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DNA repair is essential to maintain genomic integrity and
initiate genetic diversity. While gene conversion and clas-
sical nonhomologous end-joining are the most physiolog-
ically predominant forms of DNA repair mechanisms,
emerging lines of evidence suggest the usage of several
noncanonical homology-directed repair (HDR) pathways
in both prokaryotes and eukaryotes in different contexts.
Here we review how these alternative HDR pathways are
executed, specifically focusing on the determinants that
dictate competition between them and their relevance
to cancers that display complex genomic rearrangements
or maintain their telomeres by homology-directed DNA
synthesis.

Double-strand break (DSB) repair is essential to all forms
of life. The canonical and predominant pathways of DSB
repair include gene conversion (GC) and classical nonho-
mologous end-joining (c-NHE]). These pathways are es-
sential for the repair of DSBs that are generated during
meiosis, DNA replication, and antigen receptor diversifi-
cation (Dudley et al. 2005; Keeney and Neale 2006; Lieber
2010). Mutations in genes critical for these pathways re-
sult in a host of pathologies that speak to the importance
of faithful DNA repair (Sung and Klein 2006; Heyer et al.
2010; Chapman et al. 2012; Jiang and Greenberg 2015; Pra-
kash et al. 2015). While somewhat less appreciated, ho-
mology-directed DNA repair (HDR) encompasses many
genetically distinct mechanisms beyond the canonical
view of GC by Rad51 recombinase. Starting from 3
ssDNA overhangs, numerous alternative forms of error-
prone HDR pathways can be invoked. Emerging evidence
indicates their central involvement in the genomic insta-
bility that is present in cancers and other congenital disor-
ders (Hastings et al. 2009b; Rodgers and McVey 2015;
Carvalho and Lupski 2016).

This review describes the basis for several different
forms of noncanonical HDR and highlights the discovery
and conservation of these DNA repair mechanisms across
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prokaryotic and eukaryotic organisms. Where possible,
we attempt to delineate determinants of competition be-
tween these distinct DNA repair mechanisms. We begin
with the two-ended DSB repair pathways (Fig. 1) and com-
pare the biochemical mechanisms and the molecular
machinery used by these and the GC pathway (Table 1).
Finally, we focus on various forms of mutagenic one-
ended DSB repair pathways and review recent studies on
alternative forms of telomere maintenance and genomic
rearrangements that arise from varied themes of one-end-
ed break repair mechanisms.

Single-stranded annealing (SSA)

The SSA pathway is initiated when a DSB occurs between
homologous direct repeats. Extensive bidirectional resec-
tion reveals complementary ssDNA sequences that can
then anneal. This is followed by nuclease-mediated re-
moval of the unpaired 3’ tail, resulting in the deletion of
the intervening region and one of the repeats. The gaps
generated are filled in and ligated (Fig. 1). Because dele-
tions are inherently associated with this form of DNA re-
pair, SSA is, by definition, mutagenic.

Studies examining the mechanisms by which palin-
dromic sequences stimulate genomic deletions in Escher-
ichia coli suggested the existence of a bacterial SSA
pathway. Cleavage of the cruciform structures formed be-
tween palindromic sequences by the nuclease component
of the structure-specific nuclease SbcCD was proposed to
be followed by resection and annealing to form a deletion
product. This pathway was found to be RecA-independent
(bacterial Rad51 homolog) (Bzymek and Lovett 2001).
RecO, a functional homolog of the yeast Rad52 protein,
may mediate the annealing of the complementary se-
quences (Kantake et al. 2002). A functional genomics
study in radio-resistant Deinococcus radiodurans also
provided evidence for a RecA-independent SSA pathway
in generating deletions at the repeat regions and hence
contributing to genomic instability (Ithurbide et al.
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Figure 1. Modelfor the noncanonical HDR pathways
at two-ended DSBs. Single-stranded annealing (SSA),
microhomology-mediated end-joining (MME]J), and
synthesis-dependent strand annealing (SDSA) use the
same end resection machinery as the GC pathway.
SSA or MMEJ operates in the absence of 3’ single-
stranded tail invasion into a homologous template. If
the sequences revealed after resection are direct re-
peats, SSA is favored over MME]. Repair by SDSA oc-
curs when the 3’ invading strand, after undergoing
limited DNA synthesis, is displaced from the D loop
by a helicase and anneals back to a complementary
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2015). Thus, SSA may be a prevalent repair mechanism for
DSBs within repeat regions.

A modified version of SSA has also been proposed in
D. radiodurans to account for its remarkable ability to
accurately assemble a 3.28-Mb genome shattered in hun-
dreds of fragments after 5-kGy y radiation (Zahradka et al.

Table 1. Proteins involved in homology-directed repair

2006). A two-staged DNA repair process was suggested
to accomplish this reassembly. The first stage involves a
unique form of polymerase A (Pol A)-dependent assembly
called extended synthesis-dependent strand annealing
(ESDSA), which differs from classical SSA in that it in-
volves a D-loop-dependent strand extension step that
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continues until acomplementary strand is found. The sub-
sequent annealing of the two complementary strands is
similar to the SSA pathway. The second step involves
RecA-dependent crossover of the linear fragments to
form circular chromosomes (Zahradka et al. 2006). The
SSA pathway has also been reported in mycobacteria,
where the nuclease RecBCD, which has classically been
implicated in RecA-mediated homologous recombina-
tion (HR), was shown to be exclusively required for SSA.
In contrast, RecA-mediated HR in mycobacteria is
RecBCD-independent, and the mycobacterial genome en-
codes another heterodimeric, helicase nuclease termed
AdnAB for RecA-dependent homology synthesis (Gupta
etal.2011).Inaddition, arecent study in mycobacteria pro-
posed that the regulation of the RecFOR system, which can
either perform strand annealing and promote SSA or load
RecA and support GC, might be a determinant for the path-
way opted for the repair of DSBs (Gupta et al. 2015).
Indications for an SSA-like process in yeast came from
studies on the repair of HO endonuclease-induced DSBs
in rDNA repeats of rad52 mutant cells (Ozenberger and
Roeder 1991). Most of the repair products were associated
with the deletion of one or more repeat units. This obser-
vation was subsequently explained using an SSA mecha-
nism that had already been proposed in a mammalian
system (Lin et al. 1984). Ozenberger and Roeder (1991)
showed that the DSB repair product of a plasmid with
two copies of the same gene in direct orientation was as-
sociated with the annealing of the homologous sequences
with concomitant deletion of one of the repeats and the
intervening DNA. Unlike GC, the kinetics of SSA product
formation were inversely related to the distance between
the repeats (Fishman-Lobell and Haber 1992). A two-step
end resection mechanism was proposed for SSA that in-
volved (1) initial resection by the Mrell-Rad50-Xrs2
(MRX) complex-Sae2 followed by (2) extensive bidirec-
tional resection by 5'-3’ exonuclease Dna2 and Sgsl, a
Bloom (BLM) helicase homolog, and/or 5-3’ exonuclease
Exol (Mimitou and Symington 2008; Zhu et al. 2008; Gar-
ciaetal. 2011). This 3’ end resection machinery is used by
other HDR pathways as well. While Rad52 is required for
the annealing of RPA-covered ssDNA, SSA can operate in-
dependently of Rad52, albeit at a significantly lower effi-
ciency (Ozenberger and Roeder 1991; Fishman-Lobell
and Haber 1992). Rad52-mediated SSA is independent of
several other members of the Rad52 epistasis group, in-
cluding Rad51, Rad54, Rad55, and Rad57 (Ivanov et al.
1996), establishing it as a process distinct from GC.
Rad59 is also required for SSA, particularly in the context
of annealing shorter regions of homology (Sugawara et al.
2000; Agmon et al. 2009). After annealing of the comple-
mentary strands, the removal of the 3’ nonhomologous
tails is executed by the Rad1-Rad10 endonuclease com-
plex, which is facilitated by a heterodimer of mismatch re-
pair proteins, MSH2/MSH3 (Fishman-Lobell and Haber
1992; Ivanov and Haber 1995; Saparbaev et al. 1996; Suga-
wara et al. 1997; Symington 2002 ). Based on recent in vitro
biochemical studies, it was proposed that the structure-
specific DNA-binding protein Saw1 recognizes the 3’ non-
homologous flap and recruits Radl. In addition, Sawl
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enhances the 3’ tail cleavage activity of Rad1-Rad10 (Li
et al. 2013). It was demonstrated that, when two homolo-
gous segments are in direct orientation, SSA predomi-
nates over GC (Fishman-Lobell et al. 1992). However, in
a rad51 deletion strain, there is a marked increase in
SSA with a concomitant decrease in GC, exemplifying
the competing nature of the two pathways (Ivanov et al.
1996; Agmon et al. 2009). Indeed, Rad51 has been shown
to prevent Rad52-mediated annealing of complementary
ssDNA in defined in vitro systems (Wu et al. 2008).
SSA has been demonstrated to mediate nonallelic HR
(NAHR) between rereplicated repeat sequences, resulting
in copy number variations (CNVs) in the yeast genome
(Finn and Li 2013).

Unlike most other DNA repair pathways that were dis-
covered in bacteria and yeast, the SSA mode of recombina-
tion was first identified in mammalian cells. It was
observed that the efficiency of both intermolecular and in-
tramolecular recombination of plasmids with sequence
repeats was dependent on the degree of homology and
could be stimulated 10-fold to 100-fold by appropriately
cutting the DNA relative to the recombining sequences.
This led to a model in which these cut ends could be sub-
strates for exonuclease activity, which would help expose
the recombining sequences for annealing (Lin et al. 1984).
A subsequent study in Xenopus oocyte extracts provided
evidence for this annealing model by identifying reac-
tion intermediates with full-length 3’ ending strands and
shorter 5 ending strands with overlaps between the 3’
complementary region (Sweigert and Carroll 1990). Inter-
estingly, it was demonstrated that SSA could mediate
translocations in human cells harboring DSBs in the
repetitive Alu elements (Elliott et al. 2005), which can
explain the deletions observed in the Alu elements in
germline mutations of several tumor suppressor genes
(Kolomietz et al. 2002). Because SSA relies on extensive
base-pairing between homologous sequences, its contri-
bution to translocations is limited even between the re-
petitive elements, which is most likely due to sequence
variability in these repeats (Weinstock et al. 2006). Analy-
sis of the genetic requirements for different DNA repair
pathways revealed that while GC, microhomology-medi-
ated end-joining (MME]J), and SSA repair pathways share
the same end resection machinery, Rad52 and ERCCI1 (a
homolog of Rad10) are more important for SSA. Addition-
ally, as reported in yeast, Rad51 disruption causes a
decrease in GC with a parallel increase in SSA and has
no effect on MMEJ (Adair et al. 2000; Stark et al. 2004,
Bennardo et al. 2008). Several questions arise from these
studies as to how complementary sequences, particularly
in the form of direct repeats, are shunted to the various
forms of HDR. Notably, how does resection coordinate
and hand off these repair substrates to the gene products
that dictate whether GC or error-prone SSA or MME] is
the repair pathway of choice? A point to note is that
much of the molecular machinery used and the biochem-
ical steps involved are similar among these different HDR
pathways (Table 1). Therefore, it is important to identify
the rate-limiting step in each pathway that would allow
one to predominate over the other.



Alternative end-joining (alt-EJ)/MME]J

While alt-EJ is a more generalized term for end-joining that
occurs independently of the c-NHE] machinery, MMEJ is a
form of alt-EJ that has been characterized more extensive-
ly. MME]J involves annealing of “microhomologous” se-
quences revealed after bidirectional end resection and
removal of the overhanging 3’ single-stranded tail followed
by error-prone filling of the gaps and subsequent ligation
(Fig. 1). This pathway of repair is mutagenic and has
been associated with chromosomal translocation events.
While mechanistically similar to SSA in concept, MME]
requires less homology and different gene products for its
execution, firmly indicating that it is a process distinct
from SSA.

Evidence for the presence of alt-EJ in bacteria emerged
from studies in E. coli, which do not possess the multi-
functional ligase-D and Ku-like proteins essential for bac-
terial ¢-NHE]J (Bowater and Doherty 2006; Chayot et al.
2010). Studies on the repair of linearized plasmids with
noncomplementary ends revealed that E. coli could join
these DNA ends, albeit in an error-prone manner. This
end-joining was independent of the substrate ends but
was found to be dependent on extensive bidirectional re-
section, the use of microhomology of mostly <3 base
pairs (bp), and limited nontemplated DNA synthesis.
Additionally, alt-E] was shown to repair I-Scel endonucle-
ase-induced chromosomal DSBs in a recombination-inde-
pendent manner and in the presence of an intact HR
machinery. Although the physiological importance of
this pathway is unclear, it suggested that alt-E] might con-
tribute to the mending of DSBs that cannot be repaired by
GC (Chayot et al. 2010). The error-prone nature of this re-
pair can contribute to genome evolution for the adaptabil-
ity of bacteria to changing environmental conditions.
While it is unknown whether such an alternative repair
pathway exists in other bacterial species, a Ku- and
LigD-independent end-joining pathway was reported in
mycobacteria, which, unlike E. coli alt-EJ, is specific to
sticky 3’ overhangs, does not involve end-processing,
and is nonmutagenic in nature (Aniukwu et al. 2008).

Early evidence for MME] came from studies in Saccharo-
myces cerevisiae, where the ligation product of a linearized
plasmid transformed into a Ku-deficient strain showed sus-
tained deletions with microhomologous sequences rang-
ing from 3 to 16 bp at the ligated junctions (Boulton
and Jackson 1996). Subsequent studies in S. cerevisiae
identified the molecular machinery that drives MMEJ: (1)
initiation of end resection by the MRX-Sae2; (2) if the
microhomologous sequences are >2 kb away from the
DSB ends, extensive bidirectional resection is performed
by Sgs1-Dna2 and/or Exol; (3) annealing of microhomolo-
gous sequences and removal of 3’ single-stranded flaps by
Rad1-Rad10; (4) and filling of gaps by polymerases Pol \
(Pol 4) and Pol § in conjunction with its nonessential sub-
unit, Pol 32 (Ma et al. 2003; Decottignies 2007; Garcia
et al. 2011; Symington and Gautier 2011; Villarreal et al.
2012; Cannavo and Cejka 2014; Deng et al. 2014; Meyer
et al. 2015). Rad51 filament formation is considered to be
a critical feature in dictating GC versus MME] events.

Alternative homology-directed repair

Binding of RPA to ssDNA, generated by end resection, pre-
vents spontaneous annealing and promotes Rad51 fila-
ment formation, leading to GC events (Deng et al. 2014).
Indeed, the frequency of MME]J is enhanced in yeast after
removal of Rad51, suggesting a competition between the
two repair pathways (Villarreal et al. 2012; Deng et al.
2014). Unlike SSA, Rad52 is not required for MME]J. Specif-
ically, Rad52 is dispensable for microhomologous se-
quences <14 bp (Villarreal et al. 2012). Although the basic
steps in MME] are similar between mammals and yeast,
the molecular machinery and the functional relevance
are more elaborate in higher eukaryotes (discussed below).
In contrast, MME] in yeast is assumed to be abackup mech-
anism to repair DSBs in the event that HR and NHEJ fail to
do so (Sfeir and Symington 2015).

MME]J in mammals was reported by studies in p53-null
mice lacking the components of the NHE] machinery.
These mice developed pro-B-cell lymphomas resulting
from chromosomal translocations between the IgH and
the c-myc loci. The repair junctions were characterized
by insertions, deletions, and microhomology (Difilippan-
tonio et al. 2002; Zhu et al. 2002). Later studies performed
in NHEJ-deficient mice showed that antigen receptor-as-
sociated translocations could still be observed in B cells
at the regions of microhomology, suggesting a role of
MME] in mediating these translocations (Yan et al.
2007). While MME]J is the predominant pathway in mice
for chromosomal translocations, recent studies demon-
strated that translocations in humans are primarily medi-
ated by ¢-NHE] (Simsek and Jasin 2010; Ghezraoui et al.
2014). MME]J has also been shown to mediate telomere fu-
sion in cells lacking both the shelterin and the Ku70/80
complexes (Sfeir and de Lange 2012). Several independent
studies have demonstrated that MME] can also operate in
the presence of intact NHE]J (Corneo et al. 2007; Truong
etal. 2013), suggesting that Ku deficiency is not a requisite
feature for the usage of MMEJ. Similar to yeast, mamma-
lian MMEJ and GC share the same end resection machin-
ery, where Mrell in complex with CtIP performs the
initial resection. In case the microhomologous sequences
are far apart, further resection is performed by BLM-Dna2
and Exol (Dinkelmann et al. 2009; Rass et al. 2009; Xie
et al. 2009; Lee-Theilen et al. 2010; Zhang and Jasin
2011; Truong et al. 2013). The key players that drive
MMEJ in mammalian cells include the highly mutagenic
DNA polymerase Pol 8, ligase 3, and poly(ADP-ribose) po-
lymerase 1 (PARP1) (Audebert et al. 2004; Wang et al.
2005; McVey and Lee 2008; Chan et al. 2010; Yu and
McVey 2010; Simsek et al. 2011). Initial evidence for the
role of Pol 0 in this pathway came from studies in Droso-
phila, and this polymerase has since then been shown to
be essential for MME]J in all metazoan species examined
to date (Chan et al. 2010; Yu and McVey 2010; Sfeir and
Symington 2015). Pol 6 has the unique ability to prime
DNA synthesis from nonoptimal base-pairing and add nu-
cleotides to the 3’ end of ssDNA (Hogg et al. 2012; Yousef-
zadeh et al. 2014; Kent et al. 2015). This promiscuous
polymerase activity in the C-terminal domain of Pol 6
arises from its ability to maintain a tight hold on the 3’-
terminal phosphate of the primer via strong electrostatic

GENES & DEVELOPMENT 1141



Verma and Greenberg

interactions (Zahn et al. 2015). A recent crystal structure
of the Pol 6 helicase domain revealed its tetrameric orga-
nization and suggested its role in annealing the DNA
strands for subsequent processing by the polymerase
domain (Newman et al. 2015).

The competitive nature between GC and MME] was re-
cently brought to light by several studies that demonstrat-
ed elevated Rad51-dependent GC in Pol 6-deficient cells.
One study implicated Pol 8 and Rad51 interactions as a
mechanism to prevent Rad51-ssDNA nucleofilament
assembly, thus inhibiting GC and promoting MME] (Cec-
caldi et al. 2015). The accompanying study demonstrated
a critical role for Pol 6 polymerase activity in mediating
this balance (Mateos-Gomez et al. 2015). In contrast to
MME] in yeast, where >6 nucloetides (nt) of homology
is required and no insertions are observed at the junction,
in higher eukaryotes, Pol 8 uses shorter (2- to 6-bp) micro-
homologies for annealing and introduces insertions at the
break sites, making this pathway highly error-prone and,
in contrast to SSA, readily available to most genomic loca-
tions (McVey and Lee 2008; Kent et al. 2015). HR-deficient
ovarian cancer exhibits higher expression levels of Pol 6,
and a synthetic lethal relationship has been demonstrated
between HR and PARP1/Pol 6-mediated MME] (Ceccaldi
etal. 2015, 2016; Mateos-Gomez et al. 2015). It will be in-
teresting to examine whether MME] is the key target un-
derlying PARP inhibitor efficacy in BRCA mutant cancer
cells. Such issues are at the heart of developing Pol 8 inhib-
itors as an additional approach to treat tumors that harbor
HR deficiencies.

SDSA

The SDSA pathway involves bidirectional resection of
DSBs, enabling either one or both 3’ single-stranded ends
to invade a homologous template and form a D loop sim-
ilar to GC. However, unlike GC, the invading strand is
displaced during the D-loop migration (Ferguson and Hol-
loman 1996). During one-ended invasion, the displaced
strand now anneals to the other complementary end of
the DSB. In the case of two-ended invasions, both the dis-
placed strands now anneal via the newly synthesized com-
plementary regions (Fig. 1; Nassif et al. 1994; Krogh and
Symington 2004). SDSA primarily appears to be a pathway
that preserves genomic integrity by suppressing cross-
overs and preventing the loss of heterozygosity. However,
models for SDSA that result in crossover outcomes have
also been proposed (Paques et al. 1998; Piques and Haber
1999; Allers and Lichten 2009).

Although the SDSA model has been used to explain the
nature of recombinant products formed during the intron
homing process in bacteriophage T4 (Bryk et al. 1995), the
repair of DSBs via SDSA in bacteria still needs to be docu-
mented (Ayora et al. 2011). ESDSA (discussed earlier) is
one rare example of a SDSA-related process in bacteria
known to date (Zahradka et al. 2006). It is worthwhile to
note that bacteria possess homologs of helicases that
have been demonstrated to play an important role in
promoting SDSA by disrupting the D loop. The Srs2-like
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bacterial protein UvrD can disrupt the RecA nucleo-
protein filament (Veaute et al. 2005). An in vitro biochem-
ical study reconstituting the early steps of the bacterial
RecFOR repair pathway demonstrated that the bacterial
RecQ protein, like its eukaryotic homologs, could disrupt
the formation of joint DNA molecules (Handa et al. 2009).
Additionally, proteins with an anti-recombination activi-
ty like MutS2, which can digest branch DNA structures,
including Holliday junctions (HJs), have also been docu-
mented in bacteria (Fukui et al. 2008).

The idea of SDSA was first proposed in a theoretical
study, where it was hypothesized that homology-mediat-
ed DSB repair can happen via heteroduplex unwinding af-
ter limited DNA synthesis without the formation of
double HJs (dHJs) (Resnick 1976). A related pathway was
used to describe a mating type conversion in yeast, where
the exchange of DNA between the expressed and unex-
pressed alleles at the mating type locus was not associated
with crossover (Strathern et al. 1982). Subsequently, an
SDSA model was used to explain the presence of a hetero-
duplex region on a single chromatid during meiosis (Porter
et al. 1993; Gilbertson and Stahl 1996). Most research on
the molecular machinery driving SDSA has focused on
the mechanisms that would lead to displacement of the
invading strand from the D loop and hence favor SDSA.
Initial evidence for the involvement of a helicase in pro-
moting SDSA came from yeast genetic studies that dem-
onstrated that deletion of either the sgs1 or srs2 gene
increased crossover frequencies. It was suggested that
Sgsl and its associated topoisomerase, Top3, dissociate
the dHJs, and Srs2 regulates Rad51 nucleofilament forma-
tion and facilitates invading strand displacement (Ira et al.
2003). In vitro biochemical studies demonstrated that Srs2
helicase activity can disrupt Rad51 presynaptic filaments
(Krejci et al. 2003; Veaute et al. 2003) and unwind synthet-
ic structures that mimic D loops (Dupaigne et al. 2008).
It was also shown that the helicase activity of Srs2 was
stimulated by the presence of Rad51 filaments on dsDNA,
suggesting that Srs2 can unwind the duplex part of a
D loop while removing Rad51 from the invading strand.
This can eventually result in annealing of the invading
strand to the ssDNA on the other break end (Dupaigne
et al. 2008). Yeast Rad51 paralogs Rad55-Rad57 can coun-
teract the anti-recombination activity of the Srs2 helicase
and promote Rad51 filament formation (Liu et al. 2011a).
Recent biochemical studies on Sgs1 helicase demonstrat-
ed that while this RecQ helicase can disrupt protein-free
D loops, it could not disrupt D loops reconstituted with
yeast RPA, Rad51, and Rad54 proteins. On the other
hand, Top3 could dissolve yeast Rad51-Rad54-mediated
D loops in an Sgsl-independent manner, and this activity
was found to be stimulated by its binding partner, Rmil.
This study explains the basis for the stronger hyperrecom-
bination phenotype of top3 mutants compared with sgs1
mutants (Fasching et al. 2015). Additionally, yeast heli-
case Mphl, an ortholog of human Fanconi anemia (FA)
protein FANCM, has been shown to dissociate Rad51-
generated D loops in vitro and promote the noncrossover
SDSA pathway in vivo independently of Srs2 and Sgsl
(Prakash et al. 2009). The molecular machinery used in



the later steps of SDSA that includes DNA strand anneal-
ing and removal of the extra 3’ ssDNA is the same as that
used by SSA. These findings further emphasize that while
these repair pathways are markedly different in the nature
of the repair products formed, they tend to use the same
repair proteins in mechanistically similar steps (Nassif
et al. 1994, Lao et al. 2008; Mazon et al. 2012; Symington
et al. 2014). A sequencing-based study analyzing the gap
repair products suggested a model in which the length of
the invading strand decides whether SDSA or GC is the re-
pair pathway of choice. Interestingly, most noncrossovers
generated during mitosis are produced by SDSA rather
than by the canonical GC pathway (Mitchel et al. 2010).
Like other repair pathways, SDSA can outcompete the ki-
netically slow process of break-induced replication (BIR)
(discussed below) (Malkova et al. 2005).

The term SDSA was coined in a DSB repair study in
Drosophila examining P-element transposition in mitotic
cells. Sequences from various loci in the donor template
were found in the repair product. This observation was ex-
plained by an SDSA model, according to which both the
broken ends perform homology search, undergo exten-
sion, and dissociate prior to the formation of dHJs. The
complementary single strands eventually anneal, com-
pleting the synthesis (Nassif et al. 1994). Subsequent stud-
ies in several higher eukaryotes have revealed the
existence of the SDSA pathway (Belmaaza and Chartrand
1994; Adelman and Boulton 2010). Like in yeast, members
of the RecQ helicase family have been documented to
have a role in promoting SDSA in higher eukaryotes as
well (Adams et al. 2003; Wu and Hickson 2003). Human
BLM, along with Toplll a topoisomerase, promotes non-
crossover formation by dissolution of dHJ intermediates
and by preventing the exchange of flanking sequences
(Wu and Hickson 2003). Recently, another member of
the RecQ helicase family, RecQ5, a potential Srs2 ortho-
log in mammals, was shown to promote SDSA by disrupt-
ing Rad51-ssDNA filaments and counteracting the
inhibitory effect of Rad51 on the strand-annealing activity
of Rad52 (Paliwal et al. 2014). It will be interesting to ex-
amine whether FANCM can also perform a function sim-
ilar to its yeast ortholog, Mphl, in dissociating Rad51-
coated D loops and promoting SDSA. Indeed, FANCM
has been biochemically shown to dissociate large recom-
bination intermediates (a structures) containing a HJ
(Gari et al. 2008). In higher eukaryotes, Rtell (regulator
of telomere length 1), a replication fork-associated 5’'-to-
3’ helicase, has been shown to disrupt D loops in vitro
and promote SDSA in vivo (Adelman and Boulton 2010;
Youds et al. 2010). It will be important to examine how
the activities of these helicases and their access to DSB re-
pair intermediates are regulated and how this influences
the HDR pathway outcome.

BIR

BIR, previously known as break—copy recombination or
recombination-dependent replication, is a HDR pathway
that comes into play when there is homology at only
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one end of the DSB. It involves invasion of 3’ single-strand-
ed overhangs onto a homologous sequence followed by
copying of the invaded sequences to the distal end, which
can extend for up to several hundred kilobases in yeast
(Fig. 2; Morrow et al. 1997).

In E. coli, a BIR-related pathway functions during the re-
covery of broken replication forks, which are formed par-
ticularly during SOS-induced replication called inducible
stable DNA replication (iSDR) (Asai et al. 1993; Marians
2000). PriA, a SF2 family helicase, mediates this BIR-relat-
ed process by recognizing the D-loop structures formed by
RecA (Lee and Kornberg 1991; Nurse et al. 1991; Xu and
Marians 2003). PriA recruits PriB, which stabilizes the
PriA-DNA interactions and is followed by the recruit-
ment of ssDNA-binding protein DnaT, loader/helicase
DnaC/DnaB, and primase DnaG to the D loop. DNA Pol
III finally joins this complex to form an active replisome.
This replication restart is independent of DnaA, which
is required for replication originating at OriC (Marians
2000; Gabbai and Marians 2010). Since there is only a sin-
gle origin of replication in bacteria, this OriC-independent
pathway is essential in rectifying any replication fork fail-
ure. Homologs for PriA are present across nearly all bacte-
rial genomes with the exception of some endosymbionts
and mollicutes (Rocha et al. 2005). This widespread con-
servation perhaps highlights the importance of Pri-A-di-
rected replisome formation at the broken replication
forks in bacterial physiology.

Early evidence for BIR in yeast came from meiotic and
mitotic recombination studies where the repair products
were associated with very long GC tracts that extended
to the end of the chromosome (Esposito 1978; Judd and
Petes 1988; Voelkel-Meiman and Roeder 1990). A direct
demonstration of BIR in yeast was made in studies show-
ing that if DSBs were generated on a chromosome in a hap-
loid strain, then the centromere-proximal end near the
break invaded a homologous sequence on the other end
of the chromosome and copied it to the end, resulting in
the formation of a nonreciprocal translocation product
(Bosco and Haber 1998). BIR in yeast has been shown to
be important for the recovery of collapsed replication
forks and has an essential role in recombination-depen-
dent telomere maintenance in cells lacking telomerase
(McEachern and Haber 2006). How replication fork assem-
bly occurs for BIR in the context of a failed replication fork
or during telomere maintenance is not fully understood.
No PriA homolog in eukaryotes has been identified to
date. Like other recombination pathways in yeast,
Rad52 is essential for BIR. However, while BIR in yeast
mostly proceeds in a Rad51-dependent manner, it can
also operate independently of Rad51, albeit with lower ef-
ficiency (Fig. 2; Malkova et al. 2005).

Rad51-dependent BIR

More than 95% of BIR events in S. cerevisiae are reported
to be Rad51-dependent and do not require either Rad50 or
Rad59. Rad51-dependent BIR has been suggested to be es-
sential for recombination-dependent restoration of a col-
lapsed replication fork (Davis and Symington 2004).
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When homology occurs at both ends of DSBs, GC outcom-
petes BIR. Similarly, a DSB flanked by a direct repeat is
preferentially repaired by SSA rather than by BIR. This
suppression of BIR has been attributed to the delayed ini-
tiation of new strand synthesis, making BIR a kinetically
slow process. However, once BIR is initiated, its rate of
synthesis becomes comparable with normal replication
(Malkova et al. 2005; Jain et al. 2009). Formation of
Rad51 filaments during BIR relies on 5-3' resection of
DSBs, which is initiated by MRX-Sae2 and is continued
later by Exol or Sgsl-Dna2. However, it is important to
note that genetic deletion of either Exol, Sgsl1, or Sae2 in-
creases BIR efficiency. The basis for this somewhat coun-
terintuitive observation is currently unclear (Lydeard
et al. 2010; Marrero and Symington 2010; Anand et al.
2013). It is important to note that, in these studies, the
BIR assays used substrates with limited homology. Since
the 3’ single-stranded tail generated after resection are un-
stable, it is possible that some sequences at the 3’ end were
lost owing to the slow kinetics of BIR, leaving no homol-
ogous substrate and resulting in decreased efficiency
(Marrero and Symington 2010). Following resection, the
ssDNA initially associates with RPA. Rad52 facilitates
RPA displacement by Rad51 to promote nucleofilament
formation on the 3’ overhang (Sugiyama and Kowalczy-
kowski 2002; Krogh and Symington 2004). Various com-
ponents of the S-phase machinery have been shown to
be required for BIR (Lydeard et al. 2010). Around the
same time, Pifl, a nonreplicative helicase, was shown to
be essential for long-range BIR in yeast (Chung et al.
2010). Subsequent studies suggested that Pifl rather
than the replicative helicases Mcm2-7 are the major driv-
ers of BIR (Wilson et al. 2013). Mechanistic studies outside
the context of replication have demonstrated that BIR pro-
ceeds via a migrating bubble-like replication fork that
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Figure 2. Model for HDR at one-ended DSBs by Rad51-
dependent and -independent BIR. (A) A one-end break re-
pair that involves intermolecular recombination (e.g., a
broken replication fork) occurs primarily by Rad51-de-
pendent BIR. The Rad51 nucleofilament invades a ho-
mologous template, and DNA synthesis can continue
to the end of the donor template. As demonstrated in
yeast, asynchronous synthesis of the leading and lagging
strands has been shown. (B) Rad51-independent BIR at a
one-ended break can occur when long-range strand inva-
sion is not required. For instance, in the figure above, for-
mation of a t-circle at the end of an ALT (alternative
lengthening of telomeres) telomere can initiate BIR-me-
diated homology synthesis. The 3’ end is extended, which
can then serve as a template for synthesis of the second
strand.

moves down the length of a chromosome, resulting in
the conservative inheritance of genetic material (Smith
et al. 2007; Donnianni and Symington 2013; Saini et al.
2013; Wilson et al. 2013). This replication fork was driven
by Pifl helicase, and there was asynchronous leading and
lagging strand synthesis, resulting in accumulation of
ssDNAs, which are prone to mutations (Saini et al.
2013). Pol a primase and Pol § have been shown to be es-
sential for the initiation of DNA synthesis in Rad51-de-
pendent BIR. In contrast, Pol ¢ is not required for
initiation but is assumed to be required for completion
of DNA synthesis over long stretches of DNA (Lydeard
et al. 2007). This switch in the DNA polymerase has
been suggested to convert BIR to a highly processive pro-
cess. Strong genetic and biochemical studies demonstrat-
ed that, during BIR, Pifl is required for the proper
recruitment of Pol § to the D loops generated by Rad51
(Wilson et al. 2013). The Pol 32 subunit was found to be
essential for Rad51-dependent BIR (Lydeard et al. 2007).
How Pol 32 promotes this recombination-mediated repli-
cation is yet to be determined, given that Pol 32 is not re-
quired for Pol § processivity or collision release (Langston
and O’Donnell 2008). Interestingly, a recent study demon-
strated that BIR-driven mutagenic synthesis at broken
replication forks can be restricted by either a converging
replication fork or Mus81, an endonuclease that cleaves
the D loop. This study suggests an elegant strategy by
which cells maintain their genomic integrity during er-
ror-prone DNA synthesis at breaks harboring one-sided
homology (Mayle et al. 2015). This begs the question of
how often BIR ensues at genomic locations that lie in be-
tween replication origins. It also brings up a potentially
new concept of checkpoints that slow down the initial mi-
grating D-loop bubble for convergence with an opposing
replication fork.



Radb51-independent BIR

Early evidence for Rad51-independent BIR came from
studies in a rad51A strain where a DSB with one-ended ho-
mology was repaired in such a way that a 100-kb region
distal to the breakpoint was copied from the homologous
chromosome, resulting in loss of heterozygosity (Malkova
et al. 1996). Concomitantly, it was demonstrated that
rad51A rad59A double-mutant strains were more defec-
tive in recombination than rad51A or rad59A single
mutants, suggesting a Rad51-independent pathway for
spontaneous and DSB-induced recombination as well
(Bai and Symington 1996). Rad51-independent recombi-
nation requires much less homology (30 bp) for strand in-
vasion compared with Rad51-dependent repair (Ira and
Haber 2002). A Rad52 mutant lacking the C-terminal
Rad51 interaction domain is essential for this form of
BIR (Tsukamoto et al. 2003). Yeast genetic studies have es-
tablished the requirement of the MRX complex, Rad59,
Radh54/Tidl, and Rad52 for Rad51-independent BIR
(Signon et al. 2001). The requirement of Rad50 and
Rad59 suggests that this form of BIR requires extensive re-
section and a strand-annealing mechanism (Symington
et al. 2014). The importance of Rad50 in BIR, however,
was found to be dependent on the kind of assay performed.
While the aforementioned studies used site-specific endo-
nucleases to induce DSBs with one-ended homology and
suggested the importance of Rad50 in Rad51-independent
BIR, chromosome fragmentation-based assays showed no
role for Rad50 in either Rad51-dependent or -independent
BIR (Davis and Symington 2004). Based on earlier Rad51-
independent intraplasmid recombination studies (Ira and
Haber 2002), it was proposed that Rad50 could be impor-
tant during BIR between short repeats, such as those
found in type II survivors, which maintain their telomeres
via amplification of TG;_; telomeric repeats. Together,
these studies propose that Rad51-independent BIR pri-
marily operates during intramolecular recombination;
however, intermolecular events mostly rely on Rad51
strand invasion and are independent of Rad50 and Rad59
(Ira and Haber 2002; Davis and Symington 2004).

The idea for the existence of a Rad51-dependent and -in-
dependent BIR is strongly supported by studies in yeast
that maintain their telomeres via a telomerase-indepen-
dent recombination mechanism (Lundblad and Blackburn
1993; Le et al. 1999). Two kinds of survivors are observed
in yeast that lack telomerase and can bypass senescence
(Lundblad and Blackburn 1993; Teng and Zakian 1999;
Chen et al. 2001). Type I survivors are Rad51-dependent
and maintain their telomeres by frequent recombination
between the conserved subtelomeric Y’ repeat sequences,
resulting in the formation of telomeres with amplified Y’
sequences. This pathway requires Rad54, Rad55, and
Rad57 and might involve resection of the telomere into
subtelomeric regions, such as X and Y’ elements, to gener-
ate a 3’ single strand, which can invade a homologous se-
quence on other telomeres to promote BIR. On the other
hand, type IT survivors are Rad51-independent and require
Rad59, Rdh54, Sgs1, and the MRX complex. Here, the im-
perfect nucleotide TG;_3 telomere sequences have been
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proposed to elongate by the invasion of these TG;_3 se-
quences into another TG;_3 sequence on the same chro-
mosome through the formation of a t-loop-like structure
or by annealing to single-stranded regions on a telomere
from a different chromosome (Walmsley et al. 1984; Grif-
fith etal. 1999; Le et al. 1999; Teng and Zakian 1999; Chen
et al. 2001; Huang et al. 2001; Johnson et al. 2001; Tsuka-
moto et al. 2001). In comparison with the telomerase-pos-
itive cells, both kinds of survivors contain copious
amounts of extrachromosomal circular DNA with telo-
meric sequences, which could act as a template for recom-
bination-based telomere maintenance (McEachern and
Haber 2006). While type I survivors harbor circular Y’ ele-
ments (Horowitz and Haber 1985), type II survivors con-
tain heterogeneously sized extrachromosomal circles of
TG;_3 DNA, which are similar to what is observed in
some telomerase-negative human cells (Teng et al. 2000;
Cesare and Griffith 2004; Lin et al. 2005). Regardless of
the clear differences in the genetic requirements and prod-
ucts generated, Pol 32 is required for telomere synthesis in
both type I and type II survivors. In addition, the finding
that Pol 32 and Pifl are required for telomere synthesis
in these survivors further supports that this telomerase-
independent telomere maintenance uses a BIR-related
mechanism that requires processive DNA synthesis and
is most likely independent of the canonical replisome
used during S phase (Lydeard et al. 2007; Dewar and Lydall
2010; Hu et al. 2013).

BIR in higher eukaryotes have been mentioned in two
different contexts.

BIR-related mechanism in alternative lengthening
of telomeres (ALT)

Similar to yeast survivors discussed above, 15% of human
cancers bypass senescence by using telomerase-indepen-
dent mechanisms collectively known as ALT (Shay and
Bacchetti 1997; Cesare and Reddel 2010; Dilley and
Greenberg 2015). Early evidence that human telomeres
can be maintained by recombination came from the obser-
vation that telomeres of telomerase-negative cells can un-
dergo a rapid change in their length (Murnane et al. 1994).
It was subsequently demonstrated that telomerase-nega-
tive cell lines contained long, heterogeneous telomeres
(Bryan et al. 1995), and a “tag” engineered into one telo-
mere can get copied to other telomeres in an ALT cell,
suggesting the role of HR in maintaining these telomeres
(Dunham et al. 2000). However, the specific HR mecha-
nism and the replication machinery used for ALT telomere
maintenance are not clearly understood. Additionally, it
appears that ALT telomeres can be maintained by more
than one mechanism, and hence the ALT phenotype
cannot be attributed to a given pathway (Muntoni and
Reddel 2005). Many human ALT telomeres maintain
themselves in a Rad51-independent manner similar to
the type II survivors in yeast (Potts and Yu 2007). Several
recent studies suggest that nuclease-induced breaks or
sustained replication stress within ALT telomeres in-
duce long-range telomere movements that culminate in
intertelomere associations, suggesting the occurrence of
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a specialized homology-searching process. Telomere clus-
tering was partially dependent on Rad51 and also required
the Hop2-Mnd1 heterodimer, which is crucial for exten-
sive homolog pairing during meiosis (Cho et al. 2014).
Rad51-dependent telomere clustering was also reported
in ALT cells undergoing replication stress after the deple-
tion of annealing helicase SMARCALI (Cox et al. 2016).
Additionally, induction of replication-induced damage
by depletion of histone chaperon ASF1 resulted in the in-
duction of ALT activity even in immortalized human
cells with longer telomeres (O’Sullivan et al. 2014). Inter-
telomere recombination during ALT may also be assisted
by other unique and alternative mechanisms. Recent stud-
ies showed that C-type (TCAGGG) variant repeats in ALT
telomeres recruit NR2C/F orphan nuclear receptors,
which lead to telomere clustering events that can promote
telomere recombination (Conomos et al. 2012; Marzec
et al. 2015). What is unclear is the extent to which the
Rad51-dependent telomere homology search contributes
to break-induced telomere synthesis. It is possible that
both typeIand type I mechanisms may be occurring in par-
allel during ALT, as it is commonly observed that a large
percentage of ALT telomeres experience persistent DSBre-
sponses that recruit a myriad of DNA repair proteins with
opposing functions, including BRCA1, Rad51, and 53BP1
(Cesare et al. 2009; Cho et al. 2014). It will also be interest-
ing to investigate commonalities in function between rep-
licative DNA synthesis during scheduled S-phase and
break-induced synthesis mechanisms that are thought to
proceed during ALT; for example, whether factors like
the BLM helicase, which facilitates the movement of repli-
cation forks on G-rich telomeric sequences in telomerase-
positive cells, can perform a similar function during ALT
telomere synthesis (Drosopoulos et al. 2015).

Various kinds of donor templates have been suggested
for homology-directed ALT telomere recombination,
which can be either intertelomeric or intratelomeric
(Cesare and Reddel 2010). Telomeric recombination can
occur within the same chromosome either via formation
of a t-loop (Fig. 2) or by using the telomere of a sister chro-
matid as a donor template (Muntoni et al. 2009). Another
source of the donor template can be the extrachromosomal
DNA found in ALT cells, which can be in the form of cir-
cular double-stranded telomeric repeats called t-circles
(Cesare and Griffith 2004; Wang et al. 2004), partially
single-stranded G- or C-rich circles of telomeric DNA
(Henson et al. 2009; Nabetani and Ishikawa 2009), linear
extrachromosomal telomeric repeats (ECTRs) (Tokutake
et al. 1998), or high-molecular-weight “t-complex” DNA
(Nabetani and Ishikawa 2009). Telomeric chromatin,
along with DNA recombination and repair proteins,
can also exist in ALT-associated promyelocytic bodies
(ABPs). While ABPs are considered markers of ALT recom-
bination, ALT telomeres can be maintained in the absence
of ABPs (Henson and Reddel 2010). The formation of t-cir-
cles was reported to be dependent on Nbsl and Xrcc3
(Compton et al. 2007). These proteins have also been im-
plicated in the formation of functional ABPs and telomere
maintenance in ALT cells (Natarajan and McEachern
2002; Jiang et al. 2005). Strikingly, prevention of t-circle
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formation in ALT cells after Nbsl or Xrcc3 knockdown
wasnot lethal. The nonessential nature of ABPs or t-circles
suggests the presence of functionally redundant pathways
in maintaining ALT telomeres. Partially single-stranded
C-rich circles (C-circles) have been shown to be a quantifi-
able marker for ALT activity in cells (Henson et al. 2009).
Based on studies in yeast, it has been suggested that these t-
circles and C-circles can serve as a template for rolling cir-
cle replication of telomeres and hence allow telomere
maintenance in the absence of telomerase (Cesare and
Griffith 2004; Wang et al. 2004). However, a direct in
vivo experiment supporting the rolling circle model for
ALT telomere replication in humans is lacking.

BIR-mediated synthesis during replication stress

Studies in mammalian cells have demonstrated that a
small proportion of HDR involves long-tract GC (LTGC),
where the invading strand is extended much longer com-
pared with the more frequently observed short-tract GC
(Richardson et al. 1998; Willis et al. 2015). As discussed
above, one-ended DSBs in yeast have been shown to result
in a BIR pathway that leads to DNA synthesis extending up
to several hundred kilobases (Morrow et al. 1997). Because
LTGC in mammals also results in the formation of long re-
combination products, it has been suggested to be analo-
gous to BIR in yeast (Willis et al. 2015). Interestingly,
depletion of BRCA1 or the Rad51 paralog XRCC3 in-
creased the tract length of GC products (Brenneman
et al. 2002; Nagaraju et al. 2009; Chandramouly et al.
2013). The absolute frequency of such LTGC products
after site-specific replication stalling was found to be en-
hanced after BRCA1 and BRCA2 knockdown in mamma-
lian cells, suggesting that the loss of canonical HR
pathways due to BRCA deficiency may enhance mutagen-
ic recombination events at stalled replication forks (Willis
et al. 2014). It will be interesting to determine the genetic
requirements for such BRCA-independent LTGC and
whether such mechanisms represent compensatory repair
pathways used to navigate replication stress in BRCA mu-
tant cancers.

A direct demonstration of a BIR-like recombination
event in human cells was recently reported (Costantino
et al. 2014). In a Cyclin E overexpression model of replica-
tion stress, Pol D3, the mammalian homolog of Pol 32, was
shown to be essential for cell viability. It was observed that
depletion of Pol D3 specifically prevented Cyclin E-over-
expressing cells from entering S phase and resulted in the
accumulation of terminated forks. A BIR reporter was
used to demonstrate Pol D3-dependent BIR-like recombi-
nation events in human cells after induction of one-ended
DSBs. Additionally, it was demonstrated that CNVs in-
duced by Cyclin E overexpression was dependent on Pol
D3. Based on these observations, it was proposed that hu-
man cells may use a BIR mechanism to repair and restart
broken replication forks (Costantino et al. 2014). It will
be interesting to examine whether LTGC products ob-
tained at the stalled replication fork are dependent on
Pol D3. A further question of interest is the relative usage
of BIR in comparison with the repair of a locus by a



converging replication fork, which has also been shown to
limit BIR-mediated synthesis (Mayle et al. 2015).

HR-dependent fork restart (HoRReR)

HoRREeR is a recombination-dependent replication path-
way in Schizosaccharomyces pombe. HoRReR was report-
ed in the context of HR-mediated resumption of DNA
synthesis following fork arrest at a naturally occurring rep-
lication fork barrier called RTS1. In contrast to BIR, which
occurs in non-S-phase cells and is initiated by a DSB fol-
lowed by end resection, HoRReR is initiated in S phase
and does not involve a DSBintermediate. There is unwind-
ing of the nascent strand that can then undergo template
exchange with homologous sequences, initiating DNA
synthesis on a noncontinuous template (Lambert et al.
2010). Although the exact mechanism initiating this re-
sponse is not understood, this pathway requires Rad22,
Rphl, Rad50, and Srs2 helicase. Recent characterization
of the RTS1 model for HoORReR demonstrated that it pro-
ceeds via a semiconservative mechanism and primarily
uses Pol § for both leading and lagging strand synthesis
(Daigaku et al. 2015). These forks, which are restarted by
HR in fission yeast, have a high propensity to execute a
U-turn at small inverted repeats, contributing to the er-
ror-prone nature of this pathway. It was suggested that
such a pathway might be responsible for gross chromo-
somal arrangements and gene amplifications in human
cancers (Mizuno et al. 2012).

Fork stalling and template switching (FoSTeS)/
microhomology-mediated BIR (MMBIR)

The MMBIR pathway is a DNA replication-based path-
way associated with the repair of stalled or collapsed rep-
lication forks. According to this model, subsequent to the
collapse of a replication fork, the lagging 3’ single-stranded
tail disengages and switches to a nearby microhomolo-
gous template and primes DNA synthesis. Templated
synthesis can then proceed in either direction with low
processivity followed by eventual resumption at the orig-
inal template (Fig. 3). The recurrent template switching at
positions of microhomology results in complex genomic
rearrangements. FoSTeS was initially proposed to explain
template switching events at regions of microhomology
after replication fork stalling (Lee et al. 2007). Eventually,
MMBIR was proposed as a more general model encom-
passing FoSTeS to account for complex rearrangements
in the genome (Lee et al. 2007; Hastings et al. 2009a,b;
Carvalho and Lupski 2016).

Studies focusing on stress-induced tandem gene ampli-
fications in E. coli gave evidence for this interesting con-
cept of a long-distance template switching model. The
template switching was observed to occur between re-
gions separated by 7-32 kb, and the breakpoint junctions
had microhomology in the range of 4-15 bp. This pathway
was found to be dependent on RecA, RecBC, the endonu-
clease domain of DNA Pol I, and the F-plasmid-encoded
endonuclease Tral, which was proposed to initiate replica-
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Figure 3. Proposed model for MMBIR. (A) Failure to repair col-
lapsed replication forks by BIR has been shown to induce MMBIR.
The 3’ end dissociates from the original donor template (in blue)
and can anneal to microhomologous sequences present in the
newly replicated ssDNA within the recipient molecule (in red)
via a snapback mechanism (B,C) or at any other donor template
(in green) (D,E). The 3’ strand extension proceeds with low proc-
essivity and involves multiple template switchings before an-
nealing back to the original template (F), resulting in complex
genomic rearrangements (G).

tion by generating a nick at the transfer origin of the plas-
mid (Slack et al. 2006). This study was performed on an F
conjugative plasmid, and it is not clear whether a similar
mechanism also operates on chromosomal DNA.
Evidence for an MMBIR-like process in yeast came from
the genomic analysis of a temperature-sensitive S. cerevi-
sae strain lacking an RFA1 allele that encodes for a RPA
subunit. Large-scale deletions and nonreciprocal translo-
cations were observed, and the breakpoints of these rear-
rangements were flanked by imperfect direct repeats of
2-20 bp. While rad10 and rad52 mutations eliminated
this phenotype, a rad51 mutation increased the frequency
of these events (Chen et al. 1998). Similarly, a subsequent
study in a strain lacking the Sgsl helicase showed fre-
quent translocations and inversions associated with
microhomology at sites of highly diverged genes. The
group proposed that break-induced replication coupled
with multiple cycles of template switching at regions of
microhomology could explain these rearrangements
(Schmidt et al. 2006). A related mechanism has also been
suggested to account for segmental duplications in yeast.
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This microhomology-mediated duplication was found to
be dependent on Pol 32, and the frequency of these events
was enhanced by fork collapse and was negligibly affected
by fork stalling (Payen et al. 2008).

Models of FoSTeS/MMBIR in higher eukaryotes, partic-
ularly humans, have been primarily invoked to account
for complex genomic rearrangements and CNVs.
Over 60%—-69 % of the human genome is repetitive in na-
ture, making it susceptible to genomic rearrangement
and CNVs (de Koning et al. 2011). Both canonical and non-
canonical repair pathways, including NHE], NAHR,
MMEJ, and FoSTeS/MMBIR, are involved in various geno-
mic rearrangements. NAHR has been attributed to recur-
rent CNVs, which are common in regions of low-copy
repeats. NAHR involves HR between DNA stretches
that already exist as two or more copies. As a result, the
sequences between these repeat stretches are either delet-
ed or duplicated, resulting in copy number changes
(Sasaki et al. 2010). NHEJ has been associated with vari-
ous chromosomal translocations (Bunting and Nussenz-
weig 2013; Ghezraoui et al. 2014). NHE] has also been
proposed to be responsible for the recently discovered phe-
nomena called chromothripsis, which is characterized by
a massive number of chromosomal rearrangements in a
single catastrophic event that are usually restricted to
one chromosome. Chromothripsis was proposed to arise
from chromosome shattering followed by restitching of
DNA fragments in a rearranged fashion with loss of
many intervening fragments (Berger et al. 2011). However,
a recent study involving single-cell whole-genome se-
quencing of daughter cells derived from micronuclei
(where shattering and rearrangement happen) revealed
microhomology at the breakpoint junction of the rear-
ranged genome, suggesting that both random joining of
shattered chromosome fragments and MMBIR contribute
to chromothripsis (Zhang et al. 2015).

FoSTeS/MMBIR has also been used to explain the pro-
cess of chromoanasynthesis, which involves a combina-
tion of chromosomal rearrangements with both losses
and gains in copy number (Liu et al. 2011b; Carvalho
et al. 2011, 2013, 2015; Beck et al. 2015). This model
was proposed to explain the nonrecurrent duplications
of the PLP1 gene associated with the demyelinating disor-
der Pelizacus-Merzbacher disease (PMD). Stretches of
DNA with discontinuous duplications interspersed with
deletions, inverted duplications, and triplications with
2- to 5-bp microhomology at the junctions were observed
in patient samples (Lee et al. 2007). Subsequent studies on
PMD and another neurological disease called MECP2
duplication syndrome, which is associated with rear-
rangements at the MECP2 gene locus, gave further evi-
dence for the MMBIR pathway in complex genomic
rearrangement. In patient samples, the PLP1 and MECP2
locus consisted of an inverted triplicated segment flanked
by duplicated segments (DUP-TRP/INV-DUP). This kind
of rearrangement in both genes was proposed to be facili-
tated by inverted repeats and was suggested to occur by a
two-step process involving BIR followed by MMBIR (Car-
valho et al. 2013; Beck et al. 2015). This hypothesis was re-
cently proved in a piflA yeast strain, where it was
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demonstrated that the collapse of a replication fork during
BIR led to the initiation of MMBIR. This study also iden-
tified that translesion polymerases Revl and Pol ¢ drive
MMBIR in yeast. In accordance with the earlier study by
Fischer’s group (Payen et al. 2008), Pol32, which is a sub-
unit of both Pol ¢ and Pol §, was also found to be required
for MMBIR in yeast (Sakofsky et al. 2015). However,
the DNA polymerases that drive MMBIR in mammals re-
main elusive.

An important question that arises is why cells switch to
error-prone pathways such as FoSTeS/MMBIR. It has been
suggested that hypoxia associated with the tumor micro-
environment leads to repression of Rad51 and BRCA1 and
reduces HR. It was suggested that, in the absence of these
proteins required for GC, cells would switch to NHE]J.
However, at sites where NHE] is not possible, such as at
single-ended DSBs, it was proposed that error-prone path-
ways like MMBIR might be initiated (Hastings et al.
2009a).

Template switching seems to be a recurrent theme to
account for large-scale genomic rearrangements. Tem-
plate switching has also been proposed in other DSB repair
pathways, including BIR (Smith et al. 2007; Stafa et al.
2014) and GC (Hicks et al. 2010). What triggers these
switches, what molecular machinery is involved, and
how the processivity of different DNA polymerases con-
tributes to these switching events remain to be examined.

Concluding remarks

With the continuous advancement of genome sequencing
technology, the footprint of noncanonical HDR pathways
is becoming increasingly large (Kidd et al. 2008; Liu et al.
2012; Carvalho and Lupski 2016). Therefore, it is not sur-
prising that the concept of targeting alternative DSB re-
pair pathways has been actively viewed as a promising
therapeutic. One such example is the discovery of PARP
inhibitors, which may target the homology-directed
MME] pathway in HR-deficient cancers (Bryant et al.
2005; Farmer et al. 2005; Yousefzadeh et al. 2014; Ceccaldi
etal. 2015; Mateos-Gomez et al. 2015). Similarly, prevent-
ing DNA recombination by trapping RPA-ssDNA via
ATR inhibitors was found to selectively target ALT-posi-
tive cells (Flynn et al. 2015). Understanding the mecha-
nisms that underlie the activation and maintenance of
these pathways and thereby lead to cancer genome evolu-
tion is critical to understand how and in what genetic con-
text they should be targeted. It is striking to note the
evolutionary conservation of most of these noncanonical
DNA repair pathways in prokaryotic and eukaryotic or-
ganisms, despite significant differences in their genome
organization and chromatin structure. This highlights
the importance of mutagenic repair mechanisms in the
normal physiology of a cell and suggests that these repair
pathways might confer adaptive advantages. While al-
most universally considered pathogenic, interestingly, a
recent study reported the cure of WHIM (warts, hypogam-
maglobulinemia, infections, and myelokathexis) syn-
drome in a patient via a chromothripsis-like pathway,



resulting in the loss of 164 genes (McDermott et al. 2015)
and suggesting a role in genome evolution that could be
selected for in certain scenarios. Continuing to examine
these pathways in experimentally tractable systems will
provide new mechanistic and functional insights into
these alternative DSB repair strategies.
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