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Abstract

Despite continuing debate about the amyloid b-protein (or Ab
hypothesis, new lines of evidence from laboratories and clinics
worldwide support the concept that an imbalance between
production and clearance of Ab42 and related Ab peptides is a very
early, often initiating factor in Alzheimer’s disease (AD). Confirma-
tion that presenilin is the catalytic site of c-secretase has provided
a linchpin: all dominant mutations causing early-onset AD occur
either in the substrate (amyloid precursor protein, APP) or the
protease (presenilin) of the reaction that generates Ab. Duplication
of the wild-type APP gene in Down’s syndrome leads to Ab deposits
in the teens, followed by microgliosis, astrocytosis, and neurofibril-
lary tangles typical of AD. Apolipoprotein E4, which predisposes to
AD in > 40% of cases, has been found to impair Ab clearance from
the brain. Soluble oligomers of Ab42 isolated from AD patients’
brains can decrease synapse number, inhibit long-term potentia-
tion, and enhance long-term synaptic depression in rodent
hippocampus, and injecting them into healthy rats impairs
memory. The human oligomers also induce hyperphosphorylation
of tau at AD-relevant epitopes and cause neuritic dystrophy in
cultured neurons. Crossing human APP with human tau transgenic
mice enhances tau-positive neurotoxicity. In humans, new studies
show that low cerebrospinal fluid (CSF) Ab42 and amyloid-PET
positivity precede other AD manifestations by many years. Most
importantly, recent trials of three different Ab antibodies (solane-
zumab, crenezumab, and aducanumab) have suggested a slowing
of cognitive decline in post hoc analyses of mild AD subjects.
Although many factors contribute to AD pathogenesis, Ab
dyshomeostasis has emerged as the most extensively validated
and compelling therapeutic target.
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Introduction

Few problems in modern biomedicine have garnered as much scien-

tific interest and public concern as has Alzheimer’s disease. Virtu-

ally unknown to the general public four decades ago, AD has risen

in prevalence to an estimated 40 million patients worldwide. The

true number must be much higher, given the increasing recognition

that the disease begins in the brain at least 2–3 decades before one

first forgets the name of a grandchild or where one has parked one’s

car. Since molecular studies of AD began in earnest in the early

1980s, thousands of scientists and healthcare professionals have

delved into all aspects of this complex, multifactorial syndrome,

hoping to help patients now and prevent others from developing it

in the future.

Although the progressive buildup of amyloids of diverse protein

composition in various systemic organs has been known to cause

devastating diseases for more than a century, the idea put forward

by George Glenner (Glenner & Wong, 1984) that the particular

amyloidogenic protein accumulating in AD (Ab) could be causative

has met with considerable skepticism over the ensuing years.

Precisely why this idea has been so controversial is not clear

(Selkoe, 2011), but the steady accrual of data from many preclinical

and clinical studies has increasingly supported it. The amyloid (or

Ab) hypothesis (Beyreuther & Masters, 1991; Hardy & Allsop, 1991;

Selkoe, 1991; Hardy & Higgins, 1992) has become the dominant

model of AD pathogenesis and is guiding the development of poten-

tial treatments.

We reviewed the evidence for this hypothesis (Fig 1) a dozen

years ago (Hardy & Selkoe, 2002). Space precludes a full examina-

tion here of the enormous literature on Ab since that review; a

monograph on AD pathobiology contains many details (Selkoe et al,

2012). But in the context of continuing concern about the concept

and yet the recent emergence of apparently positive clinical trial

data, a critical analysis of the latest developments in laboratory and

clinic is warranted and timely. We review here numerous new

developments since our prior review of this hypothesis, on which

ever-increasing scientific effort is being expended. We also summa-

rize the salient findings over three decades that undergird the

amyloid hypothesis (Box 1), and we discuss several alternative

concepts or concerns that have been counterposed to it (Table 1).
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New insights from AD genetics and APP homeostasis

The fact that AD-causing mutations in APP and in presenilins 1 and

2 alter APP proteolytic processing in a way that elevates the relative

levels of the Ab42 or Ab43 peptides has long been known (Scheuner

et al, 1996; NB: Those mutations in APP that lie within the Ab
sequence increase the self-aggregation of the resultant peptides, not

their production). A key mechanistic explanation was the discovery

that the presenilin genes encode the active site of the intramem-

brane-cleaving c-secretase enzyme (De Strooper et al, 1998; Wolfe

et al, 1999). Subsequent studies have begun to illuminate how

presenilin mediates intramembrane proteolysis (Qi-Takahara et al,

2005; Takami et al, 2009; Chavez-Gutierrez et al, 2012; Okochi

et al, 2013; Fernandez et al, 2014): an initial endopeptidase cleav-

age of APP near the transmembrane/cytoplasmic interface of APP

(the e-cleavage) is followed by multiple carboxypeptidase cleavages

that each sequentially removes 3 or 4 C-terminal amino acids (i.e.,

approximately one turn of the intramembrane helix) (Fig 2). This

process yields two product lines that start with either the Ab48/49
or the Ab49/50 e-cleavage. Although the precise molecular effects

of different presenilin mutations differ somewhat, in all cases the

mutations appear to decrease this C- to N-terminal cleavage

“processivity” and thus increase the relative production of longer

(more hydrophobic and self-aggregating) Ab peptides. This elegant

model provides a biochemical explanation for earlier work showing

that pathogenic presenilin mutations often increase the Ab42/Ab40
ratio in humans. c-Secretase reactions conducted directly in

presenilin-mutant AD brain tissue showed that all presenilin

mutations studied decreased this carboxypeptidase-like activity, and

assays in a few “sporadic” AD brains suggested that a similar

decrease in processivity might occur in some non-presenilin-mutant

cases (Szaruga et al, 2015). Ab42, Ab43, and longer Ab peptides

are highly self-aggregating, whereas Ab40 may actually be anti-

amyloidogenic (Kim et al, 2007).

One group has emphasized that the aforementioned mechanism

represents a loss of function of presenilin and have proposed that

the neural phenotype of AD patients is fundamentally due to a loss

of presenilin function, independent of effects on Ab production

(Shen & Kelleher, 2007; Xia et al, 2015). They have studied prese-

nilin-1 mutations that generally lower Ab and hardly raise relative

Ab42 levels, but this work may overlook an elevation of the Ab43
and other longer species, which are highly amyloidogenic (Saito

et al, 2011). Although AD-causing presenilin mutations can indeed

be interpreted as partial loss of function from a genetics perspective,

pinpointing the function of presenilin as an aspartyl endopeptidase

allows one instead to speak in biochemical terms of a functional

shift of the principal proteolytic cleavages to more C-terminal bonds

in the substrate (Kretner et al, 2016). Humans with pathogenic

presenilin mutations are heterozygotes and experience no loss of

function of Notch cleavage; rather, they have accelerated Ab42 and

Box 1: Evidence supporting a key role for Ab dyshomeostasis in
initiating AD.

All AD patients undergo progressive Ab deposition followed by
surrounding neuritic and glial cytopathology in brain regions serving
memory and cognition.
Mutations within and immediately flanking the Ab region of APP
cause aggressive forms of FAD.
Humans with trisomy 21 (Down’s syndrome) harbor 3 copies of APP
and invariably develop neuropathologically typical AD. Those who die
in their early-to-mid teens (from other causes) show abundant diffuse
Ab plaques without neuritic dystrophy, microgliosis, astrocytosis, and
tangle formation, all of which accrue gradually in such subjects in the
late teens and beyond.
Inheritance of a missense mutation in APP that decreases the produc-
tion and aggregation of Ab lifelong protects against AD and age-
related cognitive decline.
Missense mutations in presenilin 1 or 2 are the most common cause
of early-onset AD, and presenilin is the catalytic subunit of c-secre-
tase. The mutations result in relative increases in the production of
Ab42/43 peptides. These hydrophobic species self-aggregate, leading
to profound Ab deposition in mid-life.
ApoE4 carriers were once included in typical late-onset AD. This allele
was found to markedly increase AD risk and decrease brain clearance
of Ab, leading to excess Ab aggregation and typical downstream AD
neuropathology.
Ab42 oligomers isolated from typical (late-onset) AD brains decrease
synapse density, inhibit LTP, and enhance long-term synaptic depres-
sion in rodent hippocampus, and their intraventricular injection
impairs memory in healthy adult rats.
Human Ab42 oligomers induce tau hyperphosphorylation at AD-rele-
vant epitopes and cause neuritic dystrophy in cultured rat neurons;
co-administering Ab antibodies fully prevents this.
Ab oligomers occur in a penumbra around many neuritic plaques.
Accordingly, synapse decreases occur in a centrifugal gradient: less
abnormality at longer distances from the plaque edge.
Based on many human biomarker studies, low CSF Ab42 and positive
amyloid-PET scans precede other AD-related changes (increased CSF
tau, decreased cerebral glucose metabolism, brain atrophy, clinical
dementia) by years.
Trials of 3 different Ab monoclonal antibodies (solanezumab, crene-
zumab, and aducanumab) have suggested slowing of cognitive decline
in post hoc analyses of mild (but not moderate) AD patients.
Other amyloidogenic proteins have been proven to cause progressive
human organ failure, and therapeutic lowering of the amyloid or its
precursor protein yields therapeutic benefits in patients.

Glossary

Microgliosis early non-specific proliferation and
migration of microglial cells, macrophage-
like cells in the central nervous system, as
the first response to brain damage.

Astrocytosis final response to brain damage and injury
with proliferation of astrocytes, a type of
glial cell responsible for maintaining
extracellular ion and neurotransmitter
concentrations, modulating synapse
function, and forming the blood–brain
barrier.

Neurofibrillary tangles accumulation of hyperphosphorylated tau
protein, commonly found in Alzheimer’s
disease, that aggregates inside nerve cell
bodies, also known as dystrophic neurites.

Plaque deposition aggregates of amyloid fibrils that are
deposited outside neurons in dense
formations, also known as senile plaques or
neuritic plaques.

FAD familial AD caused by inherited mutations in
APP and presenilin (typically early-onset) by
opposition to “sporadic” or late-onset AD
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Ab43 accumulation that long precedes their AD-typical memory

syndrome. Most importantly, > 99% of all AD patients (including

all other forms of familial disease) express wild-type presenilin, so

loss of presenilin function cannot be a general mechanism of AD

pathogenesis.

The original formulation of the amyloid hypothesis was based in

part on the discovery that the APP gene is on chromosome 21,

implying that individuals with Down’s syndrome develop typical

Alzheimer neuropathology because they produce too much Ab
lifelong. This supposition has been substantiated by the identifi-

cation of humans with different segmental microduplications of

sub-regions of chromosome 21. Rare individuals with translocation

Down’s syndrome involving only the distal part of chromosome 21

telomeric to the APP gene have Down’s features but do not get AD

(Prasher et al, 1998). Conversely, those rare individuals who have

the APP gene micro-duplicated but not the rest of the chromosome

do not have Down’s syndrome but get AD, typically in their mid-50s

(Rovelet-Lecrux et al, 2006). These findings show conclusively that

lifelong overexpression of wild-type APP causes AD. Even more

remarkable has been the identification of an APP missense mutation

(A673T) at the second amino acid of the Ab region that results in a

lifelong decrease in APP cleavage by b-secretase (Jonsson et al,

2012). Moreover, this benefit may be compounded, because the

DEMENTIA

Widespread neuronal/synaptic dysfunction
and selective neuronal loss with

attendant neurotransmitter deficits

Altered kinase/phosphatase activities 
lead to tangles

Altered neuronal ionic homeostasis,
oxidative injury

Microglial and astrocytic activation and
attendant inflammatory responses

Gradual deposition of Aβ42 
oligomers as diffuse plaques

Subtle effects of Aβ oligomers on 
synaptic efficacy

Increased relative
Aβ42 production throughout life 

Gradually rising
Aβ42 levels in the brain

DOMINANTLY INHERITED 
FORMS OF AD

NON-DOMINANT 
FORMS OF AD

(including ‘sporadic’ AD)

Failure of Aβ clearance 
mechanisms

Missense mutations in the APP 
or presenilin 1 or 2 genes

(e.g., ApoE4 inheritance, 
faulty Aβ degradation, etc)

Accumulation and oligomerization of Aβ42 
in limbic and association cortices

Figure 1. The sequence of major pathogenic events leading to AD
proposed by the amyloid cascade hypothesis.
The curved blue arrow indicates that Ab oligomers may directly injure the
synapses and neurites of brain neurons, in addition to activating microglia and
astrocytes.

Table 1. Findings that appear to undercut the amyloid hypothesis of
AD and counterarguments that could explain these discrepancies.

Findings Counterarguments

Amyloid plaque burden
correlates much less well
with degree of cognitive
impairment than do
neurofibrillary tangle
counts

Ab deposits appear to be a very early and
widespread event that is distant to the clinical
dementia and can lead to many downstream
cellular and molecular changes (e.g.,
microgliosis, neuritic dystrophy, tangles, etc.)
that are more proximate to and causative of
neuronal dysfunction

Many humans show
sometimes abundant
Ab deposits at death
but were not noticeably
demented

Some or many of these deposits are diffuse
plaques (not rich in abnormal neurites and
glia); the patients were often not tested
rigorously before death; and Ab oligomer
levels per plaque are much lower than in
AD brains (Esparza et al, 2013), suggesting
that plaques can effectively sequester
oligomers in a non-diffusible, less neurotoxic
state, at least up to a point

Some human
neuropathological
studies suggest tangles
may precede amyloid
plaques

Such studies may not have searched
systematically for diffuse plaques or soluble
Ab oligomers in the brain. Human genetics
proves that Ab-elevating APP mutations lead
to downstream alteration and aggregation of
wild-type tau, whereas tau mutations do not
lead to Ab deposition and amyloid-related
dementia

A hypothesis that
AD is fundamentally
due to loss of presenilin
function has been put
forward

AD-causing presenilin mutations may indeed
act through partial loss of function of this
protease, but these heterozygous mutations
do not produce clinically detectable loss of
presenilin function (e.g., Notch phenotypes),
and organismal development and function
are normal until the carriers develop typical
AD symptoms in mid-life, heralded by elevated
Ab42/43 to Ab40 ratios. Moreover, 99.9% of all
AD patients have wild-type presenilins

Numerous clinical
trials of anti-amyloid
agents have not met
their pre-specified
endpoints

Several of these agents had inadequate
preclinical data, poor brain penetration,
little human biomarker change, and/or low
therapeutic indexes (e.g., tramiprosate;
R-flurbiprofen; semagacestat). Most such
failed trials enrolled many patients in the
late-mild and moderate stages of AD,
whereas other trials conducted in very mild
or mild AD produced suggestive evidence of
clinical benefit. AD trials done prior to
obligatory amyloid-PET imaging turned out
to have up to ~25% of subjects that were
amyloid-negative (i.e., did not have AD)
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mutant Ab peptide that is generated has altered aggregation proper-

ties (Benilova et al, 2014; Maloney et al, 2014; Zheng et al, 2015).

A673T carriers have a lower risk of clinical AD and even of

age-related cognitive decline without clinical AD (Jonsson et al,

2012), and they may not show plaque deposition at age 100 (Kero

et al, 2013). The reduced amyloid deposition resulting from this

AD-protective mutation strongly supports the amyloid hypothesis.

Improved modeling of the amyloid hypothesis in rodent
and cellular systems

Concern has been expressed about the limitations of available

rodent and cellular models of b-amyloid pathogenicity (Table 2).

Early APP mouse models (e.g. Games et al, 1995; Hsiao et al,

1996) suffered from reliance on high transgene expression to

drive plaque deposition and from a lack of tangle cytopathology

and neuronal death. Crossing FAD-mutant APP mice with mutant

MAPT (tau) transgenic (tg) mice succeeded in augmenting tau

pathology and suggested that tangle-like changes occur down-

stream of Ab accumulation, but this involved transgene over-

expression and multiple AD mutations (Lewis et al, 2001).

Recently, mice with gradual Ab plaque accrual have been devel-

oped by the judicious use of selective knockin of human muta-

tions into endogenous mouse APP without overexpression (Saito

et al, 2014). Moreover, stem cell-derived human neurons cultured

from skin biopsies of FAD subjects have been used to show first

Ab accumulation and then tau alteration in the absence of over-

expression (Shi et al, 2012; Choi et al, 2014; Muratore et al,

2014; Moore et al, 2015) suggesting that the lack of tangle forma-

tion in early mouse models was related to the absence of human

tau. This progress means we are now able to model a substantial

part of the amyloid cascade in culture. In both cellular and

mouse models, extensive data now suggest that the neurotoxicity

of Ab is in considerable part dependent on expression of human

tau (Rapoport et al, 2002; Jin et al, 2011; Roberson et al, 2011).

Cell biology of new AD risk genes

Although the importance of ApoE4 as the major risk factor for AD

was discovered in 1993 (Corder et al, 1993), it is only since the

advent of genomewide association studies and, more recently,

exome and genome sequencing that other risk loci for late-onset

disease have been discovered. Whereas the recently described loci

are usually much weaker in effect (Lambert et al, 2013) or much

rarer (Guerreiro et al, 2013; Jonsson et al, 2013) than ApoE4, they

have helped delineate additional biological processes in AD patho-

genesis. Three types of processes have emerged as especially impor-

tant: cholesterol/sterol metabolism; inflammation and the brain’s

Table 2. Toward a more complete modeling of the pathogenesis of AD amyloid.

Year System Achievement Critique References

1995 APP transgenic mouse Plaque Pathology Overexpression, no
downstream pathology

Games et al (1995)

2000 MAPT mutant transgenic mouse Tangle Pathology Overexpression: no
plaque pathology

Lewis et al (2000)

2001 APP X MAPT transgenic mice Plaque and tangle pathology Overexpression of
both transgenes:
artificiality of two
mutations

Lewis et al (2001)

2012 Down’s syndrome derived
stem cell neurons

Diffuse plaque pathology:
evidence for pre-tangles

Not full pathology Shi et al (2012)

2014 Complex APP mutation
knockin into mouse genome

Plaque pathology without
overexpression

Artificiality of multiple
mutations: no
downstream pathology

Saito et al (2014)

2014 Overexpression of APP
mutations in human neuronal
lines in gel system

Convincing plaque pathology
and also tangle pathology

Overexpression Choi et al (2014)

2015 APP and PSEN mutant
stem cell lines

Diffuse plaque pathology
and tau pathology

Moore et al (2015)

γ40

γ43

ζ46

ε49

γ42

Aβ42

AICD 50–Cytosol

Membrane

Lumen/
Extracellular

AICD 49–

Aβ40

ζ45

ε48

Figure 2. Progressive cleavages of the APP transmembrane domain by
the Presenilin/c-secretase complex.
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innate immune system; and endosomal vesicle recycling (Jones

et al, 2010).

Apolipoprotein E and other components of

cholesterol/sterol metabolism

A role for cholesterol in AD has long been suspected, based on the

genetic implication of ApoE in the disease as well as the contrasting

effects of cholesterol loading or depletion on amyloid pathology in

APP tg mice (Refolo et al, 2000, 2001). Work in APP mice express-

ing different human ApoE alleles has shown that a major pathogenic

influence of ApoE involves differential isoform effects on the clear-

ance of Ab (Castellano et al 2011: discussed below). The ABCA7

lipid transporter has also been identified as a genetic locus for the

disease (Hollingworth et al, 2011), and loss-of-function mutations

increase AD risk about threefold (Steinberg et al, 2015). ABCA7 is

expressed in neurons, microglia, and peripheral macrophages, and

it normally promotes the efflux of lipids from cells to apolipopro-

teins and also regulates phagocytosis. Crossing ABCA7 knockout

mice to mutant hAPP mice caused a doubling of insoluble Ab levels

and amyloid plaques without changing APP processing, suggesting

that like ApoE, ABCA7 is involved in Ab clearance (Kim et al,

2013). However, the biochemical details through which both ApoE

and ABCA7 influence the development of Ab pathology need to be

pinpointed.

The innate immune system in Alzheimer’s disease

Neuropathologists have long suggested that the brain’s innate

immune system, including the microglial response to plaque forma-

tion, was an important factor in AD pathogenesis. For example, the

early observation of multiple elements of the classical complement

cascade in and around neuritic plaques (McGeer et al, 1989) was

prescient. In the last few years, genetic variability in that system has

emerged as a compelling determinant of AD risk, implicating many

components of innate immunity and the complement cascade as risk

factors in the disease (Jones et al, 2010). Three such risk genes have

been investigated in some detail: Complement Receptor 1 (CR1;

Lambert et al, 2009), CD33 (Bertram et al, 2008), and TREM2, and

all three appear to be involved either directly or indirectly in the

response of microglia to Ab deposition. Blockade of CR1 inhibits

microglial activation and potentiates microglial phagocytosis

(Crehan et al, 2013). Inactivation of CD33 in primary microglia also

potentiates microglial uptake of Ab (Griciuc et al, 2013), and

TREM2 is responsible for sustaining microglial phagocytosis of Ab
(Wang et al, 2015). Thus, all three genetically implicated microglial

proteins may be involved in helping to maintain the AD microglial

phenotype of phagocytosing Ab deposits. Accordingly, these 3 genes

undergo increased expression during plaque development (Griciuc

et al 2013, Wang et al, 2015; Matarin et al, 2015) and CSF TREM2

levels go up as plaque load increases, suggesting it may be a useful

biomarker (Suárez-Calvet et al, 2016).

TREM2 is emerging as a key molecular determinant of the

CNS response to Ab accumulation (Forabosco et al, 2013; Zhang

et al, 2013; Matarin et al, 2015). However, the biology of TREM2,

a Type 1 single-transmembrane receptor which is principally but

not exclusively expressed in microglia and undergoes ADAM/

c-secretase processing (Wunderlich et al, 2013; Kleinberger et al,

2014), is incompletely understood [reviewed in (Lue et al, 2015)].

The most studied mutation, R47H, may increase the risk of AD to

the same extent that ApoE4 does although it is much rarer

(Guerreiro et al, 2013; Jonsson et al, 2013). The upregulation of

TREM2 in a subset of microglia in amyloid plaques of hAPP tg

mice (e.g., Guerreiro et al, 2013) suggests that the known func-

tion of TREM2 in phagocytosis is compromised during plaque

development. A current hypothesis is that R47H and other AD-

associated TREM2 mutations confer loss of function in microglia.

Deleting one TREM2 allele in hAPP tg mice significantly

decreased the number of microglia associated with Ab deposits

(Ulrich et al, 2014). Conversely, TREM2 overexpression in hAPP

tg mice decreased amyloid plaque burden, neuroinflammation,

synapse loss, and spatial memory deficits (Jiang et al, 2014). And

TREM2 mutations can alter its transport to the cell surface

and shedding, associated with impaired phagocytic function

(Kleinberger et al, 2014). The latter work has led to evidence that

levels of the shed ectodomain in extracellular fluid and CSF are

lower in AD cases associated with TREM2 mutations.

Endosomal vesicle recycling in Alzheimer’s disease

The final set of recently identified loci for late-onset AD map to

processes regulating endosomal vesicle recycling (Jones et al,

2010). This category includes SORL1, BIN1, and PICALM (Rogaeva

et al, 2007; Lambert et al, 2013; Zhao et al, 2015). SORL1 had previ-

ously been shown to be directly involved in the processing of APP

(Andersen et al, 2005), and work in human stem cell-derived

neurons carrying the SORL1 risk haplotype confirmed this associa-

tion (Young et al, 2015). Likewise, PICALM appears to be involved

directly in endosomal APP processing (Kanatsu et al, 2014). In addi-

tion, PICALM has been implicated in the transport of brain Ab
across the blood–brain barrier: induced pluripotent stem cell (iPSC)-

derived human endothelial cells carrying an AD-protective allele

exhibited higher PICALM levels and enhanced Ab clearance (Zhao

et al, 2015).

In summary, mechanistic studies linking several of the recently

identified risk genes for late-onset (previously “sporadic”) AD to

aspects of Ab homeostasis provide new support for the amyloid

hypothesis as a driving factor in AD pathogenesis. They also suggest

new avenues for therapeutic intervention, such as intervening in

brain cholesterol metabolism and modulating the response of the

innate immune system to amyloid deposition.

Recent findings help resolve controversies about the
role of Ab

Connecting plaques and tangles: Ab can drive tau alteration

The temporal sequence of the two canonical lesions Alois Alzheimer

noted in his 1906 index case has been debated ever since. An

elegant histopathological staging system created by Braak and Braak

(1991) is now widely used to establish the severity of AD

neuropathology. This scale principally described the progression of

AD-type cytoskeletal changes, that is, neurofibrillary tangles and

dystrophic neurites, in unrelated humans of increasing age (it could

not yet include assays for accrual of oligomeric forms of Ab). The
detection of modest amounts of neurofibrillary change in limbic

regions of young or middle-aged individuals dying of other causes

does not imply that such individuals would necessarily have

developed AD had they lived longer. Instead, human genetic and
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biomarker studies have provided the answer to the sequence of Ab
and tau accumulation in AD. Inherited mutations in APP and prese-

nilin (i.e., in the substrate and the protease for Ab generation) cause

early-onset Ab deposition (Lemere et al, 1996a,b; Bateman et al,

2012) followed by accumulation of tangles/neurites containing

filaments of wild-type tau, so amyloid can clearly precede tangles in

humans. In contrast, mutations in the tau gene lead to a form of

frontotemporal dementia without subsequent accrual of Ab. Thus,
Ab accumulation can lead to progressive tau deposition, but the

converse has not been clearly demonstrated in humans.

Laboratory studies support this sequence. Crossing hAPP tg mice

with hTau tg mice significantly enhances tau deposition without

changing Ab deposition (Lewis et al, 2001). Crossing an APP tg

mouse to a tau knockout mouse leads to substantially less behav-

ioral deficits in the offspring than when tau is expressed (Roberson

et al, 2011). Treating normal rat neurons in culture with soluble Ab
oligomers isolated from AD cortex causes neuritic dystrophy and

AD-type tau hyperphosphorylation, but no dystrophy ensues if tau

is first knocked down (Jin et al, 2011). Several similar studies

suggest that Ab—particularly soluble oligomers of Ab42 (Shankar

et al, 2008)—can trigger AD-type tau alterations, supporting the

sequence that human genetics has indicated. The expression of

human tau seems to be “permissive”, enabling certain downstream

neuronal consequences of progressive Ab accrual to occur

(Maruyama et al, 2013).

How ApoE4 promotes AD: chronically decreased Aß clearance

Humans expressing the ApoE4 protein develop more plaque and

vascular b-amyloid deposits than those expressing only ApoE3

(Rebeck et al, 1993), and this has been confirmed in genetically

engineered mice (Holtzman et al, 2000). A detailed quantitative

study of Ab homeostasis using in vivo microdialysis in

hAPP × hApoE crossed mice has shown that Ab clearance (but not

Ab production) is decreased by ApoE4 > E3 > E2, closely parallel-

ing the degree of Ab deposition in such mice (Castellano et al,

2011). The decrease in clearance of soluble Ab was observed in

young mice well before any amyloid deposition. The results strongly

suggest that ApoE contributes to AD risk at least in part by differen-

tially regulating soluble Ab clearance, emphasizing Ab clearance

pathways as a major therapeutic target. In accord, one of the numer-

ous risk genes for late-onset AD is PICALM, and AD-promoting

alleles or knockdown of this gene has been shown to decrease Ab
clearance across the brain endothelium (Zhao et al 2015). As a

potentially related effect on Ab homeostasis, the three ApoE

isoforms have also been shown to bind Ab differentially and modu-

late its fibrillogenesis (Ma et al, 1994; Wisniewski et al, 1994; Evans

et al, 1995). Other potential mechanisms have been suggested,

including an adverse effect of ApoE4 on the processing of tau in

neurons (Andrews-Zwilling et al, 2010; Huang & Mahley, 2014).

Synaptic loss, Ab, and amyloid plaques

Decreased synapse number has long been recognized as perhaps the

strongest quantitative neuropathological correlate of dementia in

AD. Numerous laboratory studies in the past decade have shown

that Ab oligomers impair both synaptic function (e.g., long-term

potentiation) and synaptic structure (e.g., dendritic spines). Of

particular, disease relevance is evidence that soluble oligomers (but

not monomers) of Ab42 isolated directly from AD cortex can

dose-dependently decrease synaptic function and number and can

impair the memory of a learned behavior in healthy adult rats

(Shankar et al, 2008). Amyloid plaque cores isolated from the same

AD brains and washed extensively in vitro do not impair LTP, but

the diffusible Ab42 oligomers that can subsequently be released

from them with harsh denaturants do so (Shankar et al, 2008). The

latter findings fit nicely with evidence in hAPP tg mice that plaques

in situ have a penumbra of soluble Ab oligomers in which synaptic

density is low; synapse number rises toward normal the farther one

measures from the edge of the plaque core (Koffie et al, 2009).

The intimate association of diffusible oligomers with fibrillar

plaques that such studies imply has been elegantly supported by

quantifying Ab oligomers with a selective ELISA in postmortem

brain tissue of subjects who were either clinically normal (Clinical

Dementia Rating of 0) or mildly demented (CDR of 1) shortly before

death. These brains were selected to have similar plaque densities,

but the oligomer-specific ELISA revealed that the non-demented

plaque-rich subjects had much lower oligomer-to-plaque ratios than

the mildly demented plaque-rich patients (Esparza et al, 2013).

Indeed, this ratio completely distinguished (without overlap) the

“high-pathology control” brains from the AD brains. This striking

result addresses an oft-cited “Achilles heel” of the amyloid hypothe-

sis: apparently normal people who have abundant plaques may

actually have low plaque-associated oligomer levels (Table 1). We

have hypothesized that plaques can sequester soluble oligomers

until they slowly reach a physical limit, after which excess oligo-

mers can diffuse onto surrounding synaptic membranes and other

hydrophobic cell surfaces (Hong et al, 2014).

A heterogeneity of Ab species in AD brain

While Ab1–42 peptides appear to be the earliest form to accumulate

in the brain and their free levels in CSF drop long before clinical

symptoms [e.g., Bateman et al (2012)], this initial species can be

modified over time into a complex array of truncated, isomerized,

and/or phosphorylated peptides. One well-studied variant that is

highly amyloidogenic (Nussbaum et al, 2012) is the “p3E” Ab
peptide that is truncated over time of Asp1 and Ala2 and then

cyclized at Glu3 (Mori et al, 1992). DeMattos et al (2012) have

shown in hAPP transgenic mice that this variant accumulates rather

late and in small amounts, but targeting it with a specific antibody

promotes a kind of “bystander clearance” by microglia of also

earlier deposited Ab species, making p3E an attractive target for Ab
immunotherapy despite its low abundance. At the opposite end of

Ab, the variant Ab43 is highly prone to aggregation (Saito et al,

2011), and it is unclear how long soluble oligomers of this peptide

can be present as such in the brain before they deposit as insoluble

amyloid plaques. Given the complexity of Ab species in humans, a

worthy goal for future clinical research is to routinely quantify all

Ab peptides in plasma or CSF of pre-symptomatic and symptomatic

AD subjects.

Recent studies have uncovered further heterogeneity of both Ab
and other proteolytic products of APP processing. One example is

the detection in certain cell lines expressing pathogenic mutant APP,

of Ab monomers and dimers as well as N-terminally extended Ab
monomers that begin some ~35–40 resides before the Asp1 of Ab
(Welzel et al, 2014). Levels of these extended monomers rise

dramatically when b-secretase inhibitors are applied to the cells,

indicating that they arise from an alternative protease(s) which
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cleaves APP upstream of the Met-Asp bond. The N-terminally

extended monomers inhibit LTP, presumably because they contain

the Ab region but in a misfolded form that can bind to synaptic

membranes (Welzel et al, 2014). A second and distinct set of APP

fragments arises from a novel g (“eta”)-secretase processing path-

way, involving cleavage by a matrix metalloproteinase 92 amino

acids upstream of the Met-Asp bond (Willem et al, 2015). The resul-

tant g-CTFs can then be processed by a- or b-secretase to generate

Ag-a and Ag-b peptides. Again, b-secretase inhibitors elevate these

alternative APP products. Single-cell calcium imaging shows that

neuronal activity is attenuated by Ag-a, suggesting a physiological

function of this new pathway but not yet implicating it in AD (no

g-derived fragments containing the intact Ab region were described;

Willem et al, 2015).

Is AD in humans a prion-like disease of
“pathogenic spread”?

In the last decade, the neurodegenerative field has become increas-

ingly intrigued by the hypothesis that the progression of the

cytopathological lesions in AD, Parkinson’s disease, Frontotemporal

dementia, and other age-related diseases involves a physical spread

of the specific offending proteins from neuron to neuron. Initially,

this hypothesis was based in considerable part on three observa-

tions. First, the Braak staging of tangles (in AD) and Lewy lesions

(in Parkinson’s disease) in postmortem brains from humans of

increasing age was interpreted as a physical spread of the responsi-

ble protein aggregates (tau and a-synuclein, respectively) from one

brain region to the next. Second, the development over many years

of some Lewy bodies in fetal neurons implanted into the striata of a

few advanced Parkinson patients was interpreted as a physical

spread of a pathogenic form of a-synuclein from the diseased

neurons of the host into the healthy neurons of the implant. Third,

experimental studies in rodents suggested that the extracellular

injection of fibrils of tau or a-synuclein could induce still-healthy

neurons to form the respective intracellular lesions, suggesting a

physical spread as well as a “prion-like” templating of the normal

protein by the abnormal (misfolded) protein.

These findings provide circumstantial evidence for the spread of

misfolded proteins from neuron to neuron, although the details of

the cell biological mechanisms remain unclear. The extent to which

the Braak staging in AD (as well as in Parkinson’s disease and other

neurodegenerative diseases) represents a selective temporal vulner-

ability of neurons in different brain regions rather than an actual

physical spread has not been elucidated. It remains a challenge to

distinguish cell autonomous from non-cell autonomous mechanisms

of protein aggregation in vivo, particularly in humans with patho-

genic mutations in tau or a-synuclein, where 50% of the protein in

all neurons is mutant and could aggregate without the need for

inter-neuronal spread. Clearly, these are important unresolved

issues: understanding the biological mechanisms for the spread of

cytopathology could offer new therapeutic targets and may underlie

the observed beneficial effects of administered antibodies on lesion

clearance.

A separate question from that of neuron-to-neuron spread is

whether the misfolded Ab and tau aggregates in AD brain could be

true “proteinaceous infectious particles” and thus transmissible

between humans. Attempts by Gadjusek and colleagues more than

30 years ago to transmit AD to lower primates by inoculation of AD

brain extracts were deemed unsuccessful (Brown et al, 1994).

However, Ridley et al (2006) reported that inoculation of marmosets

with AD brain extracts induced modest cerebral b-amyloidosis:

Ab-immunoreactive deposits were detected in 16 of 18 animals aged

< 10 years and 8 of 9 aged > 10 years, whereas spontaneous cere-

bral amyloid deposition was found in 0 of 11 non-injected marmo-

sets < 10 years and 5 of 29 > 10 years (Ridley et al, 2006).

Neurofibrillary tangles were not detected in any animals, so it seems

that inoculation with AD brain extracts accelerated Ab (but not tau)

deposition in these primates. This acceleration is entirely consistent

with the long-standing concept of the seeded polymerization of Ab
in kinetic models of b-amyloid formation (Jarrett & Lansbury,

1993).

Recently, four patients dying between ages 36 and 51 of iatro-

genic Creutzfeld–Jakob disease after childhood treatment for short

stature with prion-contaminated cadaveric pituitary extracts were

reported to also have substantial Ab-immunoreactive plaques and

microvessels in their brains (Jaunmuktane et al, 2015). Since pitu-

itary glands in AD subjects can have Ab deposits, these cases were

interpreted as providing evidence of human-to-human transmission

of Ab seeds. No tangles or AD-type neuritic/microglia-rich plaques

were described, so this was not transmission of AD per se, consistent

with an earlier negative study (Irwin et al, 2013). Locating some of

the original pituitary extracts used for inoculation and showing that

they had abnormal Ab forms will be necessary to prove that these

cases represent definite human transmission of Ab seeds. At present,

there are no clear clinical concerns arising from this unusual

iatrogenic event as regards AD risk in the general population.

Biomarkers: approaching the natural history of AD in
human subjects

For many years, reaching a correct understanding of the pathogenic

sequence in AD patients was hampered by the difficulty of detecting

this sequence directly in living humans. The problem has been

substantially lessened by three developments: (i) robust assays to

quantify soluble Ab monomers and tau in CSF (Vigo-Pelfrey et al,

1995); (ii) imaging fibrillar amyloid burden (but not yet soluble Ab
oligomers) by PET scanning, initially with the thioflavin T deriva-

tive, Pittsburgh compound B (Klunk et al, 2004); and (iii) the ability

to analyze APP metabolism in healthy and diseased humans by

quantifying heavy isotope-labeled Ab peptides by mass spectrome-

try in fresh CSF collected continuously through a lumbar intrathecal

catheter (Bateman et al, 2006; Mawuenyega et al, 2010).

In vivo APP labeling

The use of 13C (heavy) leucine infusions to label all newly synthe-

sized proteins, including APP, in pre-symptomatic subjects with

presenilin mutations and their non-carrier siblings confirmed the

extensive data in cultures and mouse models that these AD-causing

mutations increase relative Ab42 production (Potter et al, 2013).

Further, during the period of amyloid deposition, the Ab42
monomer declines in CSF in a manner that suggests it becomes

bound to developing plaques (Blennow et al, 2015). And the use of

the in vivo labeling approach in ApoE3 vs. E4 carriers showed that
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E4 subjects had lower rates of Ab monomer clearance [see (Castellano

et al, 2011)]. Together, these human data support the conclusions

that presenilin mutation carriers produce relatively more Ab42 and

that E4 carriers clear it less efficiently.

Amyloid imaging and CSF biomarkers

Numerous families carrying APP, PSEN1, or PSEN2 mutations have

been studied collectively to determine the time course of fluid

biomarker, neuroimaging, and clinical changes prior to the expected

onset of AD symptoms, which is based on the age of symptom onset

in a parent with the same mutation. Initial analyses of a familial AD

cohort [the Dominantly Inherited Alzheimer Network (DIAN)]

suggest that Aß42 levels in CSF may first be somewhat elevated (vs.

normal) and then begin to decline as early as 25 years before

expected symptom onset (Bateman et al, 2012). This is followed by

the appearance of fibrillar amyloid deposits in the brain (as detected

by PiB-PET), increased levels of tau in CSF, and progressive brain

atrophy roughly 15 years before expected symptom onset (Bateman

et al, 2012). Neuronal hypometabolism and subtly impaired

episodic memory seem to begin some 10 years or so before expected

symptoms (Bateman et al, 2012). If this time course is generally

similar to that of “sporadic” AD, and the AIBL study (Villemagne

et al, 2013) suggests that it is, then Ab deposition may begin up to

two decades or more before clinically noticeable cognitive decline.

A key lesson which emerges from such dynamic analyses of pre-

symptomatic AD is that therapeutic interventions directed only at

the mild-to-moderate clinical stage may be too late to ameliorate

progression.

Overall, brain imaging and CSF biomarker studies in humans

suggest that the sequence of AD pathogenic steps currently measur-

able in vivo broadly follows the schema proposed by Jack and collea-

gues (Jack & Holtzman, 2013; Jack et al, 2013; Fig 3). These data are

consistent with early studies of AD neuropathology in Down’s

syndrome, which documented an initial accumulation of diffuse Ab
deposits that precedes microglial and astrocytic activation, tangle

formation, and neurodegeneration (e.g., Lemere et al, 1996a,b; Mann

et al, 1992). The recent development of imaging agents for tangles

(Chien et al, 2013; Liang et al, 2014) will help define the time course

of accrual of the two major lesions, although tangles are somewhat

non-specific in that they occur increasingly with “normal” aging and

in several neurodegenerative processes besides AD.

Recent progress in AD clinical trials

None of the Ab-targeted phase 3 clinical trials in Alzheimer’s disease

has shown statistically significant benefit on its pre-specified clinical

endpoints. Several of these trials, however, were misdesigned in

terms of patient selection, choice of agent, target engagement, and/or

dose, or they had to be halted because of side effects that may not

have been target-related (De Strooper, 2014; Karran & Hardy, 2014).

Semagacestat was neither an effective nor safe c-secretase inhibitor
Inhibiting the b- or c-secretases is an attractive goal, but the recogni-

tion that they have many substrates besides APP makes selectivity

an enormous challenge. The discovery that Ab is normally secreted

by cells throughout life (Haass et al, 1992) led to widespread

compound screening on cultured cells, and most Ab-lowering “hits”

that emerged inhibited c-secretase. The only such compound to

reach Phase 3 testing was semagacestat, but the trial was terminated

after ~12 months of dosing due to adverse events (Doody et al,

2013). This may be explained by its low therapeutic index: the IC50

for Notch cleavage was only twofold to threefold higher (or less)

than that for APP cleavage. Direct proof that semagacestat was an

effective Ab-lowering agent in humans was not obtained, and this

trial should not have led to the curtailment of research to develop

safer inhibitors of c-secretase with better substrate selectivity (De

Strooper, 2014). Another agent, avagacestat, had a better therapeu-

tic index but still not good enough to avoid certain side effects and

be advanced to Phase 3 trials (Coric et al, 2012).

The fundamental catalytic mechanism of this first-in-class

intramembrane aspartyl protease is incompletely understood,

although substantial progress should ensue from biochemical stud-

ies that take advantage of the atomic structure of the whole c-secre-
tase complex that has recently been solved (Bai et al, 2015). While

further research on selective inhibition of the protease is needed,

the field now favors modulators of c-secretase that shift the peptide

bond cleavage 3–4 residues N-terminal to the Ab42 site without

blocking proteolysis. Different chemical classes of such c-modula-

tors are being developed; whether they can achieve brain
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biomarker detection threshold. In this model, the occurrence of tau pathology
can precede Ab deposition in time, but only early on at a sub-threshold
biomarker detection level. Ab deposition occurs independently and rises above
the biomarker detection threshold (purple and red arrows). This induces
acceleration of tauopathy, and CSF tau then rises above the detection threshold
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alteration is plotted as a biomarker (purple), this represents a decrease in CSF
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et al, 2013.)
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penetration and potency to levels needed to lower Ab chronically

remains untested.

Solanezumab: a probable signal in mild AD

Since active and passive immunotherapy to lower amyloid was first

conceptualized (Schenk et al, 1999; Bard et al, 2000), antibody trials

have taken the lead among putative disease-modifying therapeutics

for AD. The antibody most advanced time-wise in current human

testing is solanezumab, which targets the mid-region of Ab and binds

principally to soluble monomers and perhaps low-n oligomers but

not to plaques. Two large Phase 3 trials in mild and moderate AD

patients failed to achieve their clinical endpoints. Pre-specified, post

hoc analyses of the combined mild subjects of the trials showed a

statistically significant ~34% slowing of cognitive decline vs. placebo

over 18 months [see tables 3 and 4 in Doody et al, 2014]. The moder-

ate AD patients in the same trials showed no benefit, proving the

widely held assumption that anti-Ab agents should be started in mild

AD or even earlier. The results in the mild subjects suggested a small

but statistically significant cognitive benefit of this agent, leading to a

third Phase 3 study in only mild subjects that is underway. It is of

interest that another antibody, crenezumab, produced similar signs

of modest slowing of cognitive decline in mild AD patients in a Phase

2 trial (Cummings et al, 2014).

Aducanumab: a big signal in a small proof-of-concept trial

The strongest hint to date of the potential clinical and biomarker

benefits of an amyloid-targeting agent came recently in a Phase 1b

trial of a human monoclonal antibody (BIIB-037 or aducanumab) that

emerged from a large screen of B-cell clones obtained from healthy

aged people. All 165 trial subjects underwent PET amyloid imaging at

entry to confirm the clinical diagnosis; this had not been done in the

completed trials reviewed above, where up to 30% of subjects were

later found to lack amyloid. Another difference of the small aduca-

numab trail is that it was conducted in one country (United States),

so all cognitive evaluations were performed in one common

language, probably reducing inter-subject variability in scoring. Three

IV doses (1, 3 or 10 mg/kg/mo) were initially compared to placebo

after 6 and 12 months. The 3 and 10 mg dose reduced PET amyloid

levels at 6 months and more so at 12 months, with the 10 mg dose

causing a decline to near the level required for trial entry (Sevigny

et al, 2015). This dose-dependent evidence of target engagement and

biomarker movement was accompanied by significantly less decline

(vs. placebo) in two tests, the Mini-Mental State Exam and the Clini-

cal Dementia Rating—Sum of Boxes. In the 10 mg dose group, these

scores were almost stable from 6 to 12 months. The only meaningful

adverse event was transient ARIA-E (amyloid-related imaging abnor-

mality—edema) in ~20% of the subjects receiving aducanumab. As

in some prior Ab antibody trials, ARIA-E occurred mostly in ApoE4+

patients, was dose-dependent, and produced no symptoms in 65% of

these cases. Both the careful design of this small study and the nature

of the human antibody, which apparently binds plaques and oligo-

mers but not monomers, may have contributed to the positive clinical

and biomarker outcomes. Aducanumab entered the necessary Phase

3 studies in 2015.

The advent of “secondary prevention” trials

The failures of some anti-amyloid agents that appeared to engage their

targets but did not achieve clinical endpoints in mild-to-moderate AD

patients have moved the field to attempt pre-symptomatic or

“secondary prevention” trials in subjects shown by PET amyloid

imaging and/or CSF Ab42/tau assays to be at high risk for develop-

ing AD dementia. Such prevention trials are now being conducted,

respectively, in the world’s largest kindred carrying a presenilin-1

mutation (the API study in rural Colombia (Ayutyanont et al,

2014)) or in many smaller kindreds carrying presenilin-1 or prese-

nilin-2 or APP mutations (the DIAN trials). Importantly, the first

prevention trial in largely pre-symptomatic humans at risk of late-

onset AD (ages 65–85) based on abnormal PET amyloid scans is

now underway in > 60 centers in the United States, Canada and

Australia [A4study.org] (Sperling et al, 2014). All three of these

trials are initially administering Ab antibodies, but other agents

targeting Ab or other factors (tau; neuroinflammation) are planned

or underway.

Active vaccines: no longer at the forefront but not forgotten

AD immunotherapy in man began with an active vaccine trial (using

AN-1792, a synthetic Ab1–42 peptide) that was terminated after 2–3

doses due to the occurrence of a T-cell mediated meningeal

inflammation in 6% of the Phase 2 patients (Gilman et al, 2005).

But quantitative neuropathological analyses of a few brains from

subjects who had died years after a Phase 1 trial of AN1792 revealed

evidence of amyloid clearing and apparent lessening of neuritic

dystrophy and synaptic deficits, compared to what would be

expected in such advanced AD patients (Serrano-Pozo et al, 2010).

Only 1–2 trials of active Ab vaccines are underway at this writing,

but this approach clearly deserves more study, as the polyclonal

antibody response may prove beneficial, and the cost and logistics

of distributing passively administered monoclonal antibodies

several times per year to the world’s AD population are daunting.

b–secretase 1 inhibition in Phase 3: much anticipated

Inhibitors of b-secretase arrived later than those for c-secretase,
in part because of the pharmacological challenges of targeting the

large active site of this aspartyl protease in intact neurons. But

now, several companies have Phase 2 or 3 trials of chemically

distinct inhibitors underway. No published data of efficacy and

side effects in man are yet available. Nevertheless, the discovery

of many new substrates of b-secretase, including some that are

critical for signaling events in both the immature and mature

nervous system (Willem et al, 2006; Hemming et al, 2009; Kuhn

et al, 2012), raises the possibility of significant adverse events

appearing over time in such trials. Speculation abounds about

whether lowering Ab42 monomers with b- or c-secretase inhibi-

tors/modulators or binding and clearing plaques and diffusible

Ab with antibodies will turn out to be more efficacious. The

combined testing of two anti-Ab agents is desirable and may not

lie too far ahead.

The amyloid hypothesis at 25 years

This review perforce mentions only a fraction of the many studies

on the relationship of Ab accumulation to the other features of the

AD syndrome. But the examples we highlight underscore the

compelling nature of the extensive preclinical and emerging clinical

evidence that Ab dyshomeostasis is upstream of alterations in other
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proteins and diverse cell types that contribute to the AD cognitive

phenotype (Box 1). We emphasized more than a dozen years ago

(Hardy & Selkoe, 2002) that definitive proof of this once controver-

sial concept could only come from clinical trials that selectively

target Ab and produce slowing and ultimately arrest of cognitive

decline in typical AD patients. The recent aducanumab Phase 1b

data are consistent with such evidence, although we obviously need

large, multi-national trials that show significant amelioration of AD

progression over 18–24 months.

Success breeds success, and it appears increasingly likely that

exciting progress in the clinic, building upon a 3-decade record of

advances in the laboratory, will provide this proof. The continued

push toward a safe and efficacious amyloid therapeutic takes noth-

ing away from the need for alternative agents that target other early

features of this complex and devastating syndrome. As others have

pointed out (Small & Duff, 2008; De Strooper & Karran, 2016) and

we concur, after disease initiation, the complexity of the down-

stream pathogenic processes increases. Nonetheless, it is likely that

therapies aimed at these downstream processes will eventually have

a role in the armamentarium against this devastating disease. It is

not a question of one hypothesis against another. Rather, we must

pursue multiple approaches, leading to a range of therapeutics that

may together prevent the looming personal and societal tragedy that

Alzheimer’s disease has become.
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