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Circulating tumor cells (CTCs) are a hallmark of invasive behavior of cancer, responsible 
for the development of metastasis. Their detection and analysis have significant 
impacts in cancer biology and clinical practice. However, CTCs are rare events and 
contain heterogeneous subpopulations, requiring highly sensitive and specific 
techniques to identify and capture CTCs with high efficiency. Nanotechnology shows 
strong promises for CTC enrichment and detection owning to the unique structural 
and functional properties of nanoscale materials. In this review, we discuss the CTC 
enrichment and detection technologies based on a variety of functional nanosystems 
and nanostructured substrates, with the goal to highlight the role of nanotechnology 
in the advancement of basic and clinical CTC research.
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Metastasis is the major cause of death in can-
cer patients, accounting for about 90% of 
the mortality. Although the mechanism of 
metastasis is not fully understood, it is known 
that a mandatory step of the metastatic cas-
cade is the transport of tumor cells that are 
shed from the primary tumor site throughout 
the bloodstream of cancer patients  [1]. Dur-
ing transport, a small population (<0.01%) of 
these circulating tumor cells (CTCs) arrests 
in a capillary bed at a distant site where they 
extravagate and seed the growth of a second-
ary tumor. The clinical value of CTC detec-
tion remains to be learned, but many stud-
ies have shown their great potential [2]. It has 
been realized that detection and character-
ization of CTCs may provide a noninvasive 
liquid biopsy for characterizing and monitor-
ing cancer  [3]. The prognostic significance 
of CTC detection has been demonstrated in 
several types of cancers including breast, pros-
tate, colon, melanoma and lung cancer  [4–8]. 
CTCs are also useful in monitoring and pre-
dicting the response to ongoing therapy [9–11]. 
In addition, detection of CTCs shows strong 
promise for early cancer detection since they 

have been found in blood during early stages 
of tumorigenesis  [12]. Furthermore, molecu-
lar profiling of CTCs may offer insights 
into mechanisms of cancer progression and 
provide new therapeutic targets [13].

CTC detection and analysis, however, are 
very challenging  [14]. The major challenge 
is that CTCs are rare events, as few as one 
CTC mixed with about 10 million white 
blood cells (WBCs) and 5 billion red blood 
cells (RBCs) in 1 ml of blood of metastatic 
patients  [15]. Another key challenge is that 
they are heterogeneous in population due to 
tumor heterogeneity and potential changes of 
molecular characteristics during the epithe-
lial-to-mesenchymal transition (EMT)  [16]. 
As a result, significant advancement in this 
area has only been made in the last two 
decades, even though CTCs were first dis-
covered in 1869 [17]. To date, a vast number 
of isolation and detection techniques have 
been developed, with about 100 companies 
offering CTC-related products and devices 
and over 400 clinical trials ongoing  [18]. 
However, there is only one technique that has 
been approved by The US FDA for clinical 
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utilization, the CellSearch system (Veridex, LLC) [15]. 
This technique is used to enumerate CTCs in patients 
with metastatic breast, prostate and colorectal cancer 
to help inform clinical decision making [6].

During the last two decades, the tremendous devel-
opment of nanotechnology has led to the generation 
of a variety of advanced nanoscale materials, includ-
ing metal, metal oxide, semiconductor and polymeric 
nanomaterials with a vast range of applications, such 
as in medicine [19], energy conversion and storage [20], 
electronics [21] and catalysis [22]. The fantasy of nano-
materials is driven by their exceptional structural 
and functional properties that are often not available 
from either bulk materials or discrete molecules due 
to the nanoscale effects. For example, gold nanopar-
ticles (Au NPs) with near infrared absorption such 
as Au nanoshells, nanorods, nanocages and hollow 
nanospheres show about million times higher absorp-
tion coefficient than organic light-absorbing dye mol-
ecules, making them a new generation of photothermal 
agents to ablate tumor  [23–27]. For CTC enrichment 
and detection, nanomaterials have been playing an 
important role, with boosted interests in recent years. 
The rationale is that when nanomaterials are linked 
with targeting ligands, they can recognize CTCs with 
high specificity, allowing for isolation, detection and 
characterization using the functional properties of the 
nanomaterials. In addition, nanomaterials have large 
surface-to-volume ratio, which enables highly efficient 
cellular binding in the complex blood matrix. Fur-
thermore, nanomaterials can be readily manipulated 
to allow multiplexed detection and analysis, which are 
very important to address the heterogeneous problem 
of CTCs. In this review, we discuss recent progress on 
CTC enrichment and detection approaches using vari-
ous nanoplatforms, with the goal to highlight the role 
of nanotechnology in the advancement of basic and 
clinical CTC research. These techniques are classified 
as ex vivo and in vivo methods, with the former cate-
gory composed of enrichment, detection and emerging 
dual enrichment and detection methods (Figure 1).

CTC enrichment
Due to the rarity of CTCs, an initial step is often 
needed to isolate and enrich the tumor cells from blood 
cells. Current enrichment methods can be divided into 
two categories: those based on physical properties such 
as size, density and deformability, and those based on 
biological properties such as protein expressions  [28]. 
Classic approaches in the former category are den-
sity gradient centrifugation, membrane filtration and 
microchip-based capture platforms. Approaches in 
the latter category include magnetic separation, sub-
strate- and microchip-based capture platforms. The 

most commonly used marker for CTC recognition is 
EpCAM. Since epithelial cells are not usually found 
in circulation, the findings of EpCAM-positive cells 
indicate the presence of CTCs.

Magnetic nanoparticles
Magnetic nanoparticles (MNPs), commonly com-
posed of magnetic elements such as iron (Fe) and cobalt 
(Co), show alignment of their magnetic moment in 
the presence of magnetic field. This magnetic align-
ment eventually pins down in the same direction of the 
external magnetic field under saturation [29]. Depend-
ing on the particle size, shape and composition, the 
magnetic response can be ferromagnetic or superpara-
magnetic (Figure 2A)  [30]. Ferromagnetic NPs show 
a remnant magnetization after removal of the field, 
while superparamagnetic NPs do not have a remnant 
magnetization due to thermal fluctuations. The mag-
netic response causes the movement of the NPs in the 
direction of applied magnetic gradient and thus the 
MNPs can be separated from the resting solution.

Magnetic separation using magnetic particles is one 
of the leading CTC enrichment methods  [31]. This 
method is easy to manipulate and exhibits high cap-
ture efficiency and specificity. Captured cells can be 
easily recovered by removing the magnetic field. The 
particles can be either microbeads (>0.5 μm) that are 
generally made of polymeric matrix with embedded 
magnetic materials, or MNPs (5–200 nm). MNPs 
have several distinct advantages over microbeads. They 
have higher cellular binding capability and excellent 
stability in whole blood. The small size of NPs allows 
the ability to attach many NPs to a cell without cell 
aggregation resulting in higher magnetic susceptibility 
(Figure 2B) [32]. Furthermore, the NPs allow for multi-
plexed detection by using different sized NPs or NPs 
labeled with different detection tags.

Bulk magnetic separation
Classical magnetic separation is done with an exter-
nal permanent magnet, usually neodymium-iron-
boron (NdFeB) magnet, to separate MNP-bound 
CTCs in a bulk solution under a stationary condition 
(Figure 2C). Since the magnetic force is proportional 
to the number of bound NPs [33], the NP-bound cells 
are isolated much faster than free NPs in a solution 
under the same magnetic field and thereby selectively 
enriched. The FDA-approved CellSearch system uses 
this approach to enrich CTCs by using 120–200 nm 
Fe NPs (ferrofluid) linked with anti-EpCAM anti-
bodies [34]. In combination with immunofluroescence 
detection targeting cytokeratin, the system reaches 
over 80 recovery rate of spiked breast cancer cells [35]. 
Although the CellSearch system is currently the gold 
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Figure 1. Nanotechnology applications in circulating 
tumor cells enrichment and detection.
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standard to detect CTCs, a major limitation is that 
it only captures and detects EpCAM-positive cells. 
EpCAM expression is often heterogeneous in cancer 
cells and its downregulation has also been correlated 
with CTCs in peripheral blood [16]. This may explain 
why up to 70% patients known to have metastatic dis-
ease failed to exhibit detectable CTCs using the Cell-
Search system [36]. Another commercialized technique 
that uses magnetic enrichment is AdnaTest (AdnaGen 
AG, Germany) [37]. This technique uses a dual-capture 
assay, in which CTCs are captured with a mixture of 
large microbeads (4.5 μm superparamagnetic Dyna-
beads®) linked with one of two different antibodies: 
one against EpCAM, and the other against tumor 
marker such as MUC-1 or HER2 depending on the 
type of cancer. Subsequent detection is done with 
multiplexed reverse transcriptase polymerase chain 
reaction (RT-PCR) to recognize tumor associated 
mRNAs. Compared with the CellSearch system, this 
method improves the enrichment step by capturing 
CTCs with expression of any one of the two antigens. 
But, it is not clear whether it outperforms the Cell-
Search system, due to the difference in the size of the 
magnetic particles and the detection methods  [38,39]. 
Different from CellSearch and AdnaTest, the com-
mercialized magnetic activated cell sorting (MACS) 
technique traps CTCs labeled with superparamagnetic 
Fe NPs (~30 nm) within a magnetized steelwool col-
umn  [40,41]. When the column is removed from the 
external magnetic field, the trapped cells are no longer 
bound to the steelwool and eluted from the column 
with a buffered solution. A new magnetic separation 
strategy that can get rid of nonspecifically labeled 
cells was developed by Talasaz et al. in 2009, which is 
named MagSweeper  [42]. The MagSweeper uses mag-
netic neodymium rods to capture tumor cells labeled 
with anti-EpCAM linked Dynabeads in a circular loop 
motion. Due to the use of multiple magnetic rods and 
the enrichment in a motion mode that avoids nonspe-
cifically bound species, the separator can enrich CTCs 
by 108-fold with 100% purity.

While the positive selection is appealing, a drawback 
of this method is that CTCs with low or no expression 
of the targeted makers can not be captured. This prob-
lem can be avoided by using negative depletion with 
immunomagnetic beads  [43]. A general approach for 
negative selection with magnetic separation is to firstly 
lyse RBCs and then use MNPs coated with anti-CD45 
antibodies to separate WBCs [44–48]. As demonstrated 
by Yang et al., this method can reduce the number of 
normal blood cells by 106-fold [44]. It gives a recovery 
of approximately 83% on spiked head and neck can-
cer cells. However, due to the huge amount of normal 
blood cells, it is very challenging to deplete all of these 

background cells. In addition, lysis of RBCs may also 
cause loss and damage of the rare tumor cells

Microchip-based magnetic separation
Microfluidic devices have become one of the main-
stream platforms for CTC enrichment and detection 
due to many advantages including miniaturization, 
portability, cost–effectiveness and the abilities of 
online isolation/detection and single cell analysis  [49]. 
Numerous microchip platforms have been developed 
based on affinity, size or other physical properties [50]. 
A new direction in immunomagnetic separation is to 
perform the separation on a microfluidic device, due to 
the benefits of both immunomagnetic separation and 
microfluidic device. Under the flow condition, the cap-
ture efficiency depends on the ratio of magnetic force 
and drag force [51]. A cell with many bound NPs has a 
large ratio of the two forces than free NPs and can thus 
be selectively captured.

Cell isolation in the microfluidic channels is often 
simply performed with permanents magnets under the 
chip (Figure 2D) [51–57]. The capture efficiency and sam-
ple throughput can be precisely controlled through the 
design of the fluidic channels, the control of the flow 
rate, and the magnetic field strength. Zhang and co-
authors have extensively studied both experimentally 
and theoretically the effects of these parameters on cell 
capturing efficiency  [51,55,56]. They showed that over 
85% spiked cancer cells in blood can be captured with 
EpCAM targeted Fe3O4 NPs at a speed of 10 ml/h 
using NdFeB block magnets with a maximum energy 
product of 42 MGOe [55]. They also showed that the 
performance of the separation can be improved by 
inverting the microchannel (magnet placed on top of 
the channel)  (Figure 2E) [56]. In this mode, the direc-
tion of the gravity is opposite to that of the magnetic 
field force. Thus, the effects of RBC sedimentation on 
CTC capture is greatly reduced. Using the inverted 
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Figure 2. Magnetic nanoparticles for magnetic enrichment of circulating tumor cells. (A) Ferromagnetic and superparamagnetic 
properties of MNPs. (B) Immunomagnetically labeled cell with particles of different diameters. (C) Bulk magnetic separation under 
a stationary condition. (D) The principle of microchip-based immunomagnetic enrichment in an upright mode. (E) The principle of 
microchip-based immunomagnetic enrichment in an inverted mode. (F) Magnetic shifter device comprising an array of magnetic 
pores for magnetic CTC filtration. 
CTC: Circulating tumor cell; MNP: Magnetic nanoparticle; PDMS: Polydimethylsiloxane; RBC: Red blood cell; WBC: White blood cell. 
(A) Reproduced with permission [30] © The Royal Society of Chemistry (2009); (B) Reprinted with permission from [32] © Elsevier; 
(D) Reproduced with permission from [55] © The Royal Society of Chemistry (2011); (E) Reproduced with permission from [56]  
© Springer (2013); (F) Reproduced with permission from [62] © The Royal Society of Chemistry (2014).
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microchip-based immunomagnetic separation with 
Fe3O4-Au core-shell NPs, Sokolov and co-authors 
demonstrated that CTC capture efficiency can be 
markedly improved by duplex targeting [57].

In some devices, the microfluidic channels are struc-
turally designed to facilitate or enhance cell capture [58–
61]. For example, the device reported by Chen et al. con-
tains an array of magnetic microposts fabricated inside 
the channel to generate a strong magnetic force when 
magnetized by the external permanent magnet [59]. Vali-
dation studies showed that the device can capture 90% 
spiked tumor cells labeled with anti-EpCAM conjugated 
ferrofluid NPs at a flow rate of 6 ml/h with anti-EpCAM 
conjugated Fe NPs. To improve sample throughput and 
capture efficiency, Earhart  et  al. recently developed a 
magnetic shifter device, composed of an array of 40 μm 
holes in a silicon nitride membrane and a 12 μm thick 
coating of a magnetically soft permalloy (Figure 2F) [62]. 
Due to the extremely high field gradients at the pore 
edges and high density of pores (approximately  200 
pores/mm2), the magnetic microfilter combined with 
anti-EpCAM conjugated MNPs, can capture 96% 
spiked cancer cells in blood at a flow rate of 10 ml/h.

Nanostructured substrates
The past few years have witnessed the emergence of 
nanostructured substrates as a new platform for cap-
turing and enriching CTCs  [63,64]. When the sub-
strates are functionalized with targeting ligands, CTCs 
are captured on the substrate through ligand-antigen 
binding. Compared to flat substrates, the major advan-
tage of the nanostructured ones is the enhanced local 
topographic interactions between the substrates and 
targeting cell surface, which results in vastly enhanced 
cell capture affinity (Figure 3A) [65]. In addition, nano-
structures can be coated with ligands with much 
higher densities than flat surfaces and thus can intro-
duce multivalent effects to improve binding affinity. 
Furthermore, when the nanostructures are embedded 
into a microfluidic device, they lower the rolling veloc-
ity of cells in microfluidic channels and thus further 
enhance cellular binding.

Different types of nanostructured substrates have 
been reported for CTC enrichment, including nano-
array  [65–71], nanofiber  [72,73], nanosheet  [74,75], depos-
ited NP substrates [76–78] roughened surface [79,80] and 
nanoporous substrates [81,82]. The integrated NanoVel-
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Figure 3. Nanostructured substrates for circulating tumor cells enrichment. (A) 3D silicon nanopillar substrates showing enhanced cell 
binding affinity as compared with the flat substrate. (B) Silicon nanopillar-embedded chaotic mixing microfluidic device. (C) Silicon 
substrates coated with graphene oxide nanosheet targeting CTCs through EpCAM recognition. (D) Gold nanoparticles-coated 
substrate to capture CTCs with aptamer ligands. (E) Roughened glass substrate showing capture of tumor cells without using CTC 
biomarkers. 
CTC: Circulating tumor cell; PDMS: Polydimethylsiloxane; SiNP: Silicon nanopillar; TBA: Tetrabutylammonium. 
(A) Reproduced with permission from [65] © John Wiley and Sons (2009); (B) Reproduced with permission from [66] © John Wiley and 
Sons (2011); (C) Reprinted with permission from [74] © Macmillan Publishers Ltd: (Nature Nanotechnology; 2013); (D) Adapted with 
permission from [78] © American Chemical Society (2013); (E) Reprinted with permission from [80] © American Chemical Society (2013).
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cro device, which has been developed by Tseng and 
co-authors through a combination of anti-EpCAM 
coated vertically oriented silicon nanopillars with 
vastly enhanced CTC-capture affinity and an overlaid 
microfluidic chaotic mixing chip capable of promot-
ing cell-substrate contact frequency, is very promising  
(Figure 3B) [66]. The spiking experiments demonstrated 
that it can capture over 95% tumor cells. Studies on 
patient samples showed that the device captured sig-

nificantly greater number of CTCs compared with the 
CellSearch system. A similar device was later devel-
oped by the same group, but with horizontally distrib-
uted poly(lactic-co-glycolic acid) (PLGA)-nanofiber as 
the embedded materials  [73]. To facilitate the release 
of the tumor cells after capture, they later coated the 
nanoarray surface with thermal responsive polymer, 
poly (N-isopropylacrylamide) (PIPAAm) to manipu-
late cell release by changing temperature [69]. The new 
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generation NanoVelcro devices can both capture (at 
37°C) and release (at 4°C) over 90% tumor cells, with 
over 90% cells remaining viable.

Recently, Yoon  et  al. reported the use of graphene 
oxide (GO) to capture CTCs  [74]. In their work, GO 
nanosheets were adsorbed onto a flower-shaped gold 
surface on a silicon substrate and chemically function-
alized with EpCAM antibodies (Figure 3C). The recov-
ery rates of 3–5 and 10–20 spiked breast cancer cells 
reached 73% and 94.2%, respectively, at flow rate of 
1–3 ml/h. Without the GO sheet, the chip captures 
13.3 and 48% for 3–5 and 10–20 cells, respectively. 
This demonstrated highly efficient CTC enrichment 
for low concentration CTCs.

For the substrates deposited with NPs (either by 
physical adsorption or by covalent binding), the multi-
valent effects play an important role in cell attachment. 
As demonstrated by Sheng et al. (Figure 3D), each gold 
(Au) NP (approximately  14 nm) is coated with 95 
aptamer ligands [78]. When the Au NPs are coated on 
the channel of a microfluidic device, they enhanced 
cellular binding by 39-fold as compared with flat sur-
face coated with aptamer alone. This increased the 
cell capture efficiency from 49 to 92%, indicating the 
strong promise of such nanostructured device for CTC 
capture and enrichment.

A marker- and size-independent methodology was 
lately reported by Chen  et  al. using nanoroughened 
substrates (Figure 3E)  [80]. This method utilizes differ-
ential adhesion preference of cancer cells to nanorough 
surfaces when compared with normal blood cells. Using 
reactive ion etching, they made roughened glass sur-
faces with precisely controlled root-mean-square rough-
ness from 1 to 150 nm. They found that as the rough-
ness root-mean-square increases, capture yield of spiked 
cancer cells increases, reaching 80% for the 150-nm 
substrates. The device was tested with multiple breast 
cancer cell lines and compared with the flat surface that 
captures less than 20% cells in all tested cell lines.

CTC detection
Following isolation and enrichment, CTCs are detected 
and analyzed using either cytometric or nucleic acid-
based approaches [83]. While cytometric methods ana-
lyze the cells based on protein expressions, the nucleic 
acid methods detect genetic alterations specific to 
tumor cells. Cytometric methods include immunohis-
tochemistry imaging, spectroscopic detection and flow 
cytrometry. The advantage of cytometric methods over 
nucleic-acid based methods is the possibility to further 
characterize the cells since cell lysis is not required in 
the former procedures. When CTCs are examined 
microscopically, cell morphology can also been exam-
ined. Nucleic acid-based methods can analyze genetic 

information on whole cell or extracted RNA or DNA 
using PCR, RT-PCR, quantitative real-time RT-PCR, 
whole-genome amplification and FISH [84]. In general, 
nucleic acid methods have high sensitivity but low speci-
ficity due to interference from the expression of markers 
in normal cells. Nanomaterials are used in a variety of 
detection methods by taking advantages of their unique 
functional properties. Based on the mechanism of sig-
nal readout, the types of nanomaterials used in this area 
are classified as optical, magnetic and conductive NPs.

Optical nanoparticles
Fluorescent nanoparticles
Fluorescence is a leading technique for CTC detection 
and analysis. Generally, it is done with organic dyes 
as the imaging agents. However, it has been widely 
realized that the use of organic dyes is limited by pho-
tobleaching, low signal intensity, spectral overlapping 
and the need for multiple light sources to excited dif-
ferent fluorophores in multiplexed detection. Alter-
natively, quantum dots (QDs) have large absorption 
coefficient, narrow emission, high photostability and 
superior brightness  [85]. Their emission can be pre-
cisely tuned by changing the size and composition of 
the NPs, which results in multicolor NPs with a single 
excitation laser source [86]. Due to these excellent prop-
erties, they have been widely used in biomedical imag-
ing during the last decade [87]. However, they have not 
attracted much attention in CTC imaging [88–90]. The 
major concern is their cytotoxicity that may cause cell 
molecular changes and damage [91]. To avoid the toxic-
ity issue, QDs can be used to detect CTCs by monitor-
ing extracted nucleic acids. An example is the micro-
fluidic bead-based nucleic acid sensor developed by 
Zhang et al. using multienzyme-nanoparticle amplifi-
cation and QD labels  [92]. By measuring the fluores-
cence signal intensity from QDs, the amount of tar-
geted DNA can be quantified. The method can detect 
1 spiked colorectal cancer cell in the blood.

Another class of fluorescent NPs is upconversion 
NPs (UCNPs) that contain lanthanide ions and show 
strong emission under NIR excitations [93]. Due to the 
NIR excitation, cellular autofluorescence is minimized 
and thus UCNPs enable imaging in biological samples 
with high sensitivity. In 2014, Fang et al. demonstrated 
the first application of UCNPs for CTC detection [94]. 
Using aptamer-linked NaYF4 (Yb:Er) UCNPs tar-
geting PTK-7 on cancer cells, in combination with 
magnetic enrichment with superparamagnetic Av-con-
jguated Fe3O4 NPs, they showed linear correlation 
between the fluorescence intensity with the number 
of PTK-7 positive CCRF-CEM cells spiked in whole 
blood. As few as 10 cells spiked in 10 ml of whole 
blood were detected. The captured cells were further 
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examined with a confocal microscope, which indicated 
a purity of 70–90% depending on the concentration of 
spiked tumor cells.

Surface-enhanced Raman scattering 
nanoparticles
When organic dye with highly delocalized pi electrons 
is adsorbed onto metal NPs, the fluorescence signal of 
the dye is quenched and the Raman signals are strongly 
enhanced, as high as 1012–14 times leading to detec-
tion sensitivity down to single molecule and single par-
ticle level [95,96]. The dye-adsorbed metal NPs, termed 
surface-enhanced Raman scattering nanoparticles 
(SERS NPs), have emerged as a new generation of opti-
cal labels for biomedical imaging and diagnosis [97,98]. 
Different from the fluorescence technique, SERS gives 
sharp fingerprint-like signals (10–100-times narrower 
than fluorescence signals), distinct from biological 
autofluorescence/scattering background. This allows 
ultrasensitive detection without the need for tedious 
signal separation. The fingerprinting signals offer 
excellent multiplexity capability for multicolor imaging 
and detection  [99,100]. The capability of using a single 
excitation source for multicolor probes and minimal 
photobleaching are additional advantages.

In 2008, Sha et al. demonstrated for the first time 
the potential of SERS NPs for CTC detection using 
spiked breast cancer cells  [101]. 50 nm Au SERS NPs 
(Nanoplex Biotags) are linked with HER2 antibodies 
to target SK-BR-3 cells. By coupling with immunomag-
netic enrichment with anti-EpCAM conjugated mag-
netic beads, the method can detect 10 tumor cells/ml 
blood. The studies used a sample holder with a mag-
netic assembly that focuses the tumor cells on a precise 
location on the wall of the tube for detection. A recent 
modified strategy was to magnetically enrich the 
labeled cells in a tube under a flow condition, followed 
by the detection by SERS technology  [102]. The flow 
condition can be facilely translated into microfluidic 
modality for single cell analysis.

In 2011, Wang et al. developed a SERS-based assay 
using Au NPs covalently linked with epidermal growth 
factor peptide in combination with density gradient 
centrifugation enrichment and tested the assay with 
patient blood samples [103]. QSY21 quencher was used 
as the Raman reporter. The method can detect five to 
50 spiked head and neck cancer cells in blood. Stud-
ies on clinic blood samples showed that CTCs in 17 
out of 19 patients with head and neck cancer were 
detected, with CTC number ranging 1–720. A major 
advantage of this methodology is the specific detec-
tion of CTCs in the presence of WBCs, due to the use 
of small epidermal growth factor peptide rather than 
whole antibody ligands.

Recently, Zhang demonstrated the use of SERS 
NPs for CTC detection and enumeration at single 
cell level by combining a membrane substrate-based 
enrichment  [104]. Nitrocellulose membrane substrate 
was functionalzed with anti-EpCAM antibodies to 
capture CTCs. The captured CTCs were labeled 
with Au SERS NPs linked with EpCAM antibodies. 
Microscopic SERS imaging was performed to detect 
and count CTCs. A significant advancement was made 
in the same year by Nima et al. who applied SERS for 
multicolor CTC imaging  [105]. In their studies, four 
color SERS NPs were formed using Ag-coated Au 
nanorods (NRs) and four different Raman reporters 
(Figure 4A). Each color NP was linked with specific 
antibodies to target one of the four markers on breast 
cancer cells, IGF-1, anti-EpCAM, anti-CD 44 and 
anti-keratin 18. Using the SERS probe cocktail and 
the signature SERS peak from each reporter, the four 
markers on the same cell were imaged with a confo-
cal Raman microscope. This represents a significant 
advancement in developing SERS-based technologies 
for CTC detection and analysis.

Magnetic nanoparticles
While MNPs have been typically utilized for CTC 
enrichment, they can be used as detection agents as 
well. In 2012, Weissleder, Lee and co-authors dem-
onstrated an innovative technology using MNPs 
that can directly detect CTCs in whole blood and 
quantitatively measure specific biomarkers in a mul-
tiplexed fashion (Figure 4B)  [106]. They developed a 
microfluidic chip-based micro-Hall detector (μHD) 
to detect induced magnetic moments by magnetically 
labeled cells in the presence of an external magnetic 
field based on the Hall effect. As the signal intensity is 
proportional to the number of bound MNPs and thus 
level of biomarkers, this method is able to detect and 
profile the targeted biomarkers on single cells in the 
presence of vast numbers of blood cells. Using MNPs 
of different sizes, they can profile multiple markers. 
The method has been tested with three different can-
cer cell lines and three different markers. The molec-
ular profiles of these markers agreed well with those 
from flow cytometry. Studies on blood samples from 
20 ovarian cancer patients showed that CTCs were 
detected in 100% patients in contrast to 20% patients 
with the CellSearch system. The method detected a 
higher number of CTCs in patients of ovarian cancer 
than CellSearch across all the patient samples due to 
the use of a multiplexed targeting strategy. A poten-
tial drawback with this technology is that CTCs with 
low level of protein expressions may not be detected 
because the tumor cells require over 106 MNPs in 
order to be detected.
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Figure 4. Nanoparticles for multiplexed detection, imaging and profiling of circulating tumor cells. (A) Multiplexed imaging of 
circulating tumor cells using four color Au-Ag core-shell SERS nanorods. Top Left: Absorption and TEM image of Ag-Au core-
shell nanorods. Red: Au nanorods. Black: Au-Ag core-shell nanorods. Right: Preparation and SERS spectra of 4 color Au-Au SERS 
nanoprobes. Down left: Raman imaging of tumor cells with four color Au-Au SERS nanoprobes. (B) Multiplexed detection and 
profiling of CTCs with MnFe2O4 MNPs in combination with a micro-Hall detector. Top: Schematic showing the principle of multiplexed 
profiling of CTC marker expressions using MNPs of different sizes in conjunction with a micro-Hall detector. Down left: Magnetic 
properties of MNPs with different sizes. Down right: The heat map showing comparison of the relative expression levels of three 
different tumor makers measured using the micro-Hall detection method and flow cytometry.  
MNP: Magnetic nanoparticle; MSTP: 4-(methylsulfanyl) thiophenol; PNTP: P-nitrobenzoic acid; PATP: P-aminobenzoic acid; 
4MBA: 4-mercaptobenzoic acid. 
(A) Reprinted with permission from [105] © Macmillan Publishers Ltd: (Science Reports; 2014); (B) Adapted with permission from [106] 
and reprinted with permission from © AAAS (2012). 
For color images please see online at: www.futuremedicine.com/doi/full/10.2217/NNM.15.32
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With a different detection mechanism, the same 
groups developed a micronuclear magnetic resonance 
(μNMR)-based method for detecting and counting 
CTCs in whole blood [107]. The μNMR measures the 
transverse relaxation time (T2) of water proton in a 
solution sample. When the sample contains CTCs 
labeled with MNPs, the MNPs produce local dipole 
fields with strong spatial dependence, which acceler-
ates the transverse relaxation of water protons and thus 
shorter T2 than nontargeted objects [108]. The method 
involves RBC lysis after MNP labeling. Experiments 
with spiked cancer cells showed recovery rates of 
30–45% depending on the concentration of the tumor 
cells. The method detected CTCs in 87% of patients 
with ovarian cancer, with higher CTC number than 
the CellSearch system in advanced cases.

Conductive nanoparticles
Carbon nanotubes (CNTs) have remarkable elec-
tronic properties, behaving as a metal or semicon-
ductor depending on their diameter and helicity [109]. 
Mechanical deformations or chemical binding can 
induce strong variations of its conductance, which can 
be easily detected by electron current signals. Such 
unique properties make CNTs excellent chemical and 
biological sensors. In 2008, Shao et al. demonstrated 
the first application of CNTs for electric detection of 
cancer cells in blood. They made single wall CNT 
field effect transistor array device containing 20 pairs 
of electrodes with a single CNT between each pair. 
The CNTs were functionalized with antibodies to rec-
ognize breast cancer cells. The binding of cancer cells 
to the CNTs induced 60% decrease in conductivity 
whereas control experiments produced less than 5% 
decrease in conductivity. The key advantage of this 
assay is that the sensing area is limited to few receptors 
in cells and thus may potentially detecting CTCs with 
low protein expressions. It also directly detects cancer 
cells in blood, without the need of preenrichment. 
However, it has difficulty to count CTCs because the 
signal is only determined by a single cell reaching the 
spacing between the electrodes. The volume of ana-
lyzed blood is also very small (<10 μl), which may miss 
rare CTCs in patient blood.

A recent study by Liu et al. demonstrated a quantita-
tive CNT-based sensor for direct detection of cancer 
cells in whole blood using real time electrical imped-
ance sensing  [110]. Multilayer CNTs were assembled 
on an indium tin oxide electrode surface and modi-
fied with EpCAM antibodies. Cell binding induced 
increase of the electron-transfer resistance. Using liver 
cancer as a model, they demonstrated that this elec-
trical response was linearly proportional to the con-
centration of the cancer cells in whole blood, with a 

detection of limit of five cells per ml of blood. Rather 
than whole cell detection, Kwon described a method 
to detect proteins collected from lysed cancer cells 
using CNT patterned surface coupled with scanning 
probe microscopy imaging [111]. CNTs served as a sub-
strate to recognize carcinoembryonic antigens (CEAs) 
expressed on CTCs and scanning probe microscopy 
was used to image CEAs bound on the CNTs. This 
quantitative assay can detect not only a single CTC 
but also single CEA molecule, indicating its superior 
sensitivity.

Dual enrichment & detection with hybrid 
nanoparticles
Due to their scarcity of CTCs in blood, materials that 
allow dual enrichment/detection modalities are highly 
desirable for developing simple, rapid and efficient 
detection methods. The dual functional materials 
bridge the gap between the enrichment and detection 
technologies, simplifying sample processes and mini-
mizing CTC loss and damage. Thus, dual functional 
nanomaterials are very promising for developing new 
generation of CTC detection technologies.

An earlier strategy was developed by Maeda  et  al. 
who made magnetic-fluorescent nanocomposites with 
bacterial MNPs (BacMPs) and commercial QDs for 
dual magnetic isolation and fluorescence detection [112]. 
The BacMPs were functionalized with anti-EpCAM 
using gene fusion techniques. In their proof-of-concept 
studies, the nanocomposite, under optimized condi-
tions, led to a 90% recovery rate for NCI-H358 lung 
cancer cells from 1 ml of PBS suspension whereas less 
than 10% for JM non-epithelial model cells. Follow-
ing magnetic separation, the cancer cells were detected 
by fluorescence imaging because of the QD moieties in 
the composites. Magnetic-fluorescent composites using 
MNPs and organic dyes have also been reported [113,114]. 
Recently, Ray and co-authors used Fe3O4-Au core-
shell NPs and organic dye to form the hybrid nano-
system [115]. The use of magnetic-plasmonic core-shell 
NPs allows subsequent destruction of captured tumor 
cells with photothermal therapy.

We recently developed a dual capture and detec-
tion assay using highly integrated magnetic-plasmonic 
core-shell SERS NPs (Figure 5)  [116]. We synthesized 
Fe3O4-Au core-shell NPs in different shapes based on 
a seed-mediated growth method [116,117]. These aniso-
tropic core-shell NPs are 30–40-times higher in SERS 
activities than traditional spherical counterparts. The 
integrated nanoprobes were made from oval-shaped 
Fe3O4-Au core-shell NPs, which were adsorbed with 
QSY21 Raman reporters and linked with one of two 
different antibodies, EpCAM or HER2. To further 
minimize cell loss, we constructed an online cap-
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Figure 6. Nanoparticles for in vivo magnetic enrichment and photoacoustic detection of circulating tumor cells. (A) MNP probes 
targeting urokinase plasminogen activator receptors on tumor cells. (B) GNT probes targeting folate receptors on tumor cells. 
(C) Enrichment and detection setup. (D) Photoacoustic signals from CTCs in abdominal vessels at week 1 of tumor development with 
and without magnetic enrichment. (E) The average CTC rate in mouse ear vein over a period of 4 weeks after tumor development. 
ATF: Aminoterminal fragment; CTC: Circulating tumor cell; GNT: Gold nanotube; MNP: Magnetic nanoparticle;  
Reprinted with permission from [130] © Macmillan Publishers Ltd (2009).
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ture and detection system, in which tumor cells were 
firstly captured online with a macromagnet and then 
immobilized by a micromagnet in the absence of the 
macromagnet for SERS detection. Using the duplex 
targeted nanoprobes in combination with the online 
flow system, we demonstrated that over 90% SK-BR-3 
breast cancer cells can be captured at a flow velocity 
of 6 cm/s without significant interference from free 
NPs. Spiking experiments with SK-BR-3 cells showed 
that the intensity of the SERS signals from the Raman 
reporter was linearly correlated to the number of cells 
in the whole blood. Our method showed a limit of 
detection of 1–2 cells per milliliter of human whole 

blood. With further development using microfluidic 
device, multiplexed targeting and microscopic Raman 
detection, the technique will lead to a new generation 
of versatile system for highly sensitive and specific 
detection and profiling of CTCs in whole blood.

In vivo enrichment & detection with 
nanomaterials
Techniques capable of detecting and quantifying 
CTCs in vivo are valuable because they are noninva-
sive and can monitor CTC level in real-time. They 
detect CTCs in the entire blood volume of the body, 
which can enhance sensitivity up to 102–103 times 
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as compared with ex vivo methods [118]. In vivo CTC 
detection has been done on superficial vessels with a 
mouse model by in vivo flow cytometry using tradi-
tional fluorescence [119–126] or newly developed photo-
thermal (PT) and photoacoustic (PA) [127–134] detection 
methods, or a combination of these methods [135,136].

An example of the use of nanotechnology in CTC 
detection with in vivo fluorescence flow cytometry was 
the use of two color QDs (Qdot 585 and Qdot655) 
to track the circulation of breast cancer cells of two 
different cell lines [122]. This work, reported by Tkac-
zyk  et  al., was the first study showing that two dif-
ferent populations of circulating tumor cells can be 
quantified simultaneously in the blood circulation in 
a mouse model. The technique has the potential to 
track different CTC subtypes in vivo. However, limita-
tions of the fluorescence-based methods exist, includ-
ing potential cytotoxiciy of QDs and interference from 
light scattering and autofluorescence. These drawbacks 
can be avoided in PT/PA detection methods, which are 
based on the absorption properties of light from pulsed 
laser by endogenous biomolecules or exogenous con-
trast agents and subsequent nonradiative relaxation of 
absorbed laser energy into heat. In PT imaging, the 
heat induces the variations of the refractive index in 
the cells, which is detected with phase-contrast imag-
ing technique with a second, collinear probe laser 
pulse [137]. In PA flow cytometry the temperature fluc-
tuations resulting from the pulsed heating by the laser 
generates pressure waves that is detected with an ultra-
sound transducer [138]. PAFC combines high sensitivity 
and spectral specificity of optical methods with high 
spatial resolution and tissue penetration of ultrasounds 
methods, and thus very promising for in vivo detection.

Using low toxicity metal-based NPs, Zharov and 
co-authors have conducted extensive studies on CTC 
detection with in vivo PT/PA flow cytometry from sin-
gle color to two color detection [130–133]. In their stud-
ies, a groundbreaking approach is the use of MNPs and 
gold coated carbon nanotube for magnetic enrichment 
and PA detection of CTCs in vivo (Figure 6)  [130]. In 
this method, 10 nm Fe2O3 NPs were functionalized 
with the aminoterminal fragment (ATF) of the uro-
kinase plasminogen activator to target urokinase plas-
minogen activator receptor on breast cancer cells. The 
MNPs served as dual magnetic and PA contrast agents. 
GNTs have a higher PA contrast than MNPs in the 
NIR region and thus were used as a second PA agent to 
increase detection sensitivity. GNTs were also used as 
a second targeting agent through linked folate ligands 
to increase detection specificity. Results showed that 
the sensitivity limit is 35 GNTs and 720 MNPs. Selec-
tive capture (over 90%) of MNP-labeled cancer cells 
over free MNPs were achieved at a flow velocity of 2–8 

cm/s. The technique was examined by detecting CTCs 
in the blood circulation of a nude mouse with breast 
cancer xenografts through the ear vein. After injection 
of a cocktail of the two nanoprobes, they observed pho-
toacoustic signals when the magnet is placed near the 
ear vein. The signals further increased with time, indi-
cating successful enrichment of CTCs. By converting 
the signals into cell number, they were able to monitor 
CTC level during tumor development. They observed 
that the CTC rate increased dramatically with time, 
correlating to different stages of tumor. Zharov and co-
authors further demonstrated the ability to kill CTCs 
in vivo following detection using photothermal melanin 
NPs [129] or cancer stem cells (CSCs) using GNTs [131]. 
Incorporation the killing modality with the detection 
methods is beneficial because it directly reduces the risk 
of metastasis by eradicating these diseased cells.

Conclusion
Nanotechnology receives intense attention for the 
enrichment and detection of CTCs during the last 
decade owing to the unique structural and functional 
properties of nanoscale materials. Magnetic NPs are 
used for the enrichment of CTCs in blood samples in 
the FDA-approved CellSearch system. Many new nan-
otechnology-based techniques that improve upon the 
CellSearch system have been developed and showed 
strong potential for clinical applications. Most tech-
niques use NPs, such as magnetic, fluorescent, metal-
lic, conductive NPs or nanostructured substrates, to 
enrich or detect CTCs in blood samples. Hybrid NPs 
have been recently developed to bridge current enrich-
ment and detect methodologies. Nanotechnology has 
also been used to detect CTCs in vivo. The use of pho-
tothermal NPs in the in vivo technologies allows sub-
sequent eradication of CTCs, which is promising for 
prevention of cancer metastasis.

Future perspective
In the next 5–10 years, sensitivity and specificity 
remain the key issues to be addressed in future tech-
nologies. The dual functional nanomaterials such as 
magnetic-optical core-shell nanoparticles are very 
promising to reduce false negatives by bridging cur-
rent enrichment and detection methods. Multiplexed 
targeting is another way to improve detection sensitiv-
ity by capturing and analyzing CTC subpopulations. 
Nanomaterials are ideal for developing multiplexed 
assay as each particle can be linked with different tar-
geting ligands. In addition, incorporation of nanoma-
terials with microfluidic devices will continue to be an 
optimistic strategy in CTC enrichment and detection 
because of the combined benefits of nanotechnology 
and microchip technology.
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Another future direction of the field will be molecu-
lar characterization of CTCs that may better inform 
clinical decision making. The ability to reliably and 
efficiently characterize CTC gene and protein expres-
sion profiles remains limited. The SERS NPs may 
revolutionize protein analysis at the single cell level. 
SERS NPs can profile CTC protein markers in a high 
throughput fashion. Multicolor SERS NPs (>10 col-
ors) can be formulated without changing the size and 
shape of the nanostructures. Signals from each color 
NPs can be facilely obtained by deconvolution with 
classic least square regression. Thus, the multicolor 
SERS NPs will lead to novel characterization methods 
in a high throughput fashion.
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Executive summary

Background
•	 Circulating tumor cells (CTCs) provide a potentially noninvasive liquid biopsy for characterizing and 

monitoring cancer, helping inform clinical decision making.
•	 A variety of techniques have been developed to enrich and detect CTCs during the last two decades, with the 

CellSearch system being approved by FDA for utilization in the clinic to count CTCs in blood of patients with 
metastatic breast, prostate and colon cancer.

•	 Nanotechnology plays an important role in CTC enrichment and detection with increasing interests in recent 
years owing to the unique structural and functional properties of nanoscale materials.

Nanotechnology in enrichment & detection of CTCs
•	 Magnetic nanoparticles have been widely used for CTC enrichment based on classic bulk immunomagnetic 

separation or microchip-based immunomagnetic separation.
•	 A variety of nanostructured substrates have been developed to capture and enrich CTCs.
•	 Magnetic, fluorescent, plasmonic and conductive nanoparticles have been recently used to detect CTCs either 

directly in whole blood or in combination with enrichment methods.
•	 Hybrid functional nanoparticles have emerged as new contrast agents for dual enrichment and detection of 

CTCs.
•	 In vivo enrichment and detection technologies have been developed based on magnetic and plasmonic 

nanoparticles.
Conclusion
•	 Nanomaterials are used in the US FDA-approved CellSearch system.
•	 Many new technologies with significant improvement and great potential for clinical applications have been 

developed using various nanoplatforms, mainly magnetic, fluorescent, metallic and conductive NPs as well as 
nanostructured substrates.

•	 Nanotechnology has been proven promising for in vivo detection of CTCs.
Future perspective
•	 Sensitivity and specificity remain the key issues to be addressed in future technologies.
•	 Dual functional nanoparticles with multiplexing capability are very promising in developing new generation 

of CTC enrichment and detection technologies.
•	 Nanomaterials are very promising for molecular characterization of CTCs, especially for profiling of CTC 

protein expressions at the single cell level.
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