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Summary

Many bacterial pathogens can cause acute infections that are cleared with onset of adaptive 

immunity, however a subset of these pathogens can establish persistent, and sometimes lifelong 

infections. While bacteria causing chronic infections are phylogenetically diverse, they share 

common features in their interactions with the host that enable a protracted period of colonization. 

This chapter will compare the persistence strategies of two chronic pathogens from the 

Proteobacteria, Brucella abortus, and Salmonella enterica serovar Typhi (S. Typhi) to consider how 

these two pathogens, which are very different at the genomic level, can utilize common strategies 

to evade immune clearance to cause chronic intracellular infections of the mononuclear phagocyte 

system.

INTRODUCTION

Persistent bacterial infections such as Brucellosis and Typhoid Fever are characterized by a 

long incubation period to leads to chronic, sometimes lifelong, debilitating disease with 

serious clinical manifestations (1). Therefore, chronic bacterial diseases have a significant 

impact on public health, due to the utilization of resources for long-term treatment of 

patients (2). Additionally, chronic infections affect the ability of the ill to provide for their 

families, resulting in a significant socioeconomic burden in affected countries (3).

Brucellosis, caused by intracellular Gram-negative coccobacilli of the Brucella spp., is 

considered one of the most relevant bacterial zoonoses worldwide, with more than 500,000 

new human cases reported each year (4). The disease targets organs of the mononuclear 

phagocyte system, resulting in a chronic debilitating infection with serious clinical 

manifestations such as fever, arthritis, hepatomegaly, and splenomegaly (3, 5).

Typhoid fever, caused by the human-adapted Salmonella enterica serovar Typhi (S. Typhi) 

affects between 10 and 20 million people each year (6, 7), causing an estimated 190,000 

deaths (8). Similarly to Brucella, S. Typhi causes a systemic infection, which targets the 

mononuclear phagocyte system, and has the ability to persist inside host tissues for long 

periods, causing a chronic debilitating disease (9, 10). Interestingly, one study of brucellosis 

patients noted that over half had initially been misdiagnosed as having typhoid fever, which 

highlights the similar clinical presentation of these very different infections (11).
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In the host, one of the preferential target cells for both Salmonella and Brucella spp. are 

macrophages (3, 12), in which the bacterium can persist and replicate (3, 12, 13). A 

hallmark of these chronic bacterial infections is the formation of granulomas, which contain 

epithelioid macrophages and are known to be a site of bacterial persistence during infection 

(Figure 1) (3). The granulomatous response is viewed as an attempt by the host to isolate 

bacteria that have been taken up but not killed by macrophages (14) and is the result of an 

inefficient and/or insufficient immune response to these pathogens.

Intracellular Brucella survival involves a temporary fusion of the Brucella-containing 

vacuole (BCV) with the lysosome, and subsequent exclusion of the lysosomal proteins (15). 

Interestingly enough, after this process, the BCV becomes associated with the rough 

endoplasmic reticulum, creating the compartment in which intracellular replication of 

Brucella occurs (16–18). Once inside the ER-associated compartment, Brucella spp. 

becomes practically invisible to the immune system (13), as demonstrated by a low 

production of cytokines and antibodies during the chronic phase of infection (19, 20). 

Therefore, the initial immune response becomes key factor for the control of Brucella spp. 

infection.

Salmonella enters the host through the gastrointestinal tract, mainly through epithelial 

barrier translocation via microfold (M) cell invasion or via phagocytoisis by CD-18+ antigen 

presenting cells (21). Like Brucella, after bypassing the intestinal barrier, Salmonella is able 

to survive within macrophages residing in systemic tissues (12). Intracellularly, Salmonella 
is able to avoid complete fusion with the lysosome through translocation of effector proteins 

that direct maturation of a Salmonella-containing vacuole (SCV) (reviewed by (22)). Once 

inside the SCV, Salmonella is able to manipulate host cell functions, leading to replication 

and persistence.

Although B. abortus, and S. Typhi have the common goal to avoid elimination by the host, 

these pathogens use different strategies to persist. In this chapter we will discuss the 

different mechanisms used by these chronic bacterial pathogens to evade the initial host 

immune defense and colonize the host. Moreover, we will discuss the recent concept that 

bacterial pathogens have evolved to take advantage of the host cell metabolism and nutrient 

availability to survive and replicate inside target cells.

TRICKING THE HOST IMMUNE SYSTEM

Entry into the host: the role of secretion systems

In spite of its well established immunoevasive character, Brucella spp. do rely on an 

important virulence factor for intracellular survival, the type IV secretion system (T4SS) 

encoded by the genes virB1-virB12 (13, 23–25). The critical role of Brucella T4SS is 

demonstrated by the inability of T4SS deficient mutants to persist in vivo, as demonstrated 

in the murine (25–27) and the caprine infection models (28). This phenotype could be 

attributed to the essential role of the T4SS in establishing the ER-associated niche for 

Brucella replication (18), since virB mutants remain inside macrophage lysosomes and are 

degraded (3).
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Interestingly, it has been demonstrated that the T4SS is required not only for establishment 

of long-term infection, but also for the induction of Th1 immune response in infected mice 

(29). This function was confirmed by the fact that a functional T4SS is necessary for B cell 

maturation, activation of CD4+ T cells and for initial secretion of IL-12 and IFN-γ (30, 31). 

Moreover, B. abortus detection by Nod-like receptors (NLRs), leading to apoptotic specklike 

protein with a caspase recruitment domain (ASC)-inflammasome mediated production of 

IL-1β and IL-18, was also shown to be dependent on the type IV secretion system (32).

S. Typhi enters the host through the gastrointestinal tract and uses different strategies to 

reach systemic sites where it can persist for long periods (33). Salmonella serovars encode 

two different type III secretion systems, T3SS-1 and T3SS-2. Studies in the murine typhoid 

model using S. Typhimurium have demonstrated that the T3SS-1 is essential for the initial 

contact of the pathogen with intestinal epithelial cells and invasion of the ileal and colonic 

mucosa (34). Subsequently, the T3SS-2 is activated to mediate Salmonella survival inside 

macrophages and persistence in systemic sites (35). While few studies have addressed 

directly whether findings from the mouse typhoid model hold true during human typhoid, a 

screen for S. Typhi genes involved in infection of humanized mice identified mutants in 

either structural genes or regulators of both T3SS-1 and T3SS-2, suggesting that both of 

these virulence factors are involved in the bacteremic phase of typhoid (36).

Innate immune system evasion

The innate immune system is considered the first line of host-defense against invading 

pathogens. Therefore, the host has evolved mechanisms to detect the presence of bacteria in 

tissue through an innate immune surveillance system, which is able to recognize conserved 

pathogen-associated molecular patterns (PAMPs). These pathogen recognition receptors 

(PRRs), present in cell membranes (Toll-like receptors; TLRs) or in the cytosol (NOD-like 

receptors; NLRs) are able to detect products considered unique to bacteria, such as 

lipopolysaccharides (LPS), lipoteichoic acids, lipoproteins, and flagellin (37), leading to 

induction of the initial pro-inflammatory response. However, chronic pathogens have 

evolved passive and active mechanisms to evade detection by both TLRs and NLRs of the 

innate immune system (Table 1).

The stealthy nature of Brucella species

The LPS of Brucella spp. has several features that contribute to its near invisibility to the 

innate immune system. Brucella spp. can avoid the detection by TLR4 via modification of 

the lipid A moiety of its LPS. While most bacterial pathogens such as Enterobacteriaceae 

have a lipid A moiety containing short fatty acid residues (C12–C16), Brucella lipid A 

contains a much longer one (C28), resulting in its greatly reduced TLR4 agonist and 

endotoxic properties (38). TLR4 agonist activity is further reduced by glycosylation of the 

LPS core, which reduces its affinity for the TLR4 co-receptor MD-2 (39). Another LPS 

component, the O-antigen moiety, is recognized by complement (40). Therefore, an 

additional anti-inflammatory feature of Brucella LPS is its resistance to deposition of 

complement component C3 (41, 42), avoiding the generation of the anaphylatoxins C3a and 

C5a, which synergize with TLRs in the induction of proinflammatory cytokines (43, 44).
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Recently, an additional role for B. abortus LPS in evasion of innate immunity has been 

described, namely inhibition of neutrophil function. Once B. abortus has been phagocytosed 

by neutrophils, release of LPS within the pathogen vacuole appears to trigger a novel form 

of non-inflammatory cell death, thereby preventing killing of the engulfed bacteria (45). It is 

not yet known whether B. abortus LPS can be recognized by caspase-11 (or its human 

orthologs caspase-4 and caspase-5), the lack of pyroptotic cell death observed during 

infection of macrophages suggests that either LPS is not released to the cytosol where it can 

be accessed by these sensor caspases, or that it does not activate them in the same manner as 

described for other bacterial pathogens (46).

While Brucella spp. are non-motile, their genomes encode the structural components of an 

unconventional flagellum of unknown function, which is sheathed by LPS (47, 48). 

Interestingly, Brucella flagellin is able to avoid TLR5 detection, as it lacks a domain that is 

essential for its recognition by this receptor (49). However, recent work has demonstrated 

that the cytosolic receptor NLCR4 is able to detect Brucella flagellin, and is important for 

the pathogen control in the mouse model of infection (50).

In addition to TLR4, TLR2 and TLR9 have also been implicated in sensing Brucella 
infection (2, 51, 52). Therefore, as another strategy to avoid immune recognition, the 

Brucella genome encodes a protein that contains Toll-interleukin-1 receptor (TIR) domain, 

named Btp1/BtpA in B. abortus and TcpB in B. melitensis (53, 54). Btp1/TcpB acts by 

degrading the MyD88 adaptor-like (MAL), which is required for both TLR2 and TLR4 

signaling, but not for TLR9 (53, 55). In consequence, Btp1/TcpB is able to inhibit dendritic 

cell maturation and production of pro-inflammatory cytokines, contributing to long-term 

Brucella persistence. Recently, a second Brucella TIR-containing effector protein has been 

described, named BtpB (56). BtpB is also believed to interfere with TLR signaling in a 

MyD88-dependent manner, although its role in modulating Brucella-induced inflammatory 

responses and bacterial persistence remains to be determined.

The viaB locus: the “cloaking device” of S. Typhi

Differently from Brucella, it has been demonstrated that the lipid A moiety of purified S. 
typhi LPS is a potent TLR4 agonist (57), that S. typhi flagellin is recognized by TLR5 (58), 

and the O-antigen of purified S. typhi LPS activates complement (59). Therefore, in order to 

persist, S. typhi has evolved different strategies to avoid recognition by PRRs.

Whole-genome sequencing revealed the presence of a S. Typhi specific pathogenicity island, 

named Salmonella pathogenicity island 7 (SPI-7) (60) that contains the viaB locus that 

encodes for the production and export of the Vi capsular polysaccharide antigen, also known 

as Vi-antigen (61). Initial studies demonstrated that the expression of Vi-antigen was linked 

to reduced flagellin secretion and lower Salmonella invasiveness. Moreover, the expression 

of the Vi capsule was tightly regulated by osmolarity conditions, since high-osmolarity 

conditions suppressed Vi-antigen expression and led to increased Salmonella invasiveness 

and flagellin secretion (62, 63). Further studies demonstrated that the first gene in the viaB 
locus, named tviA, encoded the regulatory protein TviA, which is responsible for these 

osmolarity-dependent phenotypic changes (64).
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Interestingly, regulation of tviA expression is directly linked to conditions encountered by S. 
Typhi in the intestinal lumen (65), and is key for this pathogen’s ability to bypass the 

intestinal barrier. It turns out that TviA is not only responsible for regulation of the Vi-

antigen, but also for the suppression of flagella production and regulation of the T3SS-1 

gene expression (64, 66). Therefore, the high-osmolarity environment encountered in the 

lumen leads to inhibition of tviA expression, which allows S. Typhi to be motile and invasive 

as it approaches the mucosal epithelium (66). In contrast, once S. Typhi reaches the 

intestinal lamina propria, it encounters an environment characterized by low osmolarity, 

which leads to rapid tviA expression (65). As a result, several S. Typhi PAMPs and 

pathogen-induced processes can no longer be detected by the host’s immune system.

As described above, TviA-mediated repression of flagellin expression prevents detection of 

S. Typhi by host TLR5 and the consequent induction of the TLR5-dependent production of 

the pro-inflammatory cytokine IL-8 by colonocytes (67). Additionally, it has been 

demonstrated that S. Typhi is able to evade TLR4 recognition, in a Vi-antigen dependent 

manner (reviewed in (66). Recent studies suggest that this TLR4 evasion could result 

indirectly from the ability of the Vi antigen to prevent complement activation (43), and 

consequent generation of the anaphylatoxins C3a and C5a, which are two known enhancers 

of the TLR4-mediated induction of pro-inflammatory cytokines in response to lipid A 

recognition (44). The Vi-dependent inhibition of complement activation also prevents 

deposition of C3b in the bacterial surface, which in turn inhibits phagocytosis of S. Typhi by 

neutrophils, a cell type crucial for avoiding Salmonella dissemination (43, 66). Moreover, 

the S. Typhi Vi-capsule is also able to inhibit bacteria-guided neutrophil chemotaxis in a 

C5a-dependent manner (68). Taken together, these mechanisms help explain the lack of 

neutrophils in intestinal infiltrates from S. Typhi infected individuals (69, 70), which greatly 

contribute to this pathogens ability to evade host immune defenses and leads to an invasive 

persistent infection.

Both Brucella and S. Typhi are able to conceal two crucial molecular signatures that would 

otherwise allow the hosts immune system to identify them as Gram-negative bacteria. The 

host’s inability to detect these molecular patterns through TLR receptors as well as the 

complement system prevents the induction of an appropriate initial antibacterial host 

response. As a consequence, the pathogen clearance and infection control is significantly 

impaired (3, 71).

Induction of anti-inflammatory cytokines by Brucella

Interleukin 10 (IL-10) is considered an immunoregulatory cytokine that can be produced by 

different cell types, including B cells, T cells, macrophages and keratinocytes (72). The main 

cell type responsible for IL-10 production in defined situations is dependent on the kind of 

stimulus, type of affected tissue, and time point in an immune process (73). Therefore, IL-10 

is able to function at different stages of an immune response, affirming its crucial role as a 

regulator of both Th1 and Th2 cell responses (72, 74).

Therefore, a plausible strategy for persistent pathogen would be the induction of a cytokine 

that is able to modulate the host pro-inflammatory response. Indeed, in addition to an early 

pro-inflammatory Th1 response, B. abortus also induces the anti-inflammatory cytokine 
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IL-10 (1, 2, 75). Interestingly, anti-Brucella effector functions of IFNγ activated 

macrophages such as bactericidal capacity and production of pro-inflammatory cytokines 

were dampened by IL-10 during in vitro infection (75, 76). In vivo experiments 

demonstrated that production of IL-10 by CD4+CD25+ T cells was key for modulation of 

macrophage function during early Brucella infection, since mice lacking IL-10 production 

by T cells or lacking the presence of the IL-10R in macrophages presented decreased 

bacterial survival in spleen and liver, as well as increased production of pro-inflammatory 

cytokines and pathology in affected organs (1). Moreover, a B. abortus proline racemase 

PrpA was shown to both stimulate a mitogenic activity on B cells and induce IL-10 secretion 

by splenocytes, suggesting that it may be one of the factors involved in induction of IL-10 

during infection (77). Taken together, these data suggest an important role of IL-10 in 

modulating the initial immune response to Brucella infection through regulation of 

macrophage function and resulting in increased pathogen survival and long-term persistence.

TAKING ADVANTAGE OF HOST CELL METABOLISM

The interactions of persistent bacterial pathogens with the host immune system have been 

extensively studied and contribute greatly to the ability of such pathogens to cause chronic 

infection. However, evasion of the immune response is not the sole mechanisms for 

pathogen persistence, since studies have shown that factors required for establishment of 

chronic disease in vivo may not be necessarily dependent on the induction of an immune 

response. Interestingly, a variety of genes required for Brucella persistence for example, are 

related to changes in bacterial metabolism and to the ability of the pathogen to use a specific 

nutrient (26). This fact gives rise to the possibility that chronic bacterial pathogens may have 

adapted not only to the different immune environment present during persistent infection, 

but also to differences in nutrient availability in target cells during this period.

Macrophages subsets and their different metabolism

Macrophage activation by IFNγ and TLRs leads to upregulation of the inducible form of 

nitric oxide synthase (iNOS) (78) and production of reactive oxygen species (ROS) (79). 

Therefore, ROS and nitric oxide (NO) production are key functional features of the 

inflammatory and bactericidal classically activated macrophage (CAM; Figure 2), and the 

metabolic alterations that occur are integral to this process (80). Interestingly, NO competes 

with oxygen to inhibit cytochrome c oxidase, the terminal electron acceptor of the 

respiratory chain. This fact prevents the reoxidation of NADH, which in turn limits flux 

through the tricarboxylic acid (TCA) cycle. Moreover, increased generation of ROS by 

mitochondria also contributes to reduced macrophage reliance on the TCA cycle and the 

respiratory chain for energy and ATP production. However, CAM macrophages still need to 

maintain ATP levels for biosynthesis, as well as to maintain mitochondrial membrane 

potential and to prevent apoptosis (80). Therefore, decreased TCA flux in CAM leads to 

ATP production through anaerobic glycolysis and lactate production. Consequently, these 

cells show elevated expression of the glucose transporter GLUT1 as well as marked switch 

from expression of the liver isoform of the enzyme 6-phosphofructo-2-kinase (encoded by 

PFKFB1) to the PFKFB3 isoform (81). This leads to increased glucose uptake and 

Byndloss and Tsolis Page 6

Microbiol Spectr. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



consumption, as well as to accumulation of fructose-2,6-bisphosphate which, in turn, 

increases glycolytic flux (80).

The opposite is true when macrophages are activated by IL-4 and IL-13, which promote 

development of alternatively activated macrophages (AAM; Figure 2). This macrophage 

subpopulation exhibits a profound increase in the entire program of fatty-acid metabolism, 

including uptake and oxidation of fatty acids and mitochondrial biogenesis, as well as much 

lower rates of glycolysis (81, 82). Consequently, while CAM preferentially utilize glucose, 

the alternative program of macrophage activation switches over to fatty acid oxidation for 

energy homeostasis (82). Since AAM are involved in chronic processes and tissue repair, it 

is possible that the more energy efficient oxidative metabolism is better suited to long-term 

roles of this subpopulation (80).

Interestingly, the control of the genetic program for long-term activation is dependent on 

STAT6 phosphorylation (80, 83). As consequence, phosphorylated STAT6 dimerizes and 

translocates to the nucleus where it induces expression of its target genes, including markers 

(Arg1, Ym1, Fizz1, Cd301) and regulators of macrophage metabolism and alternative 

activation (i.e.: Pparγ, Pparδ and PGC-1β) (84).

Macrophage metabolism and Brucella persistence

It is well established that macrophages represent the main target cell for Brucella persistence 

in many tissue types (13, 85–89). Therefore, interactions between Brucella and the different 

macrophages subpopulations are key for understanding the bacterial survival and disease 

progression. Interestingly, during infection of C57BL/6 mice the macrophage 

subpopulations differ significantly between acute and chronic stages of Brucella infection. 

During the acute and more pro-inflammatory stage of infection, there is a significant 

increase in the numbers of bactericidal CAM, and this fact correlates well with higher IFNγ 

levels as well as the decrease in B. abortus survival in spleen of infected mice (88). 

Conversely, during chronic infection, there is a shift in the macrophage subpopulation with 

predominance of the wound-healing AAM subtypes leading to a persistent Brucella survival 

over time. Indeed, AAM were shown to be more permissive for B. abortus survival and 

replication in vitro. Furthermore, during chronic infection of mice, two lines of evidence 

show persistence of B. abortus in AAM, firstly, viable B. abortus was cultured primarily 

from the CD11b+ fraction, which consists predominantly of AAM during chronic infection, 

and secondly, bacteria were localized by flow cytometry to splenic cells expressing markers 

of the AAM phenotype, CD301+CD11b+. The presence of B. abortus-infected AAM was 

shown to be dependent on the activation of the intracellular receptor Peroxisome 

proliferator-activated receptor gamma; PPARγ.

PPARγ, is a nuclear receptor activated by fatty acids, that has recently been linked to the 

polarization of macrophage phenotype (90). Therefore, even though PPARγ is best known 

for its influence in adipocyte development and insulin-resistance (84), it can also have an 

widespread influence on macrophage biology (91, 92). Interestingly, studies using PPARγ –

deficient cells have demonstrated that, in the absence of PPARγ signaling, macrophages 

neither appropriately suppress inflammatory cytokine production nor acquire an oxidative 

metabolic program that is associated with the AAM phenotype (84, 90).
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As previously discussed, one consequence of macrophage polarization is the shift in their 

cellular metabolism, which means that CAM and AAM utilize different sources of carbon 

and energy (93). This fact raises the possibility that different nutrients are available 

intracellularly in different macrophage subpopulations. Indeed, CAM rely on glycolysis for 

energy production and, therefore, consume most intracellular glucose. Conversely, AAM 

obtain their ATP via degradation of fatty-acids via the β-oxidation pathway in a PPAR-

dependent manner. In consequence, there is an accumulation of glucose inside the cell, 

shown by higher intracellular glucose levels in AAM when compared to CAM (88, 94). 

Interestingly, Brucella makes use of this nutrient availability for long-term persistence, since 

a gluP mutant, which lacks the ability to take up intracellular glucose, is no longer able to 

persist inside AAM in the mouse model. Moreover, this phenotype was dependent on the 

PPARγ expression by macrophages (26, 88).

Macrophage metabolism and Salmonella persistence

While S. Typhi is a strictly human-adapted pathogen, work done modelling S. Typhi 

infection by studying chronic infection of Salmonella enterica serotype Typhmiurium in 

mice has provided significant insights into mechanisms underlying persistence at systemic 

sites.

Recent work in the mouse has shown that there is a shift in the immune environment during 

Salmonella infection, characterized by predominance of a pro-inflammatory Th1 response 

during acute infection and the presence of Th2 cytokines like interleukin-4 (IL-4) during 

chronic infection. As a result, there is an increase in the percentage of AAM during the 

persistence phase of the disease, and this cell-type was shown to harbor the majority of 

Salmonella population in infected organs (94). Interestingly, the increased susceptibility of 

this particular cell-type was dependent on its metabolic program, rather than on its 

immunological status.

Interestingly, survival of Salmonella was dependent on the activation of one of the PPAR 

receptors, named PPARδ. As previously described for PPARγ, PPARδ functions to regulate 

the host-cell energy metabolism, mainly fatty acid β-oxidation (95). Indeed, Salmonella 
infection actively upregulated the expression of Ppard, which in turn led to shift in the 

metabolism of infected cells to the oxidation of fatty acids. Consequently, infected AAM 

presented increased intracellular levels of glucose, the carbon source used by macrophages 

when β-oxidation is downregulated (81, 94). This fact raised the possibility that Salmonella 
was taking advantage of this new available energy source to persist and proliferate inside 

AAM. The inability of glucose uptake-deficient Salmonella mutants to survive inside AAM, 

confirmed that intracellular glucose utilization was key for Salmonella long-term persistence 

in AAM, and consequent establishment of chronic infection.

Although AAM-polarized cells of the human-derived monocytic cell line THP1 were shown 

to support higher levels of intracellular S. Typhi replication, it will be interesting to see if S. 
Typhi uses increased glucose availability to persist in the host, as was shown for S. 
Typhimurium, and whether PPARδ expression is linked with intracellular persistence of S. 
Typhi in human macrophages (94).
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CONCLUSION

Recent work in both Brucella and Salmonella fields of research has revealed shared 

strategies utilized by chronic bacterial pathogens to persist in the host. It is becoming more 

evident that both immune evasion and interactions with the host-cell metabolism play key 

roles during establishment of chronic infection. Therefore, the picture emerging from these 

studies is that persistence is determined not only by the pathogen’s ability to evade the host 

immune response, but also by its ability to develop mechanisms to exploit the nutrients 

available during the chronic stages of infection. Since both preventive and therapeutic 

interventions remain difficult and costly, a better understanding of the new mechanisms 

responsible for bacterial pathogen persistence will be crucial for a proper control and 

treatment of such infections.
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Figure 1. Microgranuloma formation in spleen of Brucella infected mice
(A) Fully developed microgranuloma (black arrow) at 30 days postinfection. Granuloma is 

composed of epithelioid macrophages surrounded by lymphocytes. Hematoxylin and eosin 

stain, 400x magnification. (B) Immunolabeling of B. abortus within microgranulomas in 

spleen at 30 days postinfection. Note the presence of bacteria inside macrophages (black 

arrow). Immunohistochemistry, 400x magnification.
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Figure 2. Macrophage metabolism during Brucella infection
During the acute phase of B. abortus infection (left), IFN-γ is transiently produced, resulting 

in a predominance of classically activated macrophages (CAM). In these cells, oxygen is 

consumed by NADPH oxidase (Phox) to generate superoxide radicals, and energy is 

produced by anaerobic glycolysis. Since anaerobic glycolysis yields only 2ATP, the cell has 

to consume more glucose to meet its energy needs. In contrast, during the chronic infection 

phase (right), IFN-γ is absent, but IL-4 and IL-13 signal via STAT6 to induce the 

alternatively activated macrophage (AAM) phenotype. Activation of STAT6 increases the 

expression and activation of PPARγ, which in turn upregulates genes controlling β-

oxidation, thereby shifting cellular physiology toward oxidative pathways. As a result, less 

glucose is consumed for cellular metabolism, and the intracellular glucose concentration 

increases. This glucose can be utilized by B. abortus for growth within infected 

macrophages.
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