and
Rifkin 1991). Activation by macrophages was
dependent on plasmin and latent TGF-b bound
at the cell surface by thrombospondin1 (TSP1)
and CD36 (Yehualaeshet et al. 1999; Jenkins
2008). Despite the importance of plasmin in
several TGF-b-activating cell systems, mice
with targeted deletion of the plasminogen
gene show no clear developmental abnormali-
ties and are viable (Bugge et al. 1995), which
rules out a nonredundant role for this protease
in latent TGF-b activation.

Kallikreins are a large family of serine pro-
teases, several of which activate latent TGF-b.
Kallikreins appear to play a role in TGF-b-me-
diated immunosuppression in seminal plasma
(Emami and Diamandis 2010) and lipopoly-
saccharide impairment of liver regeneration
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(Akita et al. 2002). Plasma kallikrein (PLK)
cleaves TGF-b1 LAP between Arg58 and
Leu59. Antibodies have been raised against the
resulting LAP peptides and used to show that
the specific PLK-LAP cleavage products are sig-
nificantly more abundant in the liver tissue of
patients with hepatic fibrosis (Hara et al. 2014).
Prostate-specific antigen (PSA), a member of
the kallikrein family, activates TGF-b2 but not
TGF-b1 (Dallas et al. 2005b). The large number
of kallikrein proteases again provides significant
potential redundancy and, at present, only lim-
ited data on kallikrein-null mice are available
(Bergaya et al. 2001).

Although many proteases activate latent
TGF-b in a variety of contexts, most of these
studies have been conducted in vitro, and ob-
taining clear in vivo data on the role of proteases
in latent TGF-b activation is difficult for the
reasons discussed above. One way to gain future
insight into the significance of protease-medi-
ated latent TGF-b activation in vivo might be to
identify specific cleavage sites in LAP or LTBP
responsible for activation, and generate mice
with mutations replacing these sites with prote-
ase-insensitive sequences.

Deglycosylation

Deglycosidases, including endoglycosidase F
(Miyazono and Heldin 1989) and influenza
neuramidase, activate latent TGF-b (Schultz-
Cherry and Hinshaw 1996; Carlson et al.
2010). The LAPs of human TGF-b1 and -b2
possess three potential N-glycosylation sites,
whereas TGF-b3 LAP has only two sites. It is
not clear which sites are important for activation
by deglycosidases or what the activation mech-
anism may be. One possibility is that removing
sugar groups exposes protease-sensitive sites, as
activation by neuramidase is at least partially
protease dependent (Carlson et al. 2010). The
in vivo role of deglycosylation-driven latent
TGF-b activation also remains undefined.

Other Protein Factors

As well as the molecules discussed above, a di-
verse range of other proteins have been impli-
cated as latent TGF-b activators.

TSP-1 has been the subject of particularly
intense study with respect to latent TGF-b ac-
tivation. Recombinant TSP-1 activates latent
TGF-b when added to cell cultures or purified
latent TGF-b in vitro (Murphy-Ullrich and Poc-
zatek 2000). TSP-1 interacts with both LAP and
active TGF-b in copurification and pull-down
assays (Murphy-Ullrich et al. 1992; Yang et al.
1997; Ribeiro et al. 1999). A KRFK peptide that
mimics the RFK sequence between the first and
second TSP-1 domains activates latent TGF-b
(Schultz-Cherry et al. 1994, 1995) and inhibits
TSP-1 binding. The ability of an LSKL peptide
to inhibit this activation further suggested that
interactions between the RFK motif of TSP-1
and the LSKL motif in the amino terminus of
LAP were responsible for TGF-b release (Ri-
beiro et al. 1999). Consistent with this hypoth-
esis is the observation that TSP-2 does not acti-
vate latent TGF-b, as the RFK motif is absent
from TSP-2 (Schultz-Cherry et al. 1995).

Although these are interesting results, some
groups have failed to observe latent TGF-b ac-
tivation in response to TSP-1 (Grainger and
Frow 2000), and surface plasmon resonance
studies failed to show TSP-1 binding to either
LAP, TGF-b, or SLC (Bailly et al. 1997). More-
over, platelet a-granules activate latent TGF-b
and are a rich source of TSP-1, but a-granules
derived from TSP-1-null platelets activate latent
TGF-b just as effectively as those from wild-
type platelets (Abdelouahed et al. 2000).

TSP-1-null mice suffer from inflammation
of the lung and pancreas as well as various other
defects (Lawler et al. 1998). The sites of inflam-
mation overlap, in part, with those observed in
the multiorgan inflammation phenotype of
TGF-b1 knockout mice (Kulkarni et al. 1993;
Crawford et al. 1998). Reduced inflammation
was observed in Tsp12/2 animals treated with
the latent TGF-b-activating KRFK peptide,
whereas treating wild-type mice with the LSKL
peptide that inhibits activation resulted in in-
creased inflammation (Crawford et al. 1998).
However, Tsp12/2 mice fail to mimic all of
the features of TGF-b1-null mice, such as
cardiac inflammation. Tsp12/2 animals also
display phenotypes, like kyphosis, not seen
in TGF-b1-null animals. Moreover, although
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TSP-1 and the KRFK peptide-activated latent
TGF-b2 in vitro (Ribeiro et al. 1999), TSP-1-
null animals do not display any of the serious
defects seen in TGF-b2 knockout mice. This
leaves the debate over the exact role of TSP-1
in vivo unresolved, but rules out TSP-1 as a
central activator of all three TGF-b isoforms.

F-spondin (or spondin-1) increases TGF-b
activity in cartilage explants (Attur et al. 2009).
An antibody targeted to the F-spondin throm-
bospondin type 1 repeats blocks this activation,
suggesting parallels with activation by TSP-1.
However, more information is needed on
whether F-spondin activates latent TGF-b by
binding directly to LAP or if some other mech-
anism is at work in these cultures.

Neuropilin (Nrp) is a cell-surface protein
reported to act as an activator of latent TGF-b
on the surface of T cells (Glinka and Prud’-
homme 2008; Glinka et al. 2011) and in some
tumor lines (Glinka et al. 2011). The mecha-
nism by which Nrp activates latent TGF-b re-
mains undefined, but in solid-phase assays Nrp
binds mature TGF-b1, LAP, and both type I and
II TGF-b receptors (Glinka et al. 2011). Nrp
may initiate intracellular signaling events and
could act as a co-receptor for TGF-b (Glinka
and Prud’homme 2008; Glinka et al. 2011;
Grandclement et al. 2011).

Pregnancy specific glycoprotein 1 (PSG1) is
another protein with no known enzymatic ac-
tivity recently shown to activate both latent
TGF-b1 and 2. PSG1 also inhibits dextran so-
dium sulfate–induced colitis in a TGF-b-de-
pendent manner (Blois et al. 2013). However,
both the molecular mechanism and in vivo sig-
nificance of this activator remain unknown. Te-
nascin-X has also been reported to promote
epithelial to mesenchymal transition by activat-
ing TGF-b through interactions between its
fibrinogen-like domain and the SLC. These in-
teractions may deform LAP and also rely on cell
adhesion via integrin a11b1 to promote activa-
tion (Alcaraz et al. 2014).

Activation by Physicochemical Factors

Latent TGF-b can be activated by exposure to
specific physical or chemical conditions, in-

cluding detergents, ionizing, and ultraviolet
(UV) radiation (Barcellos-Hoff et al. 1994; Bar-
cellos-Hoff 1996; Ehrhart et al. 1997; Wang and
Kochevar 2005; Anscher et al. 2006; Biswas et al.
2007), reactive oxygen species (ROS) (Barcel-
los-Hoff and Dix 1996), heat (Brown et al.
1990), physical shear (Ahamed et al. 2008),
and extremes of pH (Lyons et al. 1988).

Not all of these conditions are encountered
in vivo, but some may be biologically relevant.
For example, ROS activate latent TGF-b both in
cell cultures and in cell-free systems (Barcellos-
Hoff and Dix 1996), and ROS are proposed to
mediate latent TGF-b activation by asbestos,
which can lead to mesothelioma in exposed
lungs (Pociask et al. 2004). ROS produced by
HIV-infected regulatory T cells are also pro-
posed to activate latent TGF-b and lead to im-
munosuppression (Amarnath et al. 2007). ROS
may mediate latent TGF-b activation caused by
ionizing (Barcellos-Hoff 1996) and UV-B radi-
ation (Wang and Kochevar 2005). One study
suggested that ROS activation was specific to
TGF-b1 and relied on the presence of Met253
(Jobling et al. 2006), but this residue is not well
conserved (Robertson and Rifkin 2013) and the
exact mechanism by which ROS activate latent
TGF-b is unclear. One possibility is that ROS
catalyze direct breaks in the backbone of LAP to
release the active growth factor (Barcellos-Hoff
and Dix 1996), but it is not known if LAP is
particularly sensitive to ROS-driven scission.

Latent TGF-b activation by low pH could
play a physiological role in some circumstances.
Osteoclasts reduce extracellular pH to �4.5
during bone resorption (Teitelbaum 2000),
and these cells activate latent TGF-b (Oreffo
et al. 1989). Tumor cells also significantly lower
the pH of their microenvironment (Jullien et al.
1989). However, whether the drop in pH is both
necessary and sufficient for latent TGF-b acti-
vation in this later context has not been clearly
shown. Lactic acid also promotes TGF-b activ-
ity at physiological concentrations and may be a
player in idiopathic pulmonary fibrosis (Kott-
mann et al. 2012). But, although the ability of
lactate to up-regulate a-smooth muscle actin
was dependent on TGF-b signaling and the
lowered pH of the medium, studies of lactic

Regulation of the Bioavailability of TGF-b

Cite this article as Cold Spring Harb Perspect Biol 2016;8:a021907 13



acid in other contexts have shown that lactate
up-regulates genes that may affect TGF-b bio-
availability (Seliger et al. 2013). The effects of
physiological levels of lactic acid on latent TGF-
b in a cell free system have not yet been reported.

Physical shear or stirring can activate a sig-
nificant percentage of the latent TGF-b present
in platelet releasate (Ahamed et al. 2008). This
reaction is dependent on LTBP binding to LAP,
as activation is not seen with the releasate from
C33S TGF-b1 mice (Ahamed et al. 2008). The
full activation mechanism is not known, but it is
inhibited by the thiol isomerase-binding pep-
tide mastoparan and appears to involve disul-
fide exchange (Brophy et al. 2013).

Although there is compelling evidence for
many physicochemical factors playing impor-
tant roles in TGF-b biology, the current lack
of detailed activation mechanisms and specific
residues to target for knockin studies prevent us
from testing their true significance in vivo.

ACTIVATION OF TGF-b—AN
EVOLUTIONARY PERSPECTIVE

The range of latent TGF-b activation mecha-
nisms may seem daunting, especially when try-
ing to consider what the trigger for TGF-b ac-
tivity may be in different tissue contexts. In vivo
studies knocking out specific activators or key
activation sequences cast some light on their
relative significance. However, these experi-
ments are difficult and time consuming and so
there remain many potential activators whose
significance has not yet been tested.

An alternative approach to qualitatively
gauge the significance of various latent TGF-b
activators is to examine the evolutionary time
frames in which they emerge and to analyze the
conservation of residues critical to specific acti-
vation mechanisms.

This evolutionary analysis has been per-
formed for a variety of established latent TGF-
b activators and has provided a number of in-
sights (Fig. 4) (Robertson et al. 2011; Robertson
and Rifkin 2013). One interesting observation is
that bona fide TGF-b seems to have coevolved
with LTBPs and that the key sequence features
for the attachment of LTBP and LAP are present

in the most evolutionary distant TGF-b and
LTBP sequences, including those in sea urchins,
lancelets, and acorn worms (Robertson et al.
2011; Robertson and Rifkin 2013). Additional-
ly, integrin-binding RGD motifs are also present
in these evolutionary distant TGF-b sequences
and are highly conserved through to humans
(except in TGF-b2, where they are consistently
absent).

These facts suggest that all elements re-
quired for traction-induced latent TGF-b acti-
vation by integrins were present soon after
“true” TGF-b diverged from the rest of the
TGF-b family. If integrins were initially the
main activators of latent TGF-b, this would be
consistent with their continued in vivo signifi-
cance, as observed in mouse models (Yang et al.
2007; Aluwihare et al. 2009). On the other hand,
the evolutionary data do not support an early
evolving function for TSP-1, plasmin, or many
other specific proteases, which in many cases do
not seem to emerge until well after the LTBP–
TGF-b complex first appeared (Robertson and
Rifkin 2013).

If we make the assumption that the earliest
evolving latent TGF-b activators have remained
important throughout evolution, traction-me-
diated activation by integrins may continue to
be an important mechanism for releasing TGF-
b in many tissue contexts. Therefore, we pro-
pose that future studies examining the role of
TGF-b in development and homeostasis should
give careful consideration the dynamic relation-
ship between cells and their biomechanical en-
vironment.

POSTACTIVATION BIOAVAILABILITY
OF TGF-b AND OTHER TGF-b FAMILY
MEMBERS

One generalization that distinguishes bona fide
TGF-b from many other members of the family,
such as the BMPs and GDFs, is that TGF-b bio-
availability is primarily regulated by binding
and release from LAP, which locks up TGF-b
before it leaves the cell. However, the biological
regulators characterized for BMPs and GDFs
generally bind to the active forms of these
growth factors after they have been secreted.
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The release of certain BMPs and GDFs by spe-
cific cells can generate morphogen gradients,
and their antagonists help to localize and con-
fine the activity of these growth factors once in

the extracellular space. These regulation mech-
anisms have been discussed in more detail else-
where (Hinck et al. 2016; Kim et al. 2016), but
they are mentioned here in passing to highlight
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Figure 4. Evolution of transforming growth factor b (TGF-b) and its extracellular regulators. Phylogenetic tree
highlighting the evolutionary relationships between a selection of organisms with sequenced genomes. Green
arrows show where specific proteins appear to have evolved based on their presence or absence from available
genome and other sequence libraries. Red crosses indicate where specific genes appear to have been lost. The
variable quality of some shotgun genome sequences means that the absence of a gene from a specific species is
not always definitive, as some genes may be missed or fragmented in the available sequence data. This introduces
some uncertainty to the evolutionary story, but ambiguity is kept to a minimum by searching through the many
different genomes available. GARP, Glycoprotein A repetitions predominant protein; TSP1, thrombospondin 1;
LTBP, TGF-b-binding protein; MMP, matrix metalloproteinase; H. sapiens, Homo sapiens; G. gallus, Gallus
gallus; A. carolinensis, Anolis carolinensis; X. tropicalis, Xenopus tropicalis; L. chalumnae, Latimeria chalumnae; D.
rerio, Danio rerio; P. marinus, Perkinsus marinus; C. intestinalis, Ciona intestinalis; B. floridae, Branchiostoma
floridae; S. purpuratus, Strongylocentrotus purpuratus; S. kowalevskii, Saccoglossus kowalevskii; N. vectensis, Ne-
matostella vectensis; T. Adhaerens, Trichoplax Adhaerens; A. Queenslandica, Amphimedon Queenslandica.
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key conceptual differences between signaling by
bona fide TGF-b and signaling by other mem-
bers of the family.

The simplified concepts of growth-factor
signaling by localized activation or morphogen
gradients are shown in Figure 5. In a morpho-
gen gradient, the active growth factor is released
by a specific cellular source and its concentra-
tion reduces as it diffuses away from that source.
Further control may also be introduced by an-
tagonists that prevent the diffusing growth
factors from binding their receptors and add
further 3D structure to the growth-factor gra-
dient. The active concentration of a growth
factor in any given region of the morphogen
gradient can provide individual cells with an
indication of their relative position within a de-
veloping organism, which may help define their
niches within a tissue. In the localized activation
model, on the other hand, the growth factor is
predistributed throughout the ECM in its latent
state. Its local concentration is determined by
the rate of activation rather than its rate of re-
lease by cells and its diffusion from a central
source. One might speculate that this mode of
activation may allow bona fide TGF-b to act as a
more direct readout of local extracellular events
rather than a long distance signal of develop-
mental status.

Although we currently consider factors that
regulate TGF-b latency and activation to be the
key controllers of its signaling, there are also a
variety of proteins that bind and regulate active
TGF-b after its release from LLC. For example,
the proteoglycan decorin binds active TGF-b
(Hildebrand et al. 1994; Schonherr et al. 1998)
and appears to inhibit TGF-b signaling in many
contexts (Isaka et al. 1996; Teicher et al. 1997),
although early studies of decorin suggested that
it could enhance TGF-b bioactivity in the bone
matrix (Takeuchi et al. 1994). Decorin can
inhibit TGF-b signaling through calcium-de-
pendent phosphorylation of Smad2 at Ser240
(Abdel-Wahab et al. 2002), and may interface
with TGF-b signaling on a more complex level
than just binding the active growth factor. In the
bone marrow stroma, both decorin and bigly-
can appear to work together to inhibit TGF-b
signaling and maintain sufficient osteoblast

proliferation (Bi et al. 2005). Other molecules
that may interact with active TGF-b include
collagen IV in the basement membrane (Paral-
kar et al. 1991), human IgG (Stach and Rowley
1993; Bouchard et al. 1995), and the cell-surface
proteinsb glycan (also known as TGF-b type III
receptor) and endoglin, which may play a role as
TGF-b co-receptors.

It is important to consider that TGF-b is a
“sticky” molecule that associates nonspecifical-
ly with hydrophobic surfaces. TGF-b is active at
very low concentrations and copurifies with a
number of His-tagged proteins when they are
expressed and purified from HEK293 cells
(Kaur and Reinhardt 2012), as well as with gel-
atin-purified fibronectins (Fava and McClure
1987). These properties further complicate in-
terpretation of in vitro experiments, and under-
line the importance of in vivo studies to confirm
proposed biochemical mechanisms.

To ensure that the TGF-b signal does not
persist after activation, mature TGF-b is rapidly
cleared from the extracellular space. a2-Macro-
globulin binds TGF-b and may mediate its en-
docytosis (LaMarre et al. 1990, 1991). However,
a2-macroglobulin knockout mice have no clear
defects to suggest excessive accumulation of ac-
tive TGF-b in tissues (Umans et al. 1995), and
so the full mechanisms by which active TGF-b is
cleared from the ECM remain a mystery.

Although the biological data on how active
TGF-b is regulated after its release from LAP
remain patchy, antagonists of other members
of the TGF-b family have been well described
and shown to play significant roles in vivo.
Myostatin (GDF-8) and activin, for example,
are more closely related to TGF-b than many
other TGF-b family members (Burt and Law
1994; Herpin et al. 2004), and although not
much is known about the significance of their
pro-peptides in their regulation, follistatin and
follistatin-related proteins play a significant role
in controlling these two growth factors by bind-
ing and blocking their interaction with recep-
tors (Walton et al. 2011). The interplay of my-
ostatin and follistatin has been particularly well
examined in the context of muscle growth,
where loss of myostatin causes widespread mus-
cle hypertrophy and hyperplasia (McPherron
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et al. 1997). Transgenic overexpression of folli-
statin in skeletal muscle causes similar muscle
overgrowth (Lee and McPherron 2001), but fol-
listatin also stimulates muscle hypertrophy
through myostatin-independent mechanisms
(Winbanks et al. 2012). Follistatin-null mice
display multiple developmental defects, reflect-
ing its important role in regulating bioavailabil-
ity of both activin and myostatin (Matzuk et al.
1995).

A diverse array of other proteins is hypoth-
esized to regulate the bioavailability of TGF-b
family members by binding and sequestration.
Unlike TGF-b, many BMPs are biologically ac-
tive when they are secreted from cells, and form
morphogenic gradients (Gazzerro and Canalis

2006). A number of BMP antagonists share little
clear sequence homology, but several contain a
“cystine-knot” structural motif, which is a high-
ly versatile fold that often forms dimers and is
found in a diverse selection of ECM proteins.
For example, cystine-knot motifs also comprise
the growth factor domains of the TGF-b family
(Vitt et al. 2001), suggesting a common, if ex-
tremely distant, evolutionary ancestor for both
the TGF-b family and many of its antagonists.
Noggin, chordin, and DAN family proteins all
interact with multiple members of the BMP
family and are crucial in the biology of these
signaling proteins.

There are clearly a large number of both
TGF-b family members and their antagonists.

ECM

Localized
activator

B  Latent cytokine activation

Cells expressing antagonist help
control and shape gradient

A  Morphogenic gradient

Growth factor diffuses
away from source

Figure 5. Conceptual mechanisms for the extracellular regulation of transforming growth factor b (TGF-b) and
bone morphogenetic protein (BMP)/growth and differentiation factor (GDF) compared. Growth factors may
convey information to cells in a number of ways. Shown here are some hypothetical schemes for ways in which
active growth factors may be distributed in the extracellular matrix (ECM). Cells are colored purple to indicate
their responsiveness to growth-factor signaling, or light blue if unresponsive. (A) Here, cells are provided with a
measure of their position relative to the source of the growth factor, as its concentration will decrease when
diffusing away from the site of release. Antagonists further control this gradient, which becomes even more
relevant when considering the three dimensions of a developing tissue. Growth factors are light green and
antagonists light brown. (B) Here, the growth factor does not come from a localized source but is distributed
through the matrix in a latent state. The local concentration of growth factor is determined by the availability of
activators to release it from this state. Also, depending on how quickly the growth factor is cleared from the
extracellular space, it may not have time to diffuse far, which could limit gradient formation. Growth factors are
red, whereas the ECM and proteins that anchor them are dark green. These different concepts could be
important when considering growth-factor signaling from a systems biology perspective.
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The full significance of this diversity is far from
well understood, and the ability of multiple
TGF-b family members to bind multiple antag-
onists and receptors introduces significant po-
tential for redundancy, multifunctionality, and
the formation of complex protein gradients in a
developing organism. This complexity may, in
turn, play an important role in directing the
elaborate patterns adopted by our organs and
tissues during development.

CONCLUDING REMARKS

The bioavailability of TGF-b and TGF-b family
members is regulated in complex and diverse
ways. It is rarely appropriate to consider these
growth factors as simple autocrine or paracrine
signals sent from one cell to another. Instead,
they must be considered in the broader struc-
tural context of the ECM, both in terms of how
they may be sequestered, stored, and concen-
trated although interactions with insoluble ma-
trix components, and also how these growth
factors will be regulated by gradients and local-
ization of specific inhibitors and activators.

This field poses many complex challenges
for future study, which will require extensive
and coordinated efforts to decipher the key
mechanisms at work and their significance in
health and disease. However, the considerable
therapeutic potential of modulating TGF-b
family signaling in an extracellular context
makes this research a particularly pressing en-
deavor.
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