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Abstract

Urinary proteomics has become one of the most attractive topics in disease biomarker discovery. 

Mass spectrometry (MS)-based proteomic analysis has advanced continuously and emerged as a 

prominent tool in the field of clinical bioanalysis. However, only few protein biomarkers have 

made their way to validation and clinical practice. Biomarker discovery is challenged by many 

clinical and analytical factors including, but not limited to, the complexity of urine and the wide 

dynamic range of endogenous proteins in the sample. This article highlights promising 

technologies and strategies in the MS-based biomarker discovery process, including study design, 

sample preparation, protein quantification, instrumental platforms, and bioinformatics. Different 

proteomics approaches are discussed, and progresses in maximizing urinary proteome coverage 

and standardization are emphasized in this review. MS-based urinary proteomics has great 

potential in the development of noninvasive diagnostic assays in the future, which will require 

collaborative efforts between analytical scientists, systems biologists, and clinicians.
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1 Introduction

Urine is among the most valuable sample materials for disease biomarker discovery. Urine 

collection is simple, non-invasive, and available volume is relatively abundant compared to 

other biological fluids. It contains information from systemic circulation to local tissues via 

extracellular vesicles, proteins, and small molecules. Differential protein profiles and 

abundances are often observed for many diseases, due to an estimated 1,800,000 human 
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proteoforms (including PTMs) from ~20,300 genes [1]. The proteome represents the entire 

profile of proteins expressed in a biological sample under a defined condition. Interest in the 

proteome is buttressed by the assertion that nucleic acid-level studies might often be too far 

removed from disease states and processes - where the transcriptome was shown to predict 

only about half of the variations observed in proteins [2]. Proteomics provides a reliable 

vantage point for cellular stress responses and other changes. The standardized definition of 

proteomic biomarker was proposed as “a specific peptide or protein that is associated with a 

specific condition, such as the onset, manifestation, or progression of a disease or a response 

to treatment” [3]. It is further suggested that biomarkers be defined solely by their 

association with a disease, barring further mechanistic evidence, and that extrapolation to 

similar, yet disparate diseases be avoided.

MS-based techniques allow a unique window into biological perturbations via global or 

targeted proteomics strategies; the scale, specificity, and discovery potential of which are 

unmatched by other currently available methods. MS-based methods have enjoyed 

technological gains largely due to the popularity and interest across many research genres, 

such as drug development, biomedical research, and toxicology. Common biomarker-related 

research foci include chemical proteomics or drug target identification, drug companion 

diagnostics, protein-protein interaction, drug metabolism, and markers of subacute exposure 

[4]. Characterization of the exposome, the biological record of a lifetime of subacute 

toxicant exposure, may be an integral part of future clinical bioanalysis [5]. Supporting the 

idea that a dynamic record of all exposures across a lifetime could prove useful is the 

concept that cancer and other diseases could potentially arise from exposure to combinations 

of individual benign agents [6]. While assessing biomarkers over time is promising, this 

monitoring goal is currently unattainable due to lack of information on disease etiology and 

associated costs. MS-based methods offer the greatest promise, now and into the future.

Despite the widespread application of protein biomarker discovery, to date few candidate 

biomarkers have been moved forward to validation, regulatory approval, and clinical use, 

and to our knowledge were discovered via immuno-based assays (Table 1) [7, 8]. Effective 

biomarker discovery has been challenged by many factors, including inherent biological 

complexity and variability (e.g. intra-individual variation [9] and disease marker promiscuity 

[10]), stability of analytical platforms, efficiency of data analysis, validation of biomarkers 

in the general population, and the expense and time needed to bring a test into the clinic. 

Biomarker and drug development projects operate on similar budget- and time- scales [11], 

however, suggesting the fruits of recent MS studies may still be ripening. The lack of 

immediate successes in this first wave of publications has led to some skepticism and might 

explain some of the decrease in proteomic biomarker publications of the last few years. As 

discussed by Mischak et al [12], publications found via “proteom*” AND “biomarker” on 

Web of Science are declining in frequency with a global maxima at 2011, while the 

inclusion of “urin*” results in a plateau rather than a decline (Fig. 1). This resistance to 

decline could be due to the unique promise of urine as a sample source for proteomic 

biomarker discovery. The ten most influential papers of this plateau period, related to urine 

protein biomarker discovery or validation, were found via search of Web of Science for 

“urin* proteo* biomarker”. Focusing on the top two primary studies of each year 2011–

2015, a large proportion sought markers for kidney diseases [13–15] – some focusing on 

Thomas et al. Page 2

Proteomics Clin Appl. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



exosomes in kidney disease [16, 17]. Other diseases studied include bladder cancer [18], 

preeclampsia [19], type 2 diabetes [20], and prostate and other epithelial cancers where urine 

samples were used for biomarker studies [21]. A final category contains an influential 

method development study [9].

In this review we discuss the manifold expert suggestions and new technical developments 

in urine biomarker discovery. With the purpose of organizing the collective thought and 

streamlining the path to clinical success, major steps of the biomarker discovery process are 

highlighted including study design, sample collection and preparation, protein 

quantification, instrumental platforms, and data analysis.

2 Human urine composition and anatomical inputs

Urine solutes include salts, small molecules, soluble and insoluble proteins, extracellular 

vesicles, nucleic acids, and cells and cell debris. Urinary proteins include a soluble fraction 

(typically < 40 kDa) from plasma or secreted from urogenital epithelium or prostate (male), 

comprising about half of total urine proteins; a sediment protein fraction from sloughed 

epithelial cells of renal or urogenital origin comprising most of the other half; and an 

exosomal fraction from epithelial cells lining the urogenital tract or from immune cells or 

platelets in plasma, comprising the final few percent of total urine proteins [22]. 

Approximately 30% of the urinary proteome is expected to be of systemic origin, with the 

remainder from the urogenital tract [23]. A comparison of high quality proteomics data of 

disparate patient origins found about 26% of total urine protein identifications were also 

found in plasma after removing proteins known to be prostatic secretions, and only about 

15% of total plasma proteins were also found in urine [24].

On average about 180 liters of plasma holding 13 ± 3 kilograms of protein is filtered by the 

kidneys daily [25]. The ratio of urine protein concentration to plasma protein concentration 

is also known as sieving coefficient. The sieving coefficient for albumin is roughly 6:10,000, 

meaning for every 10,000 units of albumin per milliliter of plasma, only 6 units end up in a 

milliliter of final urine [26]. From this sieving coefficient, if different plasma proteins vary in 

concentration from roughly 1010 to 100 pg/mL [27], and plasma proteins make up roughly 

30% of total urine protein [23], concentrations of different urine proteins can be estimated 

from 107 pg/mL down to 10−3 pg/mL for low abundance proteins. Typically smaller proteins 

and albumin are nearly completely reabsorbed into plasma, leading to low daily total protein 

loss to urine of around 150 mg protein per day, 10 mg of which is albumin [22].

3 Study design of urinary protein biomarker discovery

3.1 Patient selection

Patient selection is critical and a starting point for successful biomarker discovery. Patient 

groups must be carefully chosen to avoid discovering artifacts of lurking variables (e.g., age, 

sex, similar diseases, etc.). Age is known to have a strong influence on the urinary proteome, 

generally attributed to kidney aging [28, 29]. Typical control groups are age- and sex-

matched healthy volunteers. More strictly selected control groups are highly recommended, 

which recruit patients known to have a disease with a similar perturbation in biological 
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function to the disease of interest. A good example of this is a recent study that sought 

biomarkers for prostate cancer and included patients with benign prostatic hyperplasia, 

patients with other uropathies, as well as a healthy control cohort [30]. Recruiting a related 

disease control group will bring a higher likelihood of discovering true unique markers with 

higher specificity to the disease of interest. The importance of this criterion is evidenced by 

a meta-analysis of 238 disease states, where more than 80% of the putative protein 

biomarkers (disease vs. control) are linked to multiple diseases [10]. The authors offer the 

idea of establishing broad-scale inter-disease network models to aid in the identification of 

distinct markers. In light of the frequency of candidate marker promiscuity, the elusive 

tissue-specific marker sounds ideal and the importance of tuning the often-suggested panel 

of markers to high selectivity resonates.

3.2 Statistical design

Key to successful biomarker discovery is a study design that avoids bias and is sufficiently-

powered to find true differences above the noise of biological and technical variation. The 

importance of rigorous statistical design cannot be understated, yet detailed treatment of the 

subject is beyond the scope of this review. Topics explored in more appropriate depth 

elsewhere include: the determination of sample size while balancing the high cost of 

working with clinical samples [31–33], replication, randomization, blocking [34], and 

common areas for improvement and standardization [3]. As a quick heuristic, an experiment 

can be started by analyzing 12 controls and 12 cases, followed by calculation of the final 

sample size needed for the chosen level of test performance [35]. Guidelines for the 

standardized reporting of diagnostic accuracy studies (STARD [36]), tumor marker studies 

(REMARK [37]), and observational studies in biomedical research (STROBE [38]) can also 

provide an outline of critical aspects relevant to any biomarker study.

3.3 Orthogonal model systems to facilitate biomarker discovery

Working with an orthogonal model system could improve success in urine biomarker 

discovery. The genetic signature of a disease was shown to be robust across different tissues 

– more robust even than a single tissue’s signature is under different disease conditions [39]. 

This suggests similar markers could be found for a specific disease throughout the body. 

Orthogonal studies, using tissue or other biofluids samples, could potentially augment a 

urine biomarker study [40]. Other relevant orthogonal models, including cell culture (e.g., 

secretome analysis) and animal models (e.g., xenograft analysis), allow the manipulation of 

genetic and environmental conditions, reducing the biological variation and isolating the 

significant disease-related factors [41, 42].

4 Urine sample collection and preparation

4.1 Urine collection

The standardization of urine collection and storage protocols has been championed by the 

Human Urine Proteome Project (HKUPP) and the European Kidney and Urine Proteomics 

(EuroKUP) groups. The guidance is available online (http://www.hkupp.org) and is 

generally consistent with published reports. Briefly, mid-stream urine from the second 

morning void is collected into appropriate containers, centrifuged at 1000 g for 10 minutes, 
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aliquoted, and stored at −80°C (avoiding unnecessary freeze-thaw cycles) [43–45]. Five 

percent sodium azide solution may be added as a biocide. Protease inhibitors are not 

recommended for untargeted urine proteomics since studies showed that they failed to 

increase protein identifications and may interfere with the subsequent digestion procedure 

[46, 47]. Protein can precipitate due to freezing, so care should be taken to avoid 

centrifugation after freezing and to fully resolubilize protein upon thawing via sonication, 

detergents, or addition of Tris buffer to pH~8 [44]. Urine samples need to be kept on ice 

during sample preparation.

4.2 Protein extraction

MS-based proteomics strategies are typically divided into three major groups: top-down 

(analysis of intact protein), middle-down (analysis of large peptides), and bottom-up 

(analysis of proteolytic peptides), each requiring different sample preparation methods. 

Bottom-up proteomics is the most widely-used approach in urine protein biomarker studies 

and methods relevant to this strategy are discussed here. Removal of small molecules in the 

urine is important as they can interfere with the bicinchoninic acid (BCA) assay, used to 

determine total protein concentration and normalize samples [48]. Small molecules can also 

bind and block ligand sites when using enrichment techniques like combinatorial peptide 

ligand library (CPLL) [49].

4.2.1 Protein precipitation—Protein precipitation techniques via different organic 

solvents are classic methods for protein extraction, such as methanol, ethanol, acetone, 

acetonitrile, and mixed solvents such as chloroform/methanol. Results of studies comparing 

solvent precipitation efficiency vary, likely due to different specific protocols and the 

inherent variation of samples from different disease states [46, 50]. The extraction efficiency 

of each solvent tends to favor certain protein classes and is affected by specific variables 

such as initial protein concentration and ionic strength in the urine [51]. Factors beyond 

extraction efficiency may need to be considered. For example, acetone precipitation was 

reported to cause a potential modification of peptides. About 5% of the time when glycine is 

the second amino acid in a peptide, a gas-phase modification due to acetone could make 

glycine take on the mass of proline, resulting in misidentification [52]. Overall, precipitation 

techniques should align with the experimental goals and be optimized within each lab, 

striking a balance between speed, cost, and performance.

4.2.2 Ultrafiltration—Ultrafiltration via molecular-weight cutoff (MWCO) spin columns 

with small pore sizes (e.g., 3 kDa and 10 kDa) is popular for straining and concentrating the 

protein fraction, removing metabolites, salts, detergents, and other small molecules, however 

there is concern over sample loss due to membrane adsorption [46]. Studies showed that 

optimizing elution buffers and adding salt or detergent modifiers can help minimize the 

sample loss in MWCO [53, 54]. Ultrafiltration devices are also useful for peptidomic 

studies; retaining larger proteins in a 20 kDa MWCO filter unit while allowing peptide 

analytes through, for example [13, 20].

4.2.3 MWCO filter-aided sample preparation—Filter-aided sample preparation 

(FASP) was developed to extract proteins from tissues and cell culture samples [55, 56]. 
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Briefly, the protein fraction is concentrated in the membrane after MWCO. Protein 

reduction, alkylation, and digestion are performed on the membrane, and digested peptides 

are eluted and collected for subsequent analysis. Erde et al. [57] reported an enhanced FASP 

method incorporating alternative reagents to improve proteome coverage and sample 

recovery. Of great relevance here, a high-throughput quantitative urine proteomics study was 

recently reported, adapting FASP to a 96-well filter plate [58].

4.2.4 Dialysis and lyophilization—Dialysis followed by lyophilization can provide high 

recovery of protein samples. Unfortunately this technique is time and volume-consuming 

and can result in a sample mixture containing many small molecules and salts, whose 

interference in downstream analyses may preclude its utility [50].

Further work is needed to conclusively show which technique best balances efficiency and 

workflow simplicity in urine sample analyses. From our perspective, an ideal sample 

preparation method efficiently extracts protein from a sample, minimizes sample handling, 

and lends itself to automation - making the optimized FASP variations, especially in 96-well 

format, promising candidates for future urinary proteomics studies.

4.3 Maximizing urinary proteome coverage

Deepening coverage of the urine proteome should help improve success in biomarker 

discovery. There is growing interest in exploring proteomes of ever-decreasing sample 

amounts with ever-increasing depth [46]. To this end a new subfield is emerging within 

proteomics working on the microgram-scale dubbed microproteomics [59]. Urine 

proteomics and microproteomics share a similar challenge – lack of robustness against 

sample loss, since the typically more interesting or important proteins are found at 

concentrations near or below the method detection limit. Beyond efficient extraction, much 

effort has gone into sample enhancement strategies to overcome this analytical barrier. Using 

some of these, Santucci et al. [49] recently reported a deep profiling of the urinome with the 

identification of nearly 3500 proteins in human urine (Fig. 2).

4.3.1 Affinity fractionation to reduce dynamic range in protein concentration—
The dynamic range of protein concentrations in urine is around 10 orders of magnitude, 

similar to plasma [60]. The goal of affinity fractionation strategies is to reduce the dynamic 

range and increase protein IDs by bringing the low abundance proteins out from the shadow 

of high abundance proteins. These methods usually rely on adsorption to a functionalized 

solid phase of beads or column [61], such as immunodepletion, CPLL beads 

(ProteoMiner™), and functionalized magnetic beads (ClinProt™) [46, 49, 62]. 

Immunodepletion techniques do not seem to provide an increase in identifications when 

applied to urine [46, 63]. While ion exchange and immunodepletion strategies effectively 

removed high abundance targets like albumin, the lack of increase in identification number 

is attributed to remaining, untargeted high- or medium-abundance proteins, or to low-

abundance proteins falling below the method’s limit of detection [63]. The ClinProt™ 

technique improves protein identification numbers via the same principle as off-line liquid 

chromatography: increasing sample fractions. CPLL beads have successfully increased 

protein coverage in urine by binding proteins to a library of millions of random hexapeptide 
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ligands [49, 64, 65]. When a complex protein mixture is applied to this library, abundant 

proteins quickly saturate the sites of complementary ligands, with the excess flowing past. 

Low abundance proteins accumulate on their respective ligand sites and all are eluted with a 

decreased dynamic range. CPLL enhances detection of low-abundance proteins with fewer 

additional fractions than many other techniques for more efficient down-stream analysis, 

likely brings low abundance proteins up into the detectable range, and appears to be a highly 

desirable enrichment strategy.

4.3.2 Targeting specific solute compartments—Analyzing typically neglected 

sample fractions could lead to increased success in discovery experiments. Extracellular 

vesicles (40–5000 nm diameter), known as mediators of intercellular signaling and 

transportation, have emerged as potential sources of biomarkers, especially for urogenital 

cancers [41, 66]. Extracellular vesicles are categorized by size and origin as exosomes, 

microvesicles, and apoptotic bodies. Exosomes within urine could hold important proteins 

otherwise lost in traditional urine proteomics workflows [67, 68]. Interest in this solute 

compartment is strong, with the current highest-cited “urine proteom* biomarker” 

publication on Web of Science being a urine exosome study [69]. Separation techniques rely 

on size and density variations: ultrafiltration, density gradient centrifugation, and the gold 

standard differential ultracentrifugation [41]. Once separated, these can be extracted for 

protein similar to cell lysis [70].

5 Protein quantification for biomarker discovery

MS-based protein quantification is a key component in biomarker discovery, as biomarkers 

are usually selected via variations in protein or peptide concentrations between sample 

groups. Quantification techniques change as a marker progresses along the biomarker 

pipeline from discovery-phase relative quantification to validation-phase absolute 

quantification.

5.1 Relative quantification for the selection of candidate biomarkers

5.1.1 Label-free quantification—The identification of candidate protein biomarkers can 

be achieved by relative quantification through label-free or label-based approaches. Label-

free quantification compares proteins or peptides between different LC-MS runs, usually 

through spectral counting and peak area or intensity measurements [71–74]. Since no 

labeling reagent is involved, the sample preparation is often simpler and relatively 

inexpensive. It offers greater dynamic range and proteome coverage compared to label-based 

methods [75]. Major hurdles of label-free approaches are the high dependence on instrument 

reproducibility between sample runs and low throughput, which requires more instrument 

time than label-based approaches.

5.1.2 Label-based quantification—Stable isotope labeling enables accurate and 

simultaneous comparison of multiple samples for protein and peptide quantification. It can 

be categorized into mass difference labeling and isobaric labeling. Mass-difference labeling, 

such as formaldehyde dimethylation [76–78] introduces a fixed mass difference onto 

proteins or peptides by using heavy stable isotopes. It provides more accurate quantification 
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than label-free methods, but is criticized for increasing mass spectral complexity, negatively 

influencing protein coverage and quantification. Isobaric labeling by iTRAQ [79, 80], TMT 

[81–84], and DiLeu [85–89] tags has multiplexing capability and has been applied to many 

quantitative proteomic studies. A typical workflow using isobaric labeling strategy is 

illustrated in Fig. 3. Isobaric tags do not increase the spectral complexity because of their 

balanced structure, including an isotopically-coded reporter, a balance group, and an amine 

reactive group. After labeling, samples are combined at equal ratios and each labeled sample 

produces a unique reporter ion upon MS2 fragmentation for quantification. Recent efforts 

have been made to increase the multiplexing capacity of labeling reagents, including 8-plex 

iTRAQ [90], 6-plex [91], 8-plex [92], and up to 54-plexTMT [93]. Robinson and coworkers 

[94] have developed combined precursor isotopic labeling and isobaric tagging (cPILOT), 

extending multiplexing capabilities to 12 and 16 samples. High-resolution FT-ICR and 

Orbitrap instruments have allowed the development of new tags, exploiting the subtle mass 

defects that arise due to variations in nuclear binding energy between different stable 

isotopes [95–97].

DiLeu reagents, developed by our group, have shown comparable performance with 

commercial tags, with greatly reduced cost and improved reporter ions intensities. The 

development and performance of 4-plex [85], 8-plex [86] and 12 plex [87] DiLeu tags have 

been successfully demonstrated in quantitative proteomics and peptidomics analysis. Most 

recently, 4-plex DiLeu labels have been applied to large-scale human urine proteomics, 

enabling accurate relative quantification of urinary proteins in men with lower urinary tract 

symptoms [48].

5.2 Absolute quantification for biomarker verification

Untargeted proteomics analysis can generate a panel of candidate disease biomarkers, but 

further verification through targeted absolute quantification is necessary before clinical 

validations and applications. Verifying the list of candidate biomarkers is expensive and 

challenging, and is a major reason for the dearth of clinically-implemented biomarkers [98, 
99]. Antibody-based immunoassays, particularly the ELISA, are currently the most common 

techniques for biomarker validation [100]. ELISA is highly sensitive and specific but is also 

limited by the availability of antibodies and the expense of assay development for new target 

analytes [101, 102].

MS-based absolute quantification has become a successful alternative to immunoassays, 

offering reduced costs, shortened lead-time, and greatly improved throughput. Targeted 

detection and quantification of candidate biomarkers is generally achieved by selected 

reaction monitoring (SRM), also referred to as multiple reaction monitoring (MRM). The 

most common method for absolute quantification uses spiked stable isotope-labeled peptide 

standards to construct calibration curve [21, 103–105]. This method is much faster than 

ELISA and enables the quantification of multiple peptides in one run. But typical 

commercial isotopically labeled peptide standards are relatively expensive and custom 

synthesis can be even more costly for this type of experiment [88, 106]. Another MS-based 

absolute quantification method is through multiplexed stable isotope labeling. The non-

isobaric mTRAQ tags allow specific quantification of each version of the labeled peptide by 
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unique MRM transitions, and have been applied to verify candidate biomarkers in various 

applications [107–109]. Recently, Greer et al. [88] developed novel isotopic N,N-dimethyl 

leucine (iDiLeu) reagents for absolute quantification of peptides and proteins. With the five-

plexed iDiLeu tags, a calibration curve and peptide surrogate can be analyzed in one LC-MS 

run, demonstrating increased throughput and higher quantification accuracy compared with 

the traditional method using isotope-encoded peptide standards.

6 MS-based instrumental platforms

Due to the complexity of the urinary proteome, hyphenated MS platforms such as LC-MS 

[18, 110], CE-MS [111–113], and 2DE-MS [23, 114] have been extensively employed in 

protein biomarker discovery. As compared in more details in several reviews [23, 115], each 

platform has its own advantages and disadvantages. 2DE-MS can detect large molecules, but 

is time consuming and difficult to automate [115]. LC-MS provides sensitive and 

reproducible analysis of protein digests [46]. CE-MS requires low sample volume and 

allows fast and high resolution analyte separation. A comparative study of LC-MS/MS and 

CE-MS/MS analysis demonstrated complementary coverage of peptides in human urine 

[116]. Emerging techniques such as ion mobility separations and microfluidic devices also 

possess great potential [117, 118]. Newly developed high-accuracy, high-resolution 

instruments (e.g., Q-Exactive Orbitrap™ and Orbitrap Fusion™) allow greater sequence 

coverage and more accurate quantification of proteins.

New data acquisition methods also show promise in proteomics. Data-independent 

acquisition (DIA) approach was demonstrated to provide complementary, if not better, 

proteome coverage and dynamic range than the traditional data-dependent acquisition 

(DDA) [119]. This relatively new data acquisition mode requires the construction of 

reference spectral libraries and special data processing tools [120]. One application of DIA, 

known as sequential window acquisition of all theoretical spectra (SWATH), was shown to 

remain linear over four orders of magnitude, with an impressive limit of detection in the 

amol range [121].

7 Data analysis and bioinformatics

Proteomics studies typically employ a long series of statistical filters from the determination 

of peptide false detection rates to inferential tests to tests for enrichment of biological 

functions and other processes. Care must be taken to properly utilize sophisticated statistics, 

which ultimately determine the selection or disposal of candidate markers [122]. Given the 

complexity of the topic, in-depth coverage of bioinformatics is not possible here. Rigorous 

data analysis [35] and the promising application of machine learning to biomarker research 

is covered elsewhere [123]. Gene ontology (GO) tools are useful for interpreting the 

potential biological function and molecular process of a given protein, allowing a large 

protein dataset to be sorted into biological processes, cellular locations, and biochemical 

functions [124]. A number of online tools offer these enrichment analyses, including 

DAVID, PSEA-Quant analysis, and protein annotation through evolutionary relationship 

(PANTHER) [125, 126]. Data mining is another promising informatics approach that can 

expedite the validation phase, efficiently leading to new biomarkers [127]. Efforts to 
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improve and standardize metadata included with primary data have been undertaken to aid in 

successful data mining [128].

8 Conclusions and outlook

Future success in biomarker discovery efforts will rely heavily on collaboration among 

clinicians, analytical chemists and bioinformaticians, and will incorporate the state-of-the-art 

tools and techniques highlighted here. Automation and standardization in analytical 

methodology and quality control will generate more reproducible results, allowing distant 

labs to pool data or work cooperatively on larger efforts, particularly on studies with very 

large sample sizes. Toward this end, Mischak et al. generated human urine standards as a 

potential mechanism for controlling inter- and intra-lab instrument variations [129].

As discussed earlier, the development of biomarkers and drugs occurs on a similar time 

scale. Ongoing clinical trials involving protein biomarker discovery or validation were found 

via clinicaltrials.gov (Table 2). Of these, four are centrally-focused on urine for protein 

biomarker discovery in urologic diseases and ten include urine along with orthogonal bodily 

fluids or tissue samples for biomarkers of diseases spanning neurology, cancer, and 

cardiology, among others. While urine-focused trials are still mostly undertaken for urologic 

diseases, there is interest in investigating urine as an orthogonal non-invasive sample 

material for studying urinary proteins of systemic origin.

Regulatory qualification is critical and will necessarily slow progress to clinical 

implementation. Efforts to standardize reporting [130, 131] and quality control in 

proteomics studies will streamline the qualification process [132]. An additional challenge 

will be sorting through the myriad unpursued discovery-phase reports to find promising 

classifiers for further validation, requiring collaboration with bioinformatics specialists.

Perhaps at some point in the future, urine proteomics will allow the identification of gradual 

onset of any disease, allowing the therapy of this future time to steer processes back to a 

normal state [133]. The concept has made the news thanks to one public effort to 

characterize the healthy human state: Google’s Baseline Study [134]. As discussed in the 

current paper, at least three deep interrogations of the healthy human “urinome” have been 

reported, providing deep proteome coverage [28, 49, 129]. Perhaps these efforts and more 

can be compiled to better characterize a healthy reference urinome.

MS analyses have brought proteomics research into the modern era and will continue to be 

the go-to technique for accurate and sensitive bioanalysis. Some within biomedical research 

assert that journals will soon require MS data and turn away results derived from 

immunoassays [135]. Continuing in this direction, some are proposing a shift away from the 

end goal of expensive immunoassays like ELISA as the ultimate assay for clinical 

application [136]. MS methodology is quite promising - it is the future of biomedical 

research and will be the premier source of important discoveries in modern biomedical 

research.
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Fig. 1. 
Web of Science search results of the yearly trend in publishing frequency for general 

“proteom*” biomarker papers, and those including “urin*”
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Fig. 2. 
Flowchart of the multi-fractionation procedures for urinary proteomic analysis (left) and 

Venn diagram of the detected 3429 proteins (right), adapted and modified from Santucci et 

al. [49] with permission.

Thomas et al. Page 19

Proteomics Clin Appl. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
A representative workflow of quantitative urine proteomics using isobaric labeling. Urine 

samples are collected from human patients (control and disease groups) and centrifuged to 

remove particulates and cell debris. Protein fraction from each urine sample is obtained with 

molecular weight cut-off filter. Total protein concentration is measured with bicinchoninic 

acid (BCA) assay for normalization. After protein digestion and desalting, each sample is 

labeled by different channels of isobaric tags and combined after labeling reaction. Offline 

SCX LC is often performed to fractionate samples before LC-MS/MS analysis. The 

intensities of reporter ions are used for relative quantification.
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Table 1

FDA-approved urine protein biomarkers (found via patent and literature searches)

Protein Clinical use Disease

Nuclear matrix protein 22 (NMP-22, NuMA) [7, 8] Diagnosis and monitoring Bladder cancer

Fibrin/fibrinogen degradation products (FDP) [7] Monitoring Bladder cancer

Bladder tumor antigen (BTA) [7] Monitoring Bladder cancer

High molecular weight CEA and mucin [7] Monitoring Bladder cancer

Tissue inhibitor of metalloproteinase-2 (TIMP-2) [137] Early detection Acute kidney injury

Insulin-like growth factor binding protein 7 (IGFBP7) [137] Early detection Acute kidney injury
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Table 2

Active protein biomarker discovery and validation trials involving urine analysis; via clinicaltrials.gov.

Conditions Enrollment Identifier Urine focus

Female Stress Urinary Incontinence 40 NCT02023502 +

IgA Nephropathy 200 NCT01879514 +

Diabetic Nephropathy, Retinopathy 3500 NCT02040441 +

Acute Kidney Injury in Sepsis Patients 150 NCT01981993 +

Ischemic Brain Injury, Stroke 750 NCT00983723 −

Chronic Kidney Disease (CKDu) 350 NCT02226055 −

Colorect., Esophag., Gastric, Panc. Cancer 1000 NCT00899626 −

Lung Cancer 2000 NCT00898313 −

Heart Transplantation 482 NCT00042614 −

Duchenne Muscular Dystrophy (DMD) 220 NCT01380964 −

Lung Transplant Rejection 60 NCT00558597 −

Kidney Transplant Infection 1000 NCT01515605 −

Urinary Incontinence 10 NCT01987336 −

Hyperoxia 40 NCT02553668 −

Note: Many studies include urine orthogonally with serum, CSF, or tissue samples for biomarker discovery and are shown as (−) under “urine 
focus” where urine analysis provides complementary information. Those primarily analyzing urine for biomarkers are shown as (+) under “urine 
focus”.
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