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Abstract

Objective—Recently the FDA approved the first responsive, closed-loop intracranial device to 

treat epilepsy. Because these devices must respond within seconds of seizure onset and not miss 

events, they are tuned to have high sensitivity, leading to frequent false positive stimulations and 

decreased battery life. In this work, we propose a more robust seizure detection model.

Approach—We use a Bayesian nonparametric Markov switching process to parse intracranial 

EEG (iEEG) data into distinct dynamic event states. Each event state is then modeled as a 

multidimensional Gaussian distribution to allow for predictive state assignment. By detecting 

event states highly specific for seizure onset zones, the method can identify precise regions of 

iEEG data associated with the transition to seizure activity, reducing false positive detections 

associated with interictal bursts. The seizure detection algorithm was translated to a real-time 

application and validated in a small pilot study using 391 days of continuous iEEG data from 2 

dogs with naturally occurring, multifocal epilepsy. A feature-based seizure detector modeled after 

the NeuroPace RNS System was developed as a control.

Main results—Our novel seizure detection method demonstrated an improvement in false 

negative rate (0/55 seizures missed vs 2/55 seizures missed) as well as a significantly reduced false 

positive rate (0.0012/hour vs 0.058/hr). All seizures were detected an average of 12.1 ± 6.9 

seconds before the onset of unequivocal epileptic activity (UEO).

Significance—This algorithm represents a computationally inexpensive, individualized, real-

time detection method suitable for implantable antiepileptic devices that may considerably reduce 

false positive rate relative to current industry standards.
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1. Introduction

Epilepsy affects over 60 million individuals worldwide, with one quarter of patients having 

disease refractory to standard therapies including medication and surgery
1
. Automated 

seizure detection algorithms have been studied for decades to improve the diagnosis and 

treatment of epilepsy
2
. More recently, these algorithms have been applied to closed-loop 

implantable devices designed to detect and electrically stimulate to abort epileptic activity
3
. 

These devices help satisfy a need for additional strategies for seizure control, with the 

potential to improve the quality of life of millions of patients suffering from epileptic 

seizures.

The first closed-loop implantable therapeutic device to be approved by the FDA for 

treatment of epilepsy is the NeuroPace Responsive Neurostimulation System, in 2013. This 

device, like other similar systems in development, uses real-time intracranial EEG (iEEG) 

data as input to an algorithm to detect onset of epileptic activity and trigger targeted 

electrical stimulation to arrest potential seizures. While such devices show promising 

clinical results, they are often limited by the efficacy of the detection algorithms. The 

algorithms used in these devices are typically dependent on extracting and analyzing specific 

“features” of the EEG signal, such as amplitude, line length
4
, and area under the curve. In 

order to successfully and reliably avert epileptic activity, the detection algorithm must detect 

seizure onset with sufficient latency prior to clinical symptoms to provide an opportunity for 

intervention. A clinically useful system will detect all seizures and is thus required to be 

highly sensitive; however, these devices have been hampered by high false positive rates, 

causing unnecessary stimulation and increased frequency of repeat surgery to replace spent 

batteries.

One potential source of false positive detections by feature-based methods is the occurrence 

of sub-clinical epileptiform “bursts,” also known in the literature by terms such as brief ictal 

rhythmic discharges (B(I)RDs), and others
5
. These events represent an abnormal EEG 

finding without obvious clinical manifestations, and often occur with greater frequency than 

seizures. Although the underlying pathology of these discharges remains uncertain, burst 

activity is associated with epilepsy
6
, neonatal seizures

5
, and brain trauma

7
, and indicates 

poorer prognosis in long-term clinical outcomes
8
. Recent work demonstrates that the 

dynamics of burst events closely mimic those of the seizure onset zone
9
, suggesting that 

bursts may represent the arrest of nascent seizures, making them prime candidates for false 

detection.

Previous research by Wulsin and Fox
10

 demonstrated that epileptic events can be modeled 

using a Bayesian nonparametric hidden Markov switching process. This approach enables 

parsing of EEG data based on underlying brain dynamics. In this work, we present a novel 

seizure detection algorithm based on this method of EEG analysis. By isolating and 

modeling specific epochs of EEG associated with transition to seizure activity, we are able to 

detect seizure onset in real time in a personalized manner not reliant on feature extraction. 

Using data recorded from dogs with naturally occurring epilepsy we demonstrate that this 

seizure detection algorithm may represent a substantial improvement in detection specificity 

with minimal on-line computational requirements.
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2. Methods

2.1 Animals

The animals implanted in this study have been described earlier
11,12

. Mixed hounds with 

spontaneous seizures were implanted with a continuous intracranial recording device 

designed and manufactured by NeuroVista Inc. (Seattle, Washington). Standard human-sized 

strip electrodes with a total of 16 contacts were implanted in the subdural space to cover 

both hemispheres of the canine neocortex (Figure 1). All dogs had normal neurological 

examinations and MRI. The dogs were housed in the University of Minnesota canine 

epilepsy monitoring unit and continuously monitored (24 hours/day) with video and iEEG. 

See Supplemental Materials for more information regarding surgical technique and 

implanted device design.

2.2 Overview of algorithm

This novel seizure detection algorithm is designed to respond to the overall behavior of the 

EEG data rather than to extracted features. The model, which is described below, uses an 

ergodic hidden Markov process to parse regions of the iEEG to different states, including the 

pre-seizure state. This method is applied to a training dataset in order to identify iEEG states 

characteristic of the immediate pre-seizure state and to optimize model parameters. These 

states are then approximated using Gaussian models to allow for real-time, unsupervised 

seizure detection in a testing dataset.

Parsing iEEG recording using an Autoregressive Hidden Markov Model—In 

order to parse complex epileptic behavior into distinct dynamical regimes, we relied on a 

Bayesian nonparametric autoregressive Markov switching process. Due to the non-stationary 

behavior of EEG, a time-varying autoregressive (AR) process is used to model each 

channel’s activity. The model also mimics focal changes in EEG by allowing for shared 

dynamical states among a variable number of iEEG channels and asynchronous state 

switching among channels via the Beta process. Notably, our data is characterized by inter-

channel correlations, which may change over time as the patient progresses through various 

seizure event states. This model is described fully in Wulsin, 2014
9
.

Using AR-HMM to define event states and to identify “States of Interest”—
While the AR-HMM determines a dynamical state at each time point for each individual 

channel, in this work we relied on overall event states in order to capture global brain 

dynamics. These states are determined from the channel state transitions by a Dirichlet 

process as described in Wulsin, 2014
9
. Each time point of iEEG data was parsed into one of 

30 event states. The number of event states was empirically chosen to capture a sufficiently 

wide range of EEG behaviors. Preliminary studies using this model to parse seizure activity 

demonstrated successful characterization of seizure dynamics, with identification of 

dynamical transitions in agreement with those identified manually by a board-certified 

epileptologist (Figure 2). These event states are used to identify personalized “states of 

interest” (SOIs) disproportionately enriched in pre-seizure zones, defined as the 30-second 

window prior to the unequivocal epileptic onset (UEO) for each seizure. The UEO is defined 

as the earliest time that seizure activity is evident to an epileptologist viewing EEG data 
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without prior knowledge of seizure occurrence. In each dog, three SOIs were identified with 

consistent appearance in pre-seizure zones with specificity >99%; however, the final number 

of SOIs chosen may vary among subjects based on individual seizure onset iEEG profiles. 

Notably, these SOIs were not found to occur more frequently during burst activity than at 

baseline (p = 0.21).

Adaptation of States of Interest for Online Seizure Detection—Identification of 

pre-seizure SOIs is not directly useful for real-time seizure detection for several reasons. 

First of all, determination of event states for each time point by the AR-HMM requires the 

entire time series to be analyzed at once as the state determinations are not independent in 

time, thereby preventing predictive use. Secondly, determination of event states by this 

model is computationally intensive; even if an approximate predictive model were designed, 

the hardware demands for such computation would render it unsuitable for use in an 

implantable device.

Therefore, in order to translate this approach into a real-time detector, we developed a model 

informed by existing AR-HMM event states designed to predict future event states. The 

emission probabilities of each state are modeled as a Gaussian distribution, resulting in an 

N-dimensional vector mean (μ) and an N×N covariance matrix (Σ) associated with each 

state, where N is the number of channels (Figure 3). These newly defined Gaussian 

distributions are then used to calculate to which state an incoming time point would most 

likely belong using maximum likelihood estimation. This calculation allows for the 

assignment of data to approximated event states in real time with minimal computational 

overhead. The model also included three event states designed to identify artifacts, generated 

by modeling artifact data with a three-component Gaussian mixture model.

2.3 Data segmentation and testing method

Model testing was carried out to simulate online detection. Each data set was sequentially 

segmented into a 30-day “burn-in period” to be discarded, a 60-day training data set, and the 

remainder to be used as a testing data set. The first 30 days of recording are removed due to 

significant short-term impedance changes post-implantation
13

. The training period in Dog 1 

contained 14 seizures and 61 bursts, while the training period in Dog 2 contained 12 seizures 

and 524 bursts. This segmentation produced a testing dataset for Dog 1 of length 337 days 

with 20 seizures and 407 bursts, and a testing dataset for Dog 2 of 54 days with 35 seizures 

and 389 bursts.

The training data set was segmented into true event states using the AR-HMM. These states 

were then used as described previously in creating of Gaussian models to be used for online 

detection. Thus, the dataset used for algorithm testing was kept separate from all data used 

to inform the model.

Pre-seizure states were identified based on a sliding window of incoming data. If the 

percentage of points within the window identified as SOIs exceeds a specified threshold, the 

detector signals that a pre-seizure state is present. The specific window length and threshold 

value were optimized over the training data set by sampling the parameter space to provide 

the fewest false positives possible while ensuring that all seizures were detected prior to the 
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UEO (zero false negatives). In this testing, once a seizure is flagged the detector is 

deactivated for five minutes in order to prevent multiple detections of the same event. This 

method is demonstrated in Figure 4.

2.4 Development of control detectors

A feature-based detector modeled after the NeuroPace seizure detection system
14

 was 

developed to serve as a control. This detector was responsive to signal line length
4
, 

halfwave
15

, and area under the curve
2
. Thresholds for each feature were determined 

graphically by plotting feature values over time in order to ensure that the threshold chosen 

was both sensitive and specific for seizure onset. The specific binary operations among the 

three features used to detect seizure onset were determined through optimization on the 

training data to limit false positives while preserving a false negative rate of zero.

A state-of-the-art seizure detection algorithm was also used for comparison. This algorithm, 

developed by Michael Hills, was the winner of the 2014 Kaggle competition for seizure 

detection
16

. This model extracts cross-channel correlations in the time and frequency 

domains as features, which are then used to train per-patient Random Forest classifiers. Test 

data is classified in one-second windows as ictal or interictal. The code for this algorithm is 

freely available, and was adapted to allow for seizure detection over continuous recordings. 

Note that this algorithm is not designed to satisfy the computational limitations of real-time 

detection in an implantable device, but rather represents the current upper limit for offline 

detection accuracy.

3. Results

The efficacy of each algorithm was assessed by the false negative and false positive rates, as 

well as the latency of each seizure call (Table 1). The latency was measured relative to the 

UEO of each seizure. Of the twenty seizures in the testing dataset for Dog 1, all twenty were 

detected by both the HMM-Gaussian model and the feature-based detector with average 

latencies of 12.1 ± 69 seconds and 18.5 ± 4.9 seconds before the marked UEO, respectively. 

Over the 337 days of recorded data, the HMM-Gaussian model returned 5 false positives 

(6.2×10−4/hr; 0.25/seizure), while the feature-based detector returned 116 false positives 

(1.4×10−2/hr; 5.8/seizure). For Dog 2, all thirty-five of the seizures were detected by the 

HMM-Gaussian model with an average latency of 10.7 ± 8.1 seconds before the UEO while 

the feature-based model detected thirty-three of thirty-five with average latency of 19.0 

±12.7 seconds before the UEO. Over 54 days of recorded data, the HMM-Gaussian model 

returned 6 false positives (4.6×10−3/hr; 0.17/seizure) while the feature-based model returned 

430 (0.33/hr; 12.3/seizure). Over both dogs, the seizure flags by the HMM-Gaussian method 

ranged in latency from 4 to 24 seconds before the UEO; the feature-based model ranged 

from 8–23 seconds before the UEO. In Dog 1, the rate of false positives in the feature-based 

detector (1.4×10−2/hr) matches the published rate of the NeuroPace device (1.3×10−2/hr)
14

, 

suggesting that this model is an appropriate control for comparison to devices used in 

practice. It is important to note that each animal tested had multiple seizure onset types that, 

while falling into a range of similar morphologies, were variable enough in their temporal 

characteristics as to challenge standard seizure detection algorithms. Figure 5 depicts the 
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range of seizure onset patterns in one test animal. The performance metrics of the Kaggle-

winning algorithm on this dataset are similar to those of the HMM-Gaussian model in both 

dogs, demonstrating that our method performs comparably to this state-of-the-art detector 

over these datasets.

In an effort to decrease false positives produced by the feature-based algorithm, the feature 

thresholds were revised to make the model more robust to bursts. Parameters were plotted as 

described above, and rather than selecting feature cutoffs based on baseline values, cutoffs 

were chosen to exceed the maximum activity seen during bursts in the training set. This 

revised model showed modestly improved false positive rates and slightly decreased 

latencies. In Dog 1, 71 false positives (8.8×10−3/hr; 3.55/seizure) were detected with latency 

15.7±3.8 seconds before the UEO; in Dog 2, 232 false positives (0.11/hr; 6.63/seizure) were 

detected with latency 15.6±5.1 seconds before the UEO.

Given the efficacy of the HMM-Gaussian model using the full electrode grid, we sought to 

examine the utility of this model using a subset of electrodes. Long-term implanted neural 

recording devices are hampered by inflammation and resulting gliosis at electrode sites
17–19

. 

Limitation of the number of recording electrodes offers the potential to decrease local tissue 

damage associated with long-term implantation while also decreasing surgical implant 

complexity and device cost. We investigated four configurations of electrode subsets in each 

animal: 8 leads confined to either the left or right hemisphere, 8 leads spread uniformly over 

the entire cortex, and 4 leads targeted most closely to the seizure onset zone. The presumed 

seizure onset zone was determined as the location with the earliest electrographic change 

prior to seizure propagation. The results of these trials are shown in Table 2. We discovered 

that selection of an appropriate subset of electrodes provided comparable results to those 

obtained using the full grid in Dog 1, with high accuracy achieved using only 4 optimally 

chosen electrodes. However, all electrode subsets selected in Dog 2 resulted in significant 

decreases in detection accuracy with multiple missed seizures. The decision to use a smaller 

number of implanted electrodes must be based on the individual subject’s seizure profile, 

with greater efficacy expected in subjects with clear seizure onset zones, stereotyped pre-

seizure electrographic changes, and few interictal bursts.

4. Discussion

The high rate of false positives inherent in current feature-based detection has hampered use 

of these systems in practice, as it is associated with unnecessary stimulation and decreased 

battery life
3
. While both the feature-based and HMM-Gaussian detectors correctly identified 

all seizures in Dog 1 and the vast majority of seizures in Dog 2, the HMM-Gaussian detector 

demonstrated a drastic reduction in false positive detections. Both detectors were able to 

consistently identify seizures in a clinically useful manner for closed-loop stimulation, well 

before the UEO; however, the feature-based detector was able to detect seizures 5–10 

seconds earlier on average. Although proof of effective suppression of seizure symptoms 

must be definitely evaluated in in vivo studies, this finding provides a high level of 

confidence that the HMM-Gaussian detector consistently identifies seizure onset zones 

before seizure generalization occurs, at a time when clinical intervention is possible. This 

belief is supported by the fact that the NeuroPace seizure detector, which has shown a degree 
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of efficacy in symptom suppression in practice (seizure reduction of 40% relative to 

baseline)
20

, has a published latency of 5.01 seconds after the UEO
14

. Clinical testing is 

needed to determine whether the rate of seizure aversion might be improved with earlier 

seizure detection and stimulation. Furthermore, the detection algorithm we have designed is 

ideal for incorporation into an implantable device. All computationally difficult calculations 

are performed externally during model setup for analysis of training data. Categorization of 

incoming data into estimated event states in real time requires only a single matrix 

multiplication per data point, allowing for high time-resolution sampling with minimal 

hardware requirements.

False positive detections flagged by the feature-based detector are not distributed at random 

throughout the recording. Rather, these calls are clustered in areas of high seizure activity. In 

particular, false positives tend to occur during or in close association with bursts (Figure 6), 

and retraining of the algorithm to limit detection of bursts effected a significant (but not 

complete) reduction in false positives. In contrast, the HMM-Gaussian seizure detector is 

based on identification of event states that are specifically chosen to be absent from bursts 

and surrounding background. This method greatly increases robustness to bursts, thereby 

eliminating a major source of false positive readings. In addition to accomplishing our 

primary goal of reliable seizure detection with greatly reduced false positive rate, we have 

shown that it is possible to identify specific epochs of iEEG behavior that are useful for 

distinguishing bursts from nascent seizures. A more thorough investigation of these periods 

may yield interesting information regarding the brain dynamics that modulate the variable 

arrest of propagation of epileptic activity.

The performance of the HMM-Gaussian algorithm was also compared to that of the winning 

seizure detection algorithm from the Kaggle competition, the Hills algorithm. Both methods 

detected all seizures with nearly identical numbers of false positive detections and no 

significant difference in detection latency. However, it is important to recognize that the 

Hills algorithm cannot be directly applied for use in an implantable device. Given the current 

hardware limitations of these devices, it is unfeasible to locally carry out bandpower 

computation, signal correlation, and classification using a Random Forest of 3000 trees in 

real time
21

. Nevertheless, the performance of the Hills algorithm over a range of human and 

canine datasets justifies its use as a benchmark for attainable detection accuracy
16

. Our work 

has demonstrated that the HMM-Gaussian algorithm can match the performance of this 

state-of-the-art offline detection method while dramatically reducing computational 

requirements during live detection.

Interaction between the computationally intensive training method we use in this paper and 

its low-computational overhead implementation suitable for an implantable devices is 

worthy of comment. With increasing availability of central, cloud-based computational and 

data integration, collection of data from individual devices, central training, and periodic 

updates of implantable devices is now a reality. Data for this study were all stored and 

processed on http://ieeg.org, an NIH-funded, cloud-based platform hosted on Amazon’s 

Elastic Computing Cloud (EC2). Our laboratory has used this platform to collect dispersed 

data for training from remote sites, for central data review, annotation and algorithm 

training, and then individual device updates. One important implication of our study is that it 
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validates this type of paradigm for both research and its implementation in clinical care
22

. 

This work is currently formally under way as a testbed for a variety of device 

implementations.

5. Limitations

One limitation of this study is the small number of test animals, despite the prolonged 

recording periods and large number of seizure detections used in testing and validating 

algorithm performance. For this reason it is important that we not overemphasize the 

significance of our findings. The study presented is meant to elucidate the potential of a new 

computational method for responsive implanted antiepileptic devices, but is not meant to 

definitively validate its utility. It is important to note that seizures demonstrated considerable 

variability in the animals’ studies, with a variety of onset patterns and locations (Figure 4) 

that challenged the NeuroPace-like detector. The animals studied also had a significant 

number of interictal epileptiform bursts that challenged standard detection algorithms. For 

these reasons we feel that the present study, despite being validated on only two prolonged 

recordings, demonstrates that the method is promising. In addition, the epileptic profiles of 

the dogs used in this study differ significantly. Dog 2 was characterized by considerably 

increased seizure and burst activity, likely responsible for the elevated rate of false positive 

detections produced by both algorithms and demonstrating that the accuracy of these 

algorithms is dataset-dependent. Certainly, validation on a much larger data set of 

continuous animal or human recordings, as may be available from the NeuroVista human 

data set
23

, would be required to definitively prove potential benefit over current detection 

strategies.

It is also important to recognize that the direct clinical impact of a drastic reduction in false 

positive detections is unclear, and that devices that stimulate much more selectively could 

potentially provide less seizure control in their current embodiment. While it stands to 

reason that precise seizure detection may provide relief from symptoms without unnecessary 

stimulation, it is also possible that the efficacy of the NeuroPace device in practice stems in 

part from generation of a low-seizure state secondary to frequent stimulation. It had been 

demonstrated that frequent electrical stimulation may cause persistent alterations in brain 

function in epilepsy regardless of whether these stimulations are correlated with seizure 

onset
24–26

. In vivo testing is required to parse the relative importance of on-and off-target 

stimulation in seizure prevention, and to determine if highly targeted stimulation alone is 

clinically effective. It may also be that parameters not accounted for in the current first 

generation responsive devices, such as the relation between phase of target waveform and 

stimulation or synchronization with two-dimensional wavefronts, may be required to 

optimize selective responsive stimulation. In addition, characterization of changes in the 

distribution of iEEG states in the days to weeks preceding a seizure may provide avenues for 

identifying periods of high seizure susceptibility, rather than pinpointing precise seizure 

onset states. It is possible that identifying and targeting these epochs of epileptic 

vulnerability could prove to be more effective for modulatory stimulation than specific 

immediately pre-seizure states.
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An important advantage of the HMM-Gaussian detection system is that it is tuned to an 

individual’s particular seizure onset pattern. Event states are chosen as important for seizure 

detection based on their role in a particular patient, allowing this method to capture the 

individual’s specific seizure morphology. However, this approach could, in theory, result in 

missed seizures if seizure morphology or location of onset were to change significantly over 

time. Long-term recording of electrographic signals may also be affected by chronic local 

inflammation or gradual changes in electrode impedance. While we did not observe any 

decrease in sensitivity, extended studies must be carried out to determine if model retraining 

is necessary. Implementation of this model in a portable device would provide extensive 

patient recordings such that it may be retrained on recent pre-seizure periods to ensure 

continued accuracy.

6. Conclusion

In this work, we present a novel algorithm for individualized seizure detection suitable for 

use in a closed loop, implantable system. We have demonstrated that modeling seizure 

activity using an autoregressive hidden Markov model may provide insights into novel 

methods of characterizing and analyzing EEG data. This algorithm represents a substantial 

improvement in accuracy of seizure detection over the industry standard, achieving a nearly 

98% reduction in false positive rate while slightly improving detection sensitivity. 

Furthermore, the performance of this model closely matches that of the winning algorithm 

from the Kaggle seizure detection competition. Further in vivo study must be carried out in 

order to assess the potential clinical implications of this technology. This work also 

demonstrates potential for a new pipeline for individualized device data collection, training, 

and reprogramming utilizing a central cloud-based platform.
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Figure 1. 
Representation of electrode implantation location in canine neocortex. Figure reprinted with 

permission from Davis, Kathryn et al. A novel implanted device to wirelessly record and 

analyze continuous intracranial canine EEG. Epilepsy Research 96, 116–122 (2014).
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Figure 2. 
Data traces from the 16 channel iEEG electrode over 25 seconds of a seizure onset with 

colors indicating the inferred channel states. Vertical dashed lines indicate the EEG 

transition times marked independently by an epileptologist. Figure adapted from Wulsin, et 

al., Modeling the Complex Dynamics and Changing Correlations of Epileptic Events, Artif. 
Intell. 216, 55–75 (2014).
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Figure 3. 
Schematic of construction of Gaussian distributions. Each time point in the training dataset 

is assigned an event state based on the AR-HMM. Three sample recording clips are shown, 

with time points color coded by event state. The time points are then segregated by state to 

generate a unique dataset for each event state. These datasets are then modeled as a 16-

dimensional Gaussian distribution. Figure above illustrates this operation for a single state 

(color coded as red).
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Figure 4. 
Sample seizures and bursts from Dog 1. Each time point is color coded by real event state as 

determined by the AR-HMM. The same seizures and bursts were evaluated using the online 

Gaussian detection method to determine approximate event states and to identify time points 

at which the most likely state is an SOI. Time points that fall in sliding windows in which 

the percentage of predicted SOIs exceeds a set threshold are marked with black bars. These 

windows are sensitive and specific for seizure onset zones.
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Figure 5. 
Seizure onset patterns and locations are variable over the course of the recordings. Three 

major categories of seizure patterns are demonstrated in Dog 1 as determined by manual 

review by an epileptologist. Each seizure type had a different initial onset location.

Baldassano et al. Page 15

J Neural Eng. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Representative timeline excerpts from Dog 1 (a and b) and Dog 2 (c). The top row represents 

detected seizures by the HMM-Gaussian detector, the second row represents detected 

seizures by the feature-based, NeuroPace-like detector, the third row represents real seizures, 

and the bottom row represents real bursts. Note that false positives flagged by the 

NeuroPace-like detector tend to cluster with interictal bursts.
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Table 1

Performance metrics of HMM-Gaussian, feature-based, and Kaggle-winning methods.

Dog Method FN FP (rate/hr) Latency (s)

1 HMM-Gaussian 0 5 (6.2e-4) −12.1 ± 6.9

1 Feature 0 116 (1.4e-2) −18.5 ± 4.9

1 Feature* 0 71 (8.8e-3) −15.7 ± 3.8

1 Kaggle 0 3 (3.7e-4) −10.1 ± 5.5

2 HMM-Gaussian 0 6 (4.6e-3) −10.7 ± 8.1

2 Feature 2 (0.057) 430 (0.33) −19.0 ± 12.7

2 Feature* 2 (0.057) 232 (0.18) −15.6 ± 5.1

2 Kaggle 0 7 (5.4e-3) −8.6 ± 4.2

Feature* indicates that the method was trained specifically to limit false positives during bursts.

FN = false negatives (missed seizures); FP = false positives. Latency is measured relative to UEO.
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Table 2

Performance metrics of HMM-Gaussian method using electrode subsets.

Dog Leads FN FP (rate/hr) Latency (s)

1 Left 0 10 (1.2e-3) −13.5 ± 6.0

1 Right 7 1 (1.2e-4) −11.0 ± 8.9

1 Distributed 1 4 (4.9e-4) −12.4 ± 6.7

1 Targeted 0 8 (9.9e-4) −13.8 ± 5.8

2 Left 3 37 (1.8e-2) −9.3 ± 7.6

2 Right 5 33 (1.6e-2) −11.7 ± 8.8

2 Distributed 2 22 (1.0e-2) −9.4 ± 8.3

2 Targeted 3 30 (1.4e-2) −15.0 ± 10.3
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