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Progressive thickening of the aortic valve leaflets and narrowing 

of the aortic annulus leads to increased mechanical stress on 

the left ventricle and reduces cardiac output, resulting in further 

complications.1–3 The proportion of the population affected increases 

as the median age of a country or region rises. Approximately 2–4 % 

of people aged over 65 will develop calcific aortic stenosis, with  

25 % of people in this age group presenting with signs of the disease, 

leading to a 50  % increased risk of cardiovascular related events. 

Furthermore, there is an associated risk of 80  % over 5 years of 

progression to heart failure, aortic valve replacement or death.4

Anatomy and Histology
The normal aortic valve maintains unidirectional blood flow from 

the left ventricle into the aorta. It is a supple membrane that opens 

and closes with each heartbeat more than 100,000 times a day.  

The healthy aortic valve comprises three leaflets and is located 

at the junction between the left ventricular outflow tract and the 

aortic root. 

The internal collagen framework of the leaflets is arranged in three 

distinct layers, which – from the aortic to ventricular surface – are 

the fibrosa, spongiosa, and ventricularis (see Figure 1). This leaflet 

structure is covered on both the ventricular and aortic surfaces by 

endothelium in continuity with both the ventricular endocardium and 

the aortic endothelium. Each layer of the aortic valve has a distinct 

structure and function. The fibrosa, with its dense connective tissue, 

contains circumferentially oriented collagen fibres that provide most 

of the strength of the leaflets. The spongiosa is found at the bases of  

the leaflets. It contains a loose matrix of mucopolysaccharides, 

and provides a cushion to resist compressive forces and facilitate 

movements between the fibrosa and ventricularis during leaflet 

motion. The ventricularis layer contains radially oriented elastin and 

contributes to flexibility, allowing for changes in leaflet shape during 

opening and closing. Under normal conditions, all three layers are 

avascular with no cellular infiltrates and are innervated by adrenergic 

and cholinergic neural networks.5–7 To remain pliable, the aortic valve 

must undergo continuous repair throughout life. Accumulation of 

fibrotic tissue and calcium in a valve leads to decreased pliability and 

narrowing of the valve orifice.8,9 

Valve interstitial cells (VICs) are found in each of these layers, and 

have distinct sub-populations that regulate homeostasis within the 

valve leaflets.10–12 In addition to the common tricuspid anatomy of  

the aortic valve, a congenital bicuspid valve is found in 0.5–1.4  %  

of the general population, giving rise to differential biomechanical 

forces – both on the valve and the aortic wall.13–15 
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Pathophysiology and Mechanism of Calcification
Over the past several decades, the aetiology of calcific aortic valve 

disease (CAVD) has changed considerably. The lower prevalence of 

rheumatic heart disease and increased longevity in industrialised 

countries has resulted in a pattern shift from rheumatic to degenerative 

calcification as the most common cause of CAVD and subsequent 

calcific aortic stenosis.16–18 CAVD is the third most common heart 

disease in the western world,19 following coronary heart disease and 

hypertension. Its prevalence in the elderly (≥65 years of age) ranges 

from 2–4 % when considering only severe aortic stenosis, increasing 

to 25 % when aortic sclerosis is included.9 However, a relative minority 

of elderly individuals develop aortic valve calcification, suggesting 

pathological influences other than age play a role.

Calcific aortic stenosis is the second most prevalent cause for 

heart surgery and is responsible for approximately 15,000 deaths 

annually in North America.18 Calcific aortic stenosis is a well-known 

disease entity and we are able to assess numerous haemodynamic 

parameters using cardiac catheterisation or ultrasonography as well 

as cardiac computed tomography and cardiac magnetic resonance 

imaging.20 In CAVD, calcified nodules are initially observed at the 

base of the cusps and their presence gradually extends towards 

the orifice. All three cusps are usually usually affected, but one or 

more may be dominant. When blood flow through the stenotic aortic 

orifice becomes significantly restricted, haemodynamic impairment 

associated with serious symptoms of congestive heart failure 

and sudden cardiac death may occur. Severe symptomatic aortic 

stenosis is a Class I indication for surgical valve replacement 

according to the American Heart Association and American College 

of Cardiology guidelines for valvular heart disease.21 

CAVD is currently considered as an actively regulated and progressive 

disease, characterised by a cascade of cellular changes that initially 

cause fibrotic thickening, followed by extensive calcification of the 

aortic valve leaflets. This in turn leads to significant aortic valve stenosis 

and eventual left ventricular outflow obstruction (see Figure 2),10,22 for 

which surgical replacement remains the only viable treatment option. 

Currently there is no approved pharmacological treatment to stop the 

progression of CAVD.23 Descriptive studies using human specimens 

have demonstrated the hallmark features of this disease, including 

early atherosclerosis, cell proliferation and osteoblast expression. 24–26

CAVD and Traditional Risk Factors  
for Atherosclerosis
Aortic valve stenosis was first described by Lazare Riviere in 1663.27 

In the early 1900s, eminent pathologists such as Monckeberg, 

described CAVD as a passive degenerative process associated with 

rheumatic fever or aging, during which serum calcium attaches to the 

valve surface and binds to the leaflet to form nodules.28

In more recent decades, several studies have implicated the traditional 

risk factors for cardiovascular atherosclerosis in the development of 

CAVD. Atherosclerosis is a complex and multifactorial process that 

produces a lesion composed of lipids,29,30 macrophages,31 proliferating 

smooth muscle cells32 and apoptosis.33 It is regulated by endothelial 

nitric oxide synthase,34–38 and over time causes occlusion of the 

vessel diameter. Total cholesterol, increased low-density lipoprotein 

(LDL) cholesterol, increased lipoprotein(a), increased triglycerides, 

decreased high-density lipoprotein cholesterol, male sex, cigarette 

smoking, hypertension, and diabetes mellitus have been reported to 

increase the incidence of aortic stenosis, and are likely contribute 

to endothelial dysfunction and leaflet damage.2,3,39–43 The presence of 

LDL and atherosclerosis in calcified valves in surgical pathological 

studies supports the hypothesis of a common cellular mechanism.44,45 

Furthermore, patients with familial hypercholesterolaemia develop 

aggressive peripheral vascular disease, coronary artery disease and 

aortic valve lesions, which calcify with age.39,46–48 

Oxidised LDL (oxLDL) is implicated in vascular calcification associated 

with atherosclerosis.49,50 Elevated blood levels of oxLDL correlate with 

aortic valve calcification and fibrosis,51 and oxLDL accumulation in 

calcific, stenotic aortic valves is well described.52–56 Metabolic bone 

diseases – including Paget’s disease, secondary hyperparathyroidism 

and renal disease – as well as increased serum creatinine and calcium 

are also linked to progression of valve calcification, but include only a 

relative minority of patients who have aortic stenosis.57–59 Understanding 

of these clinical risk factors provides the foundation for cellular studies 

and the potential for targeted medical therapies for this disease, similar 

to vascular atherosclerosis. However, the overall evidence indicated 

by the presence of atherosclerotic risk factors may partly explain why 

Figure 1: Cellular Architecture of the Aortic Valve

Figure 2: Inflammatory Process of Calcific Aortic Stenosis

Valve endothelial cells (VECs) line the outer surface of the valve and function as a barrier to 
limit inflammatory cell infiltration and lipid accumulation. The three middle layers of the valve 
are the fibrosa, spongiosa, and ventricularis. These layers contain valve interstitial cells (VICs) 
as the predominant cell type. The fibrosa is nearest the aortic side of the valve, contains Type 
I and Type III fibrillar collagen, and serves a load-bearing function. The spongiosa contains 
glycosaminoglycans (GAGs) that lubricate the fibrosa and ventricularis layers as they shear 
and deform during the cardiac cycle. The ventricularis contains elastin fibres to decrease 
radial strain. Source: Rajamannan, 2011.10

A: Progression of histological changes during the process of calcific aortic stenosis. B: 
Tricuspid aortic valve, showing increasing deposition of calcium and reduction of the aortic 
annulus. BMP = bone morphogenetic protein; LDL = low-density lipoprotein; TNF = tumour 
necrosis factor; TGF = transforming growth factor. Source: Otto, 2008.22
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some patients who have congenitally abnormal valves develop aortic 

stenosis and require valve replacement sooner than those without risk 

factors. If atherosclerotic risk factors are important in the development 

of valvular heart disease, then experimental models of atherosclerosis 

are important in the understanding of this process. Studies in mice 

and rabbits have confirmed that experimental hypercholesterolaemia 

causes both atherosclerosis and calcification in the aortic valves.60–64  

Two months of cholesterol diet treatment in an experimental rabbit 

model induced marked thickening and complex calcification in the aortic 

valve leaflets. The model was extended to test the pharmacological 

effect of atorvastatin and angiotensin receptor antagonists on the 

inhibition of atherosclerosis pathways and calcification.65–69 Other 

pathways, such as Wnt signalling and increased calcium concentration 

via kallikrein-kinin signalling, are involved in CAVD. Wnt proteins interact 

with trans-membrane receptors, in particular LDL receptors, and inhibit 

the effect of the degradation of the intracellular protein β catenin.  

In turn, β catenins mediate osteoblastic transformation of VICs and  

bone production. In vitro, atorvastatin – an inhibitor of LDL-cholesterol in 

blood – can neutralise this signal pathway in mice models.66,70–72

The molecular and cellular processes that contribute to aortic valve 

stenosis are not fully characterised, but could provide insights into 

the development of new therapeutic approaches. 

Heart valves comprise a heterogeneous population of valvular 

endothelial cells and VICs, which maintain valve homeostasis and 

structural leaflet integrity. VICs, the most abundant cell type in 

the heart valve, play a key role in CAVD progression. 73 Various VIC 

phenotypes have been identified in diseased human heart valves,74 

including quiescent fibroblast-like VICs, which upon pathological cues 

can differentiate into activated myofibroblast-like VICs; and osteoblast-

like VICs, which are responsible for the active deposition of calcium in 

CAVD.53,62,74 Additionally, several studies have demonstrated the ability 

of VICs to undergo osteogenic differentiation.26,67,75

CAVD and Shear Stress
Although atherosclerotic coronary artery disease and CAVD share 

common features, they do have differences in rheology. This difference 

may provide at least a partial explanation for the differences in 

pathophysiology and response to therapy.76–80 CAVD is characterised by 

pulsatile shear stress on the ventricular side and low and reciprocating 

shear stress on the aortic side,81 whereas the coronary artery is 

exposed to sustained laminar blood flow under normal circumstances.82 

As stenosis progresses, wall shear stress across the aortic valve 

dramatically increases.76 Ahamed and colleagues have demonstrated 

that in vitro shear stress can activate latent transforming growth factor 

(TGF)-β1,82 a critical pro-fibrotic growth factor that can induce fibrosis 

and calcification.83 They also showed that active TGF-β1 could be eluted 

from thrombi formed in response to vascular injury in the carotid artery 

of mice where partial occlusion may have led to high local shear stress.82 

Subsequently, Albro et al. independently confirmed that shear stress can 

activate latent TGF-β1 in synovial fluid.83 These data raise the possibility 

of an association between the activation of circulating latent TGF-β1 

under high shear stress and the development of CAVD. Because platelets 

contribute ~45  % of the baseline circulating TGF-β1 level84 and have 

40–100 times more latent TGF-β1 than any other cells,85 it is possible that 

shear stress has two separate effects – inducing release of latent TGF-β1 

from platelets and activating the released latent TGF-β1. This mechanism 

may contribute to the progression of CAVD, because aortic valve 

narrowing increases shear stress resulting in greater release of platelet 

TGF-β1 and TGF-β1 activation. This in turn may lead to progressive valve 

narrowing and fibrosis, and thus even greater shear stress. 

Calcifying valves initially have macrophage and T-cell infiltrates as 

a result of endothelial injury.74 Bone morphogenetic protein (BMP)-2 

and BMP-4 are then expressed by myofibroblasts and preosteoblasts 

adjacent to these lymphocytic infiltrates.74 Furthermore, cardiac valves 

express markers of osteoblastic differentiation, including core-binding 

factor alpha 1 and osteocalcin.26 These valves also calcify in a manner 

similar to osteogenesis, with lamellar bone evident in the majority of 

pathological specimens examined.85 Congenitally bicuspid aortic valves 

uniformly show signs of calcification by the time individuals reach age 

30,86 which may, in part, be attributable to the particular mechanical 

stressors to which these valves are subjected.87 Recently, the molecular 

mechanism underlying bicuspid aortic valve calcification was solved. 

Mutations in the transcriptional regulator NOTCH1 resulted in aortic 

valve anomalies and severe calcification, owing to impaired repression 

of the osteoblast stimulator runt-related transcription factor 2 (RUNX2).88

Recent evidence suggests that CAVD is the result of an active 

inflammatory process affecting the valve and leading to osteoblastic 

transformation with bone formation of VICs by activation of the 

receptor activator of nuclear factor-κB (RANK).89

Regulatory Pathways 
There is increasing evidence that regulatory pathways that control 

heart valve development also are active with valve pathogenesis 

later in life. CAVD includes the activation of VICs in addition to 

increased expression of transcription factors that regulate the earliest 

events of valvulogenesis in the developing embryo.90 In addition to 

valve developmental pathways, regulatory proteins that promote the 

development of cartilage and bone lineages also are active in diseased 

valves.91 Thus, knowledge of the molecular regulatory pathways that 

control valve development will likely be informative in determining the 

molecular mechanisms of valve pathogenesis.

Aetiology 
CAVD has multifactorial aetiology. Many factors are centered on an 

inflammatory process affecting the valve and leading to calcification,74,85 

including deposition of LDLs,44,45 osteoblastic transformation with bone 

formation of valvular interstitial cells, connective tissue synthesis and 

tissue remodelling. On a microscopic level, the aortic leaflets contain 

disorganised collagen fibres, chronic inflammatory cells, extracellular 

bone matrix proteins, lipidic proteins and bone minerals.5 Calcification 

of the valve occurs following trans-differentiation of the VICs through a 

myofibroblast stage and into osteoblast cells.71,92

Half of adults undergoing aortic valve replacement have a bicuspid 

aortic valve associated, and nearly all of them will need to have a 

new valve inserted.93 Shear stress occurring with each cardiac systole 

is greater in a bicuspid valve than in a tri leaflet structure and these 

valves calcify earlier.93

Interestingly, the expression of RANK ligand (RANKL) by osteoblast 

cells will be actively involved in the activation and differentiation 

of osteoclast cells.89 RANKL levels normally rise with age and can 

predict cardiovascular events in humans, while osteoprotegerin 

(a physiological inhibitor of RANK) deficit can lead to vascular 

calcification in animal models.94,95 This study highlights an in vitro 

model to assess the mechanisms of aortic valve calcification.95
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Molecular Mechanisms of Calcification
The processes of aortic valve stenosis and calcification share 

many similarities with atherosclerosis, and the pathologies of both 

conditions have similar risk factors and histopathology.2 Activation 

of VICs and pathways of calcific aortic stenosis is the result of 

mechanical and shear stress, endothelial damage and deposition of 

LDLs, triggering inflammatory events and attracting inflammatory cells 

(monocytes, macrophages and T cells). 

These cells produce cytokines, including TGF-β, which regulates cell 

proliferation and differentiation; tumour necrosis factor-α, whose 

primary function is the regulation of the immune cells; and interleukin 

2, which is produced by activated T lymphocytes with growth  

factor activity.1 

VICs activated by the inflammatory process are designated 

myofibroblasts.5 These cells will develop angiogenic activity and 

produce matrix metalloproteinases, proteins that are involved in 

tissue remodelling and support VIC activation and transformation.96,97 

During this process activated VICs differentiate into osteoblasts. 

In Vitro Studies
Initial studies in our laboratory have involved the establishment 

and validation of porcine VIC isolation, culture and calcification 

procedures and the effect of denosumab on in vitro calcification.  

During the characterisation of porcine VICs, the first objective was to 

determine the expression level of a common marker of myofibroblast 

phenotype, α-actin, to demonstrate that active VICs were present in 

the samples. The expression of RUNX2, a major regulator of osteoblast 

differentiation, was analysed to corroborate that CardiologyCardiology 

the effect of the complete transdifferentiation of VICs had taken place 

and that the osteoblast phenotype was present. Furthermore, changes 

in the expression of TGF-β (a promoter of osteogenesis), were detected 

and recorded. Additionally, RhoA, a regulator of nodule formation in 

myofibroblasts, was analysed, followed by examining changes in the 

expression of RANKL, a key regulator of bone metabolism. Finally, 

calponin, a protein with potential capability to inhibit bone formation, 

was measured to complete the genetic studies. TGF-β can increase 

calcium and collagen deposition.98 It is known that TGF-β can also 

stimulate the expression of RANK on pre-osteoclastic cells, and in this 

way increase osteoclastic sensitivity to RANKL.99 RANKL is expressed 

in the membrane of osteoblasts and monocytes. As yet there is still 

no evidence that TGF-β promotes calcification in porcine VICs by 

increasing RANK expression levels.

Our recent unpublished studies demonstrated the upregulation of 

key molecules during the spontaneous calcification of porcine VICs 

with an increase of calcium, collagen and alkaline phosphatase (ALP) 

activity. In vitro calcification was determined using standard staining 

and enzyme activity assays. Calcification in pig VICs was induced with 

sodium phosphate. The cells expressed markers for both vascular 

smooth muscle cells and osteoblasts, suggesting a transdifferentiation 

of the phenotype. Upregulation of α-actin, RUNX2, TGF-β and RhoA 

and downregulation of calponin were noted, with no changes seen in 

RANKL expression. Sodium phosphate increased nodular formation by 

day 7 and ALP activity of porcine VICs by day 14. The findings suggest 

that porcine VICs may be a good model to study the process of CAVD.100

Denosumab as a Potential Inhibitor of VIC 
Calcification In Vitro
Denosumab is a human IgG2 monoclonal antibody designed to target 

RANKL,101 which is expressed on the membrane of the osteoblasts 

and osteoclasts. Denosumab is used in the treatment of osteoporosis. 

Additionally, owing to its mechanism that blocks the receptor RANKL, 

it neutralises the activation of RANK receptors on the membrane 

of pre-osteoclast cells.More research is needed to address the 

interaction between RANK receptor and denosumab in porcine VICs.

Our recent unpublished studies showed that 50  μg/mL denosumab 

inhibited induced calcium deposition to basal levels in porcine VIC 

culture.100 Although associated with bone loss and shown to reduce 

vascular calcification, the effect of denosumab on calcification of 

human VICs is unknown. Recently, denosumab has been shown to 

reduce calcium deposition in the aorta, although the mechanisms 

by which it affects ectopic calcification are poorly understood.102 

Furthermore, osteoprotegerin (a signalling protein receptor and a 

member of the tumour necrosis factor receptor family) has been 

shown to stop ectopic calcification in vitro via a similar mechanism 

to denosumab, but there is still not enough evidence of any effect in 

reverting the process of calcification. Osteprotegerin’s mechanism 

of action is to block RANKL-RANK receptor interaction.94,95 A fuller 

understanding of the mechanisms of action of denosumab may identify 

a novel therapeutic approach for clinical treatment, supplementing the 

current surgical approach. It should be noted that extrapolation of 

the results obtained in an in vitro porcine model to humans should 

be cautious, as species variations are likely to exist. Although it is not 

possible to include all mechanisms involved in CAVD in a single model, 

experimental models can contribute towards identifying the role 

several factors may play in the development of CAVD. n
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