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SUMMARY

Cereblon (CRBN), a substrate receptor for the cullin–RING ubiquitin ligase 4 (CRL4) complex, is 

a direct protein target for thalidomide teratogenicity and antitumor activity of immunomodulatory 

drugs (IMiDs). Here we report that glutamine synthetase (GS) is an endogenous substrate of 

CRL4CRBN. Upon exposing cells to high glutamine concentration, GS is acetylated at lysines 11 

and 14, yielding a degron that is necessary and sufficient for binding and ubiquitylation by 
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CRL4CRBN and degradation by the proteasome. Binding of acetylated degron peptides to CRBN 

depends on an intact thalidomide-binding pocket but is not competitive with IMiDs. These 

findings reveal a feedback loop involving CRL4CRBN that adjusts GS protein levels in response to 

glutamine and uncover a new function for lysine acetylation.

Graphical abstract

Introduction

Cereblon (CRBN) is a putative substrate receptor for a cullin–RING ubiquitin ligase 4 

(CRL4) complex (Angers et al., 2006). Human CRBN was discovered as a gene that when 

mutated results in mild mental retardation (Higgins et al., 2004). Subsequent analysis of 

Crbn−/− knockout mice revealed that they are less prone to developing insulin resistance, 

fatty liver and visceral fat accumulation when fed a high-fat diet (Lee et al., 2013). To date, 

only four putative targets of CRBN have been identified: large conductance Ca2+-activated 

K+ channels (Jo et al., 2005), voltage-gated chloride channel (Hohberger and Enz, 2009), the 

developmental regulator MEIS2 (Fischer et al., 2014), and adenosine monophosphate-

activated protein kinase (AMPK) (Lee et al., 2011b; Lee et al., 2014; Lee et al., 2013). 

AMPK activity is elevated in Crbn−/− mice, which could contribute to the resistance of these 

animals to developing metabolic syndrome on a high-fat diet. However, the mechanism by 

which CRBN recognizes AMPK or its other natural substrates remains unknown.

CRBN has achieved notoriety as the target that accounts for the teratogenic effects of 

thalidomide (Ito et al., 2010), which caused over 10,000 birth defects in humans before it 

was withdrawn from the market in 1962 (Lenz et al., 1962; Mcbride, 1961). Subsequently, 

CRBN was implicated as the target that accounts for the therapeutic activity of thalidomide 

and the related ‘immunomodulatory’ (IMiD) compounds lenalidomide and pomalidomide in 
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multiple myeloma (Lopez-Girona et al., 2012; Zhu et al., 2011). CRBN must be present for 

myeloma cells to respond to IMiDs, suggesting that formation of an IMiD–CRBN complex 

underlies the therapeutic response. Recent studies have revealed that binding of IMiDs to 

CRBN promotes recruitment of neosubstrates, including Ikaros (IKZF1), Aiolos (IKZF3) 

(Kronke et al., 2014; Lu et al., 2014) and casein kinase 1A1 (CK1α) (Kronke et al., 2015) to 

CRL4CRBN, leading to their increased ubiquitylation and proteasome-dependent 

degradation. In contrast, IMiDs block endogenous CRBN substrate MEIS2 from binding to 

CRL4CRBN, resulting in inhibition of its ubiquitylation and degradation (Fischer et al., 

2014). Because of the paucity of known CRL4CRBN ubiquitylation substrates, it remains 

unclear whether the therapeutic action of IMiDs might be modulated by general stabilization 

of CRBN’s natural substrates.

Glutamine synthetase (GS) plays a central role in metabolism, as glutamine is the key 

metabolite connecting carbon and nitrogen metabolism through the citric acid cycle. GS has 

different functions in different tissues. For example in liver it detoxifies ammonia, in brain it 

protects neurons against excitotoxicity by converting glutamate into glutamine, and in 

kidney it contributes to pH regulation (Taylor and Curthoys, 2004). Moreover, glutamine has 

a critical role in regulating mTOR signaling, translation, and autophagy to coordinate cell 

growth and proliferation (Nicklin et al., 2009). Mutations and deregulation of GS have been 

linked to human diseases, including congenital glutamine deficiency, Alzheimer’s disease, 

and cancers (Bott et al., 2015; Christa et al., 1994; Gunnersen and Haley, 1992; Haberle et 

al., 2005; Kung et al., 2011; Tardito et al., 2015). In keeping with its central role in carbon 

and nitrogen metabolism, prokaryotic GS is allosterically regulated by multiple end products 

of glutamine metabolism working in concert with cycles of reversible adenylylation/

deadenylylation (Krajewski et al., 2008; Stadtman, 2001). Eukaryotic GS, by contrast, is not 

adenylylated and its regulation is poorly understood. It has been shown that GS is subject to 

feedback control by glutamine, which promotes its post-translational modification and 

degradation (Arad et al., 1976; Crook and Tomkins, 1978). However, the molecular basis for 

this regulation remains elusive.

Results

GS is an endogenous substrate of CRL4CRBN

To search for candidate CRBN substrates, including those that might be modulated by 

IMiDs, we used stable isotope labeling of amino acids in cell culture (SILAC)-based 

quantitative mass spectrometry (Lee et al., 2011a) (Figure S1A). Comparison of heavy:light 

ratios of peptides indicated that CRBN, subunits of CRL4 (CUL4, DDB1, RBX1), and 

subunits of the CRL regulator CSN were recovered in equal amounts from DMSO or 

thalidomide-treated 293T cells stably expressing CRBN tagged with a Flag epitope at its N-

terminus (FlagCRBN; all tagged proteins are indicated by a superscripted tag either before or 

after the name to indicate tagging at the N- or C-terminus) (Figure 1A). A number of 

putative substrates behaved like MEIS2 (Fischer et al., 2014) in that they were recovered in 

lesser amounts from cells treated with thalidomide (Table S1). Notably, glutamine 

synthetase (GS) behaved like Ikaros, Aiolos, and CK1α in that it was recovered in greater 

amounts (Figure 1A). Essentially identical results were obtained in a label-swap experiment 
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(data not shown). To validate the mass spectrometry data, we immunoprecipitated FlagCRBN 

and immunoblotted for CRL4CRBN subunits and GS. Recovery of GS but not CRL subunits 

was stimulated by thalidomide (Figure S1B) and its analog lenalidomide (Len)(Figure 1B). 

A similar result was obtained when we evaluated the interaction of endogenous GS with 

endogenous CRBN (Figure 1C). An important distinction between GS and CRBN’s 

neosubstrates including IKZF1, IKZF3 and CK1α (Kronke et al., 2015; Kronke et al., 2014; 
Lu et al., 2014), is that we observed significant GS association with CRBN in the absence of 

IMiDs (Figures 1B, 1C, and S1B). Thus, we did not pursue further the relationship between 

GS and IMiDs.

The apparent constitutive association of GS with CRBN suggested that GS might be a 

natural substrate for CRL4CRBN, albeit one that behaves markedly differently from MEIS2. 

To pursue this further, we sought to test whether ubiquitylation of GS was dependent on 

CRL4CRBN. In co-transfection assays, we observed incorporation of HAubiquitin into FlagGS 

(Figure 1D). Significantly, ubiquitin-modified FlagGS accumulated in cells in which the 

proteasome was inhibited with MG132, but was almost entirely absent upon depletion of 

endogenous CRBN (depletion was confirmed by immunoblot; Figure S1D). In 

addition, FlagCRBN promoted the in vitro ubiquitylation of co-precipitated endogenous GS 

when supplemented with E1, E2, ubiquitin, and ATP (Figure 1E, lane 6). GS 

polyubiquitylation was markedly enhanced by the addition of recombinant CUL4A-RBX1 

purified from insect cells (Figure 1E, lane 3), whereas it was inhibited by addition of 

methylated ubiquitin. Collectively, these results argue that GS is an endogenous 

ubiquitylation substrate of CRL4CRBN.

CRL4CRBN directly controls the glutamine-induced degradation of GS

Glutamine regulates GS by altering the rate of degradation of the enzyme (Arad et al., 1976; 
Crook and Tomkins, 1978). Consistent with these reports, we observed that glutamine 

downregulated GS protein levels upon addition to glutamine-starved Hep3B cells (Figure 

2A) as well as to multiple lung, breast, and glioblastoma cancer cell lines (Figure S1E). This 

effect was intermediate at the normal serum glutamine concentration (0.5 mM) and was 

saturated at 2 mM glutamine (Figure S1F), as reported previously (Crook and Tomkins, 

1978). The glutamine-induced downregulation of GS in Hep3B cells was blocked by the 

addition of the proteasome inhibitor bortezomib or the NEDD8-activating enzyme inhibitor 

MLN4924 (Figure 2B), which inactivates Cullin-RING E3 ubiquitin ligase activity (Soucy et 

al., 2009). MLN4924 also inhibited glutamine-induced GS degradation in myeloma, breast, 

and lung cancer cell lines (Figure S2A–C). Most importantly, the glutamine-induced 

downregulation of GS in Hep3B cells was blunted upon disruption of CRBN loci by 

CRISPR/Cas9 (Figure 2C) or depletion of CRBN by shRNA knockdown (Figure S2D). 

Similar results were observed upon shRNA knockdown of CRBN in myeloma and lung 

cancer cells (Figure S2E & F). Consistent with a role for CRBN in GS degradation, the 

steady-state level of GS was elevated in CRBN-depleted cells (Figure S2G). For the Hep3B, 

myeloma, and lung cancer cell lines we confirmed that CRBN-dependent effects on GS 

downregulation were not due to changes in its mRNA level (Figure S2I–K). Two general 

trends in the data from different cell types are worth noting. First, glutamine does not induce 

complete degradation of GS; depending upon the cell line, the reduction ranged from 50–
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80%. Second, there remains a modest glutamine-stimulated loss of GS in cell lines depleted 

of CRBN by either shRNA or CRISPR/Cas9. It remains unclear if this is due to residual 

CRBN or the operation of an unknown secondary pathway. Nevertheless, it is clear that 

CRBN promotes rapid, glutamine-dependent downregulation of GS by a post-transcriptional 

mechanism that requires Nedd8 conjugation and proteasome activity.

We next sought additional evidence for a physiological role of CRBN in regulating the 

abundance of GS in vivo. In mice, GS is highly expressed in the brain, liver, kidney and 

skeletal muscle (BioGPS.org; table S2). We therefore used immunoblotting to examine GS 

abundance in brain, liver, kidney, skeletal muscle and lung tissues of wild-type and 

Crbn−/−mice that were starved for 24 hours and re-fed for 4 hours to mimic glutamine 

starvation/re-feeding in cultured cells. As shown in Figures 2D–F, GS was elevated in the 

kidney, skeletal muscle and lung of Crbn−/− mice, but not in the brain and liver (data not 

shown). Skeletal muscle and lung GS plays a significant role in regulating the concentration 

of plasma glutamine (Hensley et al., 2013). Consistent with the accumulation of GS in these 

tissues, Crbn−/− mice exhibited an increased glutamine to glutamate ratio in serum (Figure 

2G and table S3). Taken together, our data suggest that endogenous GS protein levels are 

negatively regulated by glutamine through a feedback loop involving CRL4CRBN.

The N-terminal extension of GS is required for its CRBN-dependent ubiquitylation

To identify the sequence in GS recognized by CRBN, we generated a series of deletion 

mutants and found that the N-terminal 24–amino acids were required for its constitutive 

interaction with CRBN (Figures 3A and 3B) and degradation (Figure 3C) in glutamine-

supplemented medium. Intriguingly, this N-terminal segment is absent from bacterial GS 

enzymes but is conserved in GS throughout the chordate lineage (Figure S3). By analogy to 

other CRL enzyme–substrate interactions, we speculated that GS degradation might be 

controlled by a glutamine-dependent post-translational modification of its N-terminal 

segment. To test this idea, we mutated all Ser, Thr, and Tyr residues in the N-terminal 24 

amino acids of GS to Ala, either individually or in combination. Notably, all mutants 

retained some binding to CRBN (Figure S4A), suggesting that phosphorylation does not 

play a major role. We next investigated whether a KxxK motif (lysines 11 and 14) that is 

highly conserved in chordates (Figure S3) was required for GS binding to CRBN. We 

analyzed double arginine substitutions (RR; keeps the positive charges) and double alanine 

substitutions (AA; neutralizes the positive charges) at K11 and K14 and found that the 

binding to CRBN, ubiquitylation, and degradation of GS were enhanced by the AA 

mutations but diminished or unaffected by the RR mutations (Figures 3D–F). To further 

investigate the N-terminal degron, we generated chimeric fusion proteins consisting of GS 

amino acids 1–25 fused to Myc-tagged GFP (Figure 4A). The N-terminal region of GS was 

sufficient to confer binding to and ubiquitylation by CRBN, as well as degradation (Figures 

4B–D). However, all of these activities of the N-terminal degron were blocked by the RR 

substitutions. Together, these findings suggest that modification of lysine(s) in the N-

terminal extension of GS was critical for its binding to and ubiquitylation by CRBN.
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Glutamine-dependent acetylation of lysines 11 and 14 by CBP/p300 regulates GS 
degradation

Lysine residues can be targeted by multiple modifications, such as ubiquitylation, 

SUMOylation, methylation, and acetylation. Our observation that K->R substitutions at K11 

and K14 in GS disrupted its binding to CRBN, ubiquitylation and degradation, whereas 

neutralizing K->A substitutions had the opposite effect, implicated a potential role for 

acetylation in neutralizing positive charges that impede interaction with CRBN. Acetylation 

was of particular interest, because proteomic studies uncovered modification of K14 on 

human, mouse and rat GS (Chen et al., 2012; Lundby et al., 2012; Svinkina et al., 2015; 
Weinert et al., 2013), and more generally revealed that reversible lysine acetylation plays an 

important role in regulating metabolic enzymes (Wang et al., 2010; Zhao et al., 2010). 

Moreover, a KxxK motif is known to be a potential target of the closely-related 

acetyltransferases CBP and p300 (Thompson et al., 2001). Consistent with GS being a 

potential CBP/p300 substrate, GSMyc co-immunoprecipitated with both p300HA and CBPHA 

(Figure S4C). Moreover, recombinant p300-HAT domain acetylated recombinant GS6xHis in 
vitro (Figure S4D). Furthermore, in 293FT CRBN knockout cells (CRBN-KO 293FT) (Lu et 

al., 2014), GSFlag acetylation was significantly enhanced upon coexpression with p300HA or 

treatment with histone deacetylase inhibitors (HDACi) (Figure 5A). To map the acetylation 

sites of GS, which has 19 lysines, GSFlag was immuno-purified from CRBN-KO 293FT cells 

and analyzed by mass spectrometry analysis. Two lysine residues, K11 and K14, were found 

to be independently acetylated based on the conclusive mass spectra (Figure S5A and S5B, 

and Table S4). However, we were unable to detect a tryptic peptide in which both residues 

were acetylated (see legend of Figure S5 for a detailed discussion). We also obtained strong 

evidence for acetylation of K25, K189 and K291, and modest evidence for K241 and K268 

(Table S4). Given that our mutagenesis studies pointed to a critical role for lysine 11 and/or 

lysine 14 in mediating GS ubiquitylation and degradation via CRL4CRBN, we evaluated 

point mutants to determine whether these residues contributed to the signal observed in an 

anti-acetyllysine immunoblot of immunoprecipitated GS. Wild-type GSMyc, but not the 

corresponding AA or RR mutants, yielded a robust signal (Figure 5B and Figure S4E). We 

conclude that GS can be acetylated on K11 and K14 in cells.

Covalent modifications that target CRL substrates for ubiquitylation are often tightly 

regulated. We therefore sought to address if K11 and/or K14 were acetylated in a glutamine 

and 300/CBP-dependent manner. To address these questions, CRBN-KO 293FT cells 

expressing wild type or RR-GSFlag and starved for glutamine were re-fed or mock treated, 

lysates of these cells were immunoprecipitated with anti-Flag, and the precipitates were 

blotted with acetyllysine antibody. Aetylation of GSFlag was markedly stimulated by 

glutamine but this effect was largely blocked by the RR mutations and the CBP/p300 

inhibitor C646 (Bowers et al., 2010) (Figure 5C). A similar result was obtained for 

endogenous GS (Figure S4F), but the stimulatory effect of glutamine was less prominent.

If glutamine-stimulated acetylation of K11 and K14 on GS triggers its ubiquitylation and 

degradation, we reasoned that histone deacetylase inhibitors (HDACi) might enhance 

glutamine-induced downregulation of endogenous GS. Indeed, this was observed to be the 

case (Figure 5D; mRNA analysis in Figure S6A). The destabilizing effect of glutamine and 
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HDACi was blunted by simultaneous treatment with C646 or a distinct p300/CBP inhibitor, 

garcinol (Figures 5E and S6B). HDACi-induced degradation of endogenous GS was 

mediated by CRBN because it was significantly attenuated by genetic (Figure 5F) or 

chemical (Figure S6C & D) reduction of CRL4CRBN activity.

The hypothesis that emerged from these studies is that high glutamine triggers acetylation of 

GS lysines 11 and/or 14, which then mediates binding to CRBN. To test this, we took 

advantage of our observation that acetylation at K11 and/or K14 made a dominant 

contribution to binding of the anti-acetyllysine antibody to GS. Lysates of 293T cells that 

stably expressed FlagCRBN were immunoprecipitated with anti-Flag and anti-GS, and the 

amount of each immunoprecipitate analyzed by blotting was adjusted such that the amount 

of GS was similar. As shown in Figure 5G, the GS bound to CRBN was enriched for 

acetylation compared to the unbound GS. We conclude that CRBN exhibits a strong 

preference for binding acetylated GS.

The N-terminal extension of GS comprises an acetyllysine degron that binds the C-
terminal domain of CRBN

We next mapped the GS-binding region on CRBN by deletion analysis and found that the 

carboxy-terminal domain (CTD) was necessary and sufficient for binding endogenous GS 

(Figures 6A and B). The CTD harbors the IMiD binding pocket formed by Trp380, Trp386 

and Trp400, with a phenylalanine residue at the base (Phe402) (Chamberlain et al., 2014; 
Fischer et al., 2014). These residues form a small hydrophobic pocket (tri-Trp pocket), 

which shows 100% conservation in CRBN orthologs across animal and plant kingdoms 

(Chamberlain et al., 2014; Fischer et al., 2014) (Figure S7A). We therefore speculated that 

the tri-Trp pocket might be important for GS binding. FlagCRBN-W386E and FlagCRBN-

W400E, and the double point mutant FlagCRBN-Y384A/W386A (FlagCRBN-YW/AA, 

which is defective in IMiD binding (Ito et al., 2010; Lopez-Girona et al., 2012)) failed to 

bind endogenous GS (Figure 6C).

To define in greater detail the molecular basis for GS–CRBN interaction, we generated 

biotinylated synthetic peptides (amino acids 5–22 of GS) that were unmodified, mono-

acetylated on either K11 or K14, or di-acetylated (Figure 6D). The peptide acetylated at both 

K11 and K14, but not non-acetylated or mono-acetylated peptides, efficiently pulled-down 

recombinant FlagCRBN (Figure 6E). We further examined the effects of each acetylation site 

mutation of GSMyc on CRBN binding and ubiquitylation in vivo. Consistent with the peptide 

binding analysis, single substitutions at either K11 or K14 with alanine (A) resulted in 

significantly less binding and ubiquitylation, compared with double AA mutations at both 

K11 and K14 (Figure S6E, F). These results indicate that acetylation of GS on both lysine 

residues 11 and 14 contributes to CRBN binding, ubiquitylation and degradation.

To gain further insight into the mechanism by which CRBN binds the di-acetylated degron 

of GS, we made asparagine 351 to arginine (N351R) and histidine 357 to tyrosine (H357Y) 

(Figure S7A) point mutants based on examination of the crystal structure. We reasoned that 

the substitution of N351R might block degron binding by occluding the IMiD pocket 

whereas H357Y might enhance degron binding by decreasing the cationic charge 

surrounding the IMiD pocket. Remarkably, production and testing of the 
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indicated FlagCRBN mutants confirmed these predictions (Figures 6F – G), suggesting that 

the GS-peptide binding site overlaps or is adjacent to the IMiD pocket. Enhanced binding of 

the H357Y mutant to the mono-acetylated K11 peptide but not the mono-acetylated K14 

peptide (Figure S6G) further implicates electrostatics as contributing to recognition of the 

acetylated GS peptides.

Recent studies have reported that IMiD binding to CRBN promotes recruitment of 

neosubstrates (Kronke et al., 2014; Lu et al., 2014)(Kronke et al., 2015), whereas IMiDs 

block endogenous CRBN substrate MEIS2 from binding to CRL4CRBN (Fischer et al., 

2014). We therefore examined whether IMiD binding to CRBN influences the interaction 

between the acetyl-degron and CRBN in vitro. Consistent with our initial findings in 293T 

and MM.1S cells (Figures 1B, 1C, and S1B), pomalidomide did not block FlagCRBN 

binding to di-acetylated peptide, but promoted the interaction between FlagCRBN and 

peptide mono-acetylated at K11 or K14 (Figure 6H).

Discussion

Almost sixty years ago, it was reported that mammalian GS is inactivated by extracellular 

glutamine (Demars, 1958; Paul and Fottrell, 1963). Subsequent work done prior to the 

discovery of the ubiquitin system suggested that glutamine stimulates the modification and 

degradation of GS enzyme through an unknown mechanism (Arad et al., 1976; Crook and 

Tomkins, 1978). Based on the findings reported here, we propose a model for regulation of 

glutamine-induced degradation of GS by CRL4CRBN (Figure 7). After exposure of cells to 

high glutamine, p300/CPB proteins acetylate GS at lysines 11 and 14 to create a degron that 

binds CRBN. Acetylated GS bound to CRBN is ubiquitylated and subsequently is degraded 

by the proteasome. Although we provide strong evidence to support these conclusions, we 

note that it has been difficult to identify by mass spectrometry acetylation of lysines 11 and 

14 on GS bound to CRBN. This is probably due to low sequence coverage obtained for 

endogenous GS bound to CRBN. However, we have used antibodies against acetyl-lysine to 

show that CRBN enriches for acetylated forms of GS.

In mammals, GS is a homodecamer composed of two pentameric rings (Krajewski et al., 

2008). The pentamer interface contains a network of electrostatic interactions involving both 

K11 and K14. In particular the ε-amino group of Lysine 11 is normally engaged in a salt 

bridge with aspartate 174 in the neighboring subunit (Figure S7B, C). We propose that high 

glutamine concentrations cause a conformational change in GS that disrupts this ionic 

interface and exposes the N-terminal extension such that lysines 11 and 14 can be bound by 

p300/CBP and acetylated. We currently do not understand how cells sense extracellular 

glutamine levels to induce K11 and K14 acetylation. Glutamine could potentially be sensed 

by mTOR (Nicklin et al., 2009) or perhaps directly by GS. Another question of interest is 

whether high glutamine results in processive or distributive acetylation of subunits in the 

decamer. Presumably, acetylation of a single subunit would suffice to target the decamer to 

CRBN. We do not know if all subunits are ubiquitinated and degraded in concert or the 

decamer is disassembled to enable degradation of only acetylated subunits. We note that a 

prior study reported that GS degradation in Schwann cells is mediated by ubiquitin ligase 

ZNRF1 (Saitoh and Araki, 2010), but regulation by glutamine levels was not investigated. 
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ZNFR1 is expressed primarily in the nervous system (Araki et al., 2001), suggesting that it is 

unlikely to play a ‘pan-organismal’ role. ZNFR1 may contribute to residual GS degradation 

that we observed in CRBN-depleted cells.

Reversible lysine acetylation influences diverse biological processes. Recent proteomic 

analyses suggest that it regulates many metabolic enzymes (Choudhary et al., 2009; Wang et 

al., 2010; Zhao et al., 2010). It has been thought that lysine acetylation controls protein–

protein interactions that regulate protein activity via acetyl-lysine-binding domains 

(Choudhary et al., 2014; Mujtaba et al., 2007). In some cases, lysine acetylation has been 

shown to compete with other post-translational modifications (e.g. ubiquitylation or 

SUMOylation), thereby controlling protein stability or transcriptional activity (Gronroos et 

al., 2002; Ito et al., 2002; Van Nguyen et al., 2012). Recent studies suggest that lysine 

acetylation can regulate the steady-state levels of metabolic enzymes by promoting their 

degradation through the ubiquitin-proteasome system or chaperone-mediated autophagy 

(Jiang et al., 2011; Lv et al., 2011). Collectively, these prior findings together with those 

reported here may have important implications for interpreting the clinical action of 

deacetylase inhibitors that alter the acetylome, since they may activate degradation of 

multiple proteins via CRBN or other pathways.

CRBN and its ‘tri-Trp’ pocket are evolutionarily conserved in plants and animals. This 

aromatic pocket binds thalidomide, lenalidomide, and pomalidomide, and is reminiscent of 

pockets found in proteins containing bromodomains (Dhalluin et al., 1999), plant 

homeodomain (PHD) fingers (Wysocka et al., 2006), chromodomains, Tudor domains, and 

malignant brain tumor (MBT) repeats, all of which have been implicated in binding to 

acetylated or methylated lysine (Taverna et al., 2007). Consistent with an important role for 

the tri-Trp pocket in recognition of natural substrates, mutations of residues that form the 

pocket eliminated binding of GS and its acetylated degron peptide, and also disrupt binding 

of the endogenous substrate MEIS2 (Fischer et al., 2014). However, IMiDs did not compete 

out binding of the acetylated GS degron peptide to CRBN. In fact, IMiDs actually enhanced 

binding of monoacetylated GS peptides. Moreover, mutation of the critical lysines 11 and 14 

of GS to alanine enhanced binding and ubiquitylation of GS by CRBN. Together, these 

results suggest that acetylation neutralizes the positive charges on K11 and K14, which 

otherwise interfere with binding to CRBN. Our data suggest that the acetylated peptide 

binds adjacent to the IMiD pocket by a novel mechanism, the description of which awaits a 

crystal structure of the GS degron peptide bound to CRBN.

A role for CRBN in regulation of AMPK and fat accumulation has been demonstrated in a 

Crbn−/− mouse model (Lee et al., 2013). Our work establishes an unexpected molecular link 

between CRBN, acetylation, and metabolic control. We suggest that acetylation-dependent 

ubiquitylation by CRL4CRBN may be a general feature of metabolic regulation.

Experimental Procedures

In vitro ubiquitylation assay

The assays were performed as described (Duan et al., 2012; Kleiger et al., 2009). Briefly, 

293T cells stably expressing FlagCRBN or empty vector were treated with Bortezomib (1 
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µM) for 6 h. Then, the cells were harvested and lysed in IP buffer and immunoprecipitated 

with Flag M2 agarose beads for 2–4 h at 4°C. After washing five times with IP lysis buffer 

and two times with ubiquitylation buffer (50 mM Tris-HCl [pH 8.0], 10 mM MgCl2, 0.2 mM 

CaCl2, 1 mM DTT, and 100 nM MG132), the beads were incubated at 300C for 1 h in 30 µl 

of ubiquitylation buffer containing E1 (0.5 µM), UbcH5a (0.5 µM), UbcH3 (1.67 µM), 

recombinant RBX1-CUL4A (250 nM), ubiquitin (60 µM), and ATP (4 mM). Where 

indicated, methylated ubiquitin (Me-Ub) was also added. Reactions were stopped by adding 

SDS sample buffer, separated by SDS-PAGE, transferred to a PVDF membrane, and 

subjected to immunoblot analysis.

Peptide pull-down assay

The assay was performed as described (Wysocka et al., 2005). FlagCRBN protein was 

immunoprecipitated from 293T cells stably expressing FlagCRBN using Flag antibody-

conjugated agarose beads, and then eluted with Flag peptides. Biotinylated GS peptides were 

synthesized (Biomatik) and 5 µg was incubated with 20 µl of Dynabeads M-280 streptavidin 

(Life Technologies) in PBS for 1–2 h at room temperature. After washing three times with 

PBS-T (PBS containing 0.1% Tween-20), the beads were mixed with purified FlagCRBN in 

binding buffer (10 mM Tris [pH 7.6], 150 mM NaCl, 0.5% NP-40) containing a protease 

inhibitor cocktail, 1 mM DTT and 0.1% BSA for 2–4 h at 4°C. After binding, the beads 

were washed extensively in binding buffer containing 300 mM NaCl (stringent washing). 

The bound proteins were eluted in 2x SDS loading buffer, and analyzed by immunoblot.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

➢ GS is an endogenous substrate of CRL4CRBN.

➢ CRL4CRBN directly mediates the glutamine-induced degradation 

of GS.

➢ Glutamine-stimulated acetylation of lysines 11 and 14 regulates 

GS degradation.

➢ The thalidomide-binding domain of CRBN binds to an 

acetyllysine degron of GS.
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Figure 1. GS is an endogenous substrate of CRL4CRBN

(A) Identification of GS as a CRBN-interacting protein. 293T cells stably 

expressing FlagCRBN and grown in either ‘heavy’ or ‘light’ SILAC medium were treated 

with DMSO (light) or 50 µM thalidomide (heavy) for 4 h prior to lysis and 

immunoprecipitation (IP) with anti-Flag followed by mass spectrometry. The heavy:light 

ratios for GS and subunits of CRL4 and CSN are shown. The asterisk indicates a ratio that 

differs significantly from 1 (p-value 1×10−19). The data are an average of two experiments. 

Error bars indicate ± SD.

(B) GS binds CRBN. 293T cells stably expressing empty vector or wild-type FlagCRBN 

were treated with or without lenalidomide (10 µM) for 3 h. Protein extracts were 

immunoprecipitated with Flag antibody followed by Western blot analysis with the indicated 

antibodies. The ratio of GS bound to CRBN normalized to input GS is shown.

(C) Endogenous CRBN and GS interact. MM.1S cells were supplemented with DMSO or 

1 µM lenalidomide 2 h prior to lysis and IP with mouse IgG control or CRBN antibodies. IP 

and input samples were fractionated by SDS-PAGE and immunoblotted with the indicated 

antibodies. Quantification was as described in (B).

(D–E) CRBN promotes GS ubiquitylation in cells (D) and in vitro (E). (D) 293T cells 

were transiently transfected with plasmids expressing GSFlag and HAubiquitin (HAUb). After 
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30h, cells were treated with 10 µM MG132 for 4 h, followed by cell lysis and Flag IP under 

denaturing conditions. The input and bound fractions were evaluated by immunoblotting 

with HA and Flag antibodies. Ubiquitin conjugates in the input are shown in Figure S1C. (E) 

293T cells stably expressing FlagCRBN were treated with proteasome inhibitor (1 µM 

bortezomib) for 6 h. After IP with Flag antibody, in vitro ubiquitylation of endogenous, co-

precipitated GS was carried out for 1 h at 30°C in the presence or absence of E1+E2 

and HAUb. Where indicated, methylated ubiquitin (Me-Ub) or recombinant (r) CUL4A-

RBX1 was added. Reactions were analyzed by SDS-PAGE and immunoblotting with GS 

antibody. (Ub)n indicates polyubiquitylation. S.E., L.E.: short and long exposures.
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Figure 2. CRBN is required for glutamine-induced degradation of GS
(A) Glutamine regulates GS protein abundance. Hep3B cells were maintained in DMEM 

10% FCS without glutamine for 48 h. The cells were then treated with glutamine (4 mM) for 

the indicated times. Equal amounts of protein extracts were analyzed by SDS-PAGE and 

immunoblotting with the indicated antibodies. GAPDH served as a loading control.

(B) Glutamine-induced GS degradation is blocked by the proteasome inhibitor 
bortezomib or the Nedd8-activating enzyme inhibitor MLN4924. Hep3B cells were 

starved of glutamine for 36 h, and then pretreated with or without bortezomib (200 nM) or 

MLN4924 (2 µM) for 30 min, followed by 4 mM glutamine treatment for 7 h. Cell lysates 

were analyzed by SDS-PAGE and immunoblotting with antibodies against GS, CRBN, and 

GAPDH. The relative ratio of GS:GAPDH, normalized to lane 1, is shown.

(C) Glutamine-induced GS degradation is promoted by CRBN. Wild-type (WT) and 

CRISPR/Cas9-derived CRBN-knockout (KO) Hep3B cells were starved of glutamine for 36 
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h, followed by addition of 4 mM glutamine for 0, 12 and 16 h. The relative ratio of 

GS:GAPDH protein level, normalized to that at 0-time, is shown. Note that this experiment 

was done with a pool of KO cells (i.e. non-clonal) and there appears to be a small amount of 

residual CRBN in the population.

(D–F) GS protein levels are elevated in the kidneys, skeletal muscles and lungs of 
Crbn−/− mice. Left panels: Tissue extracts prepared from total kidneys and skeletal muscles 

of wild-type (WT) and Crbn−/− (KO) mice were analyzed by SDS-PAGE and Western 

blotting, using GS, CRBN and GAPDH antibodies. n = 3–4 mice per group. Right panels: 

densitometric quantification of relative band intensities. Error bars represent the SEM.

(G) Crbn−/− mice exhibit an increased glutamine/glutamate ratio in serum. Glutamine 

and glutamate levels in serum of wild-type (WT) and homozygous mutant Crbn−/− mice 

(KO) were quantified by mass spectrometry. Glutamine/glutamate ratio was calculated and 

represented as mean ± SD; n = 6 mice per group (P = 0.02615 by t-test).
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Figure 3. The N-terminal extension of GS and its KxxK motif promote binding to CRBN, 
ubiquitylation, and degradation
(A–B) The N-terminal extension of GS is required to bind CRBN. (A) Schematic 

diagram of full-length (FL) human GS protein structure and deletion constructs used in (B). 

The GS degron (amino acids 1–24) recognized by CRBN is highlighted. (B) 293T cells 

stably expressing FlagCRBN were transfected with the indicated plasmids. After 36 h, cells 

were treated with 10 µM MG132 for 4 h. Cellular extracts were immunoprecipitated with 

Flag antibody, fractionated by SDS-PAGE and immunoblotted with Myc and Flag 

antibodies. *, indicates a non-specific band. A band ∼25 kDa represents IgG light chains 

(IgG-LC).
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(C) The N-terminal extension of GS is required for degradation. 293T cells stably 

expressing Flag-HA-tagged GS (FHGS) or GS with deletion of the N-terminal 24 amino 

acids (d1FHGS) were cultured in complete DMEM with 2 mM glutamine, and treated with 

cycloheximide (CHX; 100 µg/ml) for 0, 2, 4, and 6 h. Cell lysates were analyzed by SDS-

PAGE and immunoblotting with Flag and GAPDH antibodies. The relative ratio of 

GS:GAPDH, normalized to that of zero-time, is shown.

(D) The N-terminal KxxK motif modulates binding of GS to CRBN. 293T cells stably 

expressing FlagCRBN were transfected with empty vector (EV) or plasmids encoding the 

indicated GS mutants. After 36 h, cells were treated with 10 µM MG132 for 4 h. Cell 

extracts were immunoprecipitated with Flag antibody and the precipitated and input 

fractions were analyzed by SDS-PAGE and immunoblotting with DDB1, Myc, and Flag 

antibodies. WT: wild type. RR: K11R, K14R. AA: K11A, K14A.

(E) The N-terminal KxxK motif modulates ubiquitylation of GS. 293T cells were 

transfected with plasmids encoding HAUb and the indicated Myc-tagged GS mutants. After 

24 h, the cells were treated with 10 µM MG132 for 4 h, followed by cell lysis, denaturation 

of the lysate proteins, and IP with anti-Myc. The input lysates and bound fractions were 

evaluated by SDS-PAGE and immunoblotting with HA and Myc antibodies.

(F) The N-terminal KxxK motif modulates degradation of GS. 293T cells were 

transfected with plasmids encoding wild type GSMyc or the RR and AA mutants. After 24–

30 h, the cells growing in medium containing 2 mM glutamine were treated with 100 µg/ml 

cycloheximide (CHX). At the indicated times following addition of CHX, cells were 

harvested, and their content of GS and GAPDH was evaluated by immunoblotting. GSRR: 

K11R, K14R GS. GSAA: K11A, K14A GS.
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Figure 4. The N-terminal extension of GS comprises a sufficient, KxxK-dependent ubiquitylation 
and degradation signal
(A) Schematic of GS Degron-GFP fusion proteins. Wild type (GS-NWT) or mutant (GS-

NRR) versions of the N-terminal extension (amino acids 1–25) of GS were fused to Myc-

tagged GFP. RR refers to the double mutant in which K11 and K14 were changed to R.

(B) The N-terminal extension of GS is sufficient to bind CRBN in a manner that 
depends on an intact KxxK motif. CRBN-KO 293FT cells stably expressing MycGFP, GS-

NWT_MycGFP, or GS-NRR_MycGFP fusion proteins were transfected with empty plasmid 
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(lanes 1–3) or plasmid expressing FlagCRBN (lanes 4–6). After 36 h, cell extracts were 

immunoprecipitated with Flag antibody, fractionated by SDS-PAGE and immunoblotted 

with the indicated antibodies.

(C) The N-terminal extension of GS is sufficient to confer CRBN- and KxxK-dependent 
ubiquitylation. CRBN-KO 293FT cells stably expressing MycGFP, GS-NWT_MycGFP, and 

GS-NRR_MycGFP fusion proteins were transfected with plasmid expressing HAUb (lanes 1–

6) and empty plasmid (lanes 1–3) or plasmid expressing FlagCRBN (lanes 4–6). After 48 h, 

cells were treated with bortezomib (1 µM) for 4 h prior to lysis and IP with HA antibody. 

Immunoprecipitates and input samples were fractionated by SDS-PAGE and immunoblotted 

with the indicated antibodies. The anti-HA blots are in Figure S4B.

(D) The N-terminal region of wild type GS is sufficient to confer degradation. 293T 

cells, stably expressing MycGFP, GS-NWT_MycGFP, and GS-NRR_MycGFP fusion proteins, 

grown in 2 mM glutamine were treated with 100 µg/ml cycloheximide (CHX) for the 

indicated times. Extracts were evaluated by SDS-PAGE and immunoblotting with Myc and 

GAPDH antibodies. The relative ratio of test protein:GAPDH, normalized to that of 0-time, 

is shown.
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Figure 5. p300-mediated acetylation promotes the degradation of GS
(A) p300 promotes GS acetylation in cells. CRBN-KO 293FT cells were transfected with 

GSFlag and HA-tagged p300 (p300HA) plasmids. After 36 h, the cells were treated with or 

without HDAC inhibitors (1 µM TSA and 10 mM NAM) for 12 h. Cell lysates were 

immunoprecipitated with anti-Flag and precipitated and input fractions were analyzed by 

SDS-PAGE and immunoblotting with the indicated antibodies. Ac-Lys refers to antibody 

that recognizes acetylated lysine.

(B) Lysines 11 and/or 14 are acetylation sites. Lysates from CRBN-KO 293FT cells 

transfected with plasmids expressing Myc-tagged wild type or RR (K11R/K14R) mutant GS 

were immunoprecipitated with anti-Myc, eluted with Myc peptide, and then analyzed by 

SDS-PAGE and immunoblotting with the indicated antibodies. S.E., L.E.: short and long 

exposures.

(C) Glutamine induces p300-mediated acetylation of GS. CRBN-KO 293FT cells were 

transiently transfected with plasmids expressing wild type or RR mutant GSFlag. After 24 h, 

cells were starved of glutamine for 24 h, then pre-treated with or without 10 µM p300/CBP 

inhibitor C646 in fetal bovine serum-free DMEM medium for 2 h, followed by treatment 

with 4 mM glutamine for 2 h. The cell lysates were immunoprecipitated with anti-Flag, and 

then analyzed by SDS-PAGE and immunoblotting (IB) with the indicated antibodies. The 

relative ratio of acetylated GSFlag to total GSFlag protein (Ac-Lys/Flag ratio), normalized to 

that of untreated cells, is shown.

(D) HDAC inhibitors enhance glutamine-induced GS degradation. Hep3B cells were 

starved of glutamine for 24 h, and then supplemented (or not) with 4 mM glutamine for 12 h 

in the presence or absence of HDAC inhibitors SAHA (1 µM) and NAM (10 mM). Equal 

amounts of cell extracts were analyzed by SDS-PAGE and immunoblotting with antibodies 
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against GS, CRBN, and GAPDH. The relative ratio of GS:GAPDH, normalized to that of 

untreated cells, is shown. S.E., L.E.: short and long exposures.

(E) Inhibition of the acetyltransferases p300 and CBP by C646 counteracts HDAC 
inhibitor-induced GS degradation. 293T cells were starved of glutamine for 24 h and then 

pretreated (or not) with 10 µM C646 in fetal bovine serum-free medium for 1 h. Afterwards, 

cells were treated with 4 mM glutamine in the presence or absence of HDAC inhibitors (1 

µM TSA and 10 mM NAM) for 4 h. Equal amounts of cell extracts were analyzed by SDS-

PAGE and immunoblotting with the indicated antibodies. The relative ratio of GS:GAPDH, 

normalized to that of untreated cells, is shown.

(F) HDAC inhibitor-induced GS degradation requires CRBN. Hep3B cells stably 

expressing control shRNA or different CRBN shRNAs were starved of glutamine for 48 h. 

Starved cells were mock-treated or supplemented with 4 mM glutamine and 1 µM TSA plus 

10 mM NAM, as indicated, for 7 h. Cell lysates were analyzed by SDS-PAGE and 

immunoblotting with the indicated antibodies. The relative ratio of GS:GAPDH, normalized 

to that of untreated cells, is shown. S.E., L.E.: short and long exposures.

(G) CRBN interacts with acetylated endogenous GS. Cell extracts were prepared from 

293T cells stably expressing FlagCRBN or empty vector. Immunoprecipitation (1st IP) was 

performed with anti-Flag antibody. One twenty-fifth of the unbound fractions was 

precipitated with anti-GS antibody (2nd IP; it was previously determined that using 25-fold 

less material in the 2nd IP would yield an equivalent amount of GS as the 1st IP). The 

precipitated fractions from 1st IP and 2nd IP were analyzed by SDS-PAGE and 

immunoblotting (IB) with indicated antibodies.
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Figure 6. The N-terminal extension of GS comprises an acetylation-dependent degron for 
CRL4CRBN

(A–B) GS binds the C-terminal domain of CRBN. (A) Schematic diagram of the structure 

of full-length (FL) human CRBN and the deletion constructs used in panel B. CRBN 

consists of the amino-terminal domain (NTD), the helical bundle domain (HBD) involved in 

DDB1 binding and the carboxy-terminal domain (CTD). (B) Cell extracts from CRBN-KO 

293FT cells stably expressing full length FlagCRBN or deletion mutants were 

immunoprecipitated with Flag antibody and analyzed by SDS-PAGE and immunoblotting 

with GS and Flag antibodies. *, indicates uncleaved FlagCRBN-T2A–GFP forms, which 

were visible for all constructs on the uncropped film.

(C) Integrity of the ‘tri-Trp’ cavity in the CTD of CRBN is required for binding GS. 

Cellular extracts prepared from CRBN-KO 293FT cells stably expressing wild type 

(WT) FlagCRBN or the indicated mutants were subjected to IP with Flag antibody followed 

by SDS-PAGE and immunoblotting the precipitated and input fractions with the indicated 

antibodies. YW/AA corresponds to Y384A/W386A mutant. S.E., L.E.: short and long 

exposures.

(D) Design of GS N-terminal peptides. Where indicated, the K11 and K14 residues are 

acetylated.
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(E) CRBN binds specifically to a GS N-terminal peptide acetylated on K11 and K14. 

Pull-down assays were performed using purified recombinant human FlagCRBN and 

immobilized non-acetylated or acetylated K11, K14, or K11K14 GS peptides (panel D) as 

indicated, and analyzed by SDS-PAGE and immunoblotting with anti-Flag.

(F–G) CRBN-N351R mutant does not bind to endogenous GS and thalidomide. (F) 
Cellular extracts prepared from CRBN-KO 293FT cells stably expressing wild type 

(WT) FlagCRBN or the indicated mutants were subjected to IP with Flag antibody followed 

by SDS-PAGE and immunoblotting the bound and input fractions with the indicated 

antibodies. (G) Thalidomide (Thal)-binding CRBN proteins were purified from CRBN-KO 

293FT cells stably expressing empty vector or FlagCRBN (wild type or mutant) by using 

thalidomide-immobilized (+) or control (–) beads, and analyzed by SDS-PAGE and 

immunoblotting with Flag antibody. S.E., L.E.: short and long exposures.

(H) IMiDs do not compete out binding of GS to CRBN. Pull-down assays were 

performed in the presence or absence of pomalidomide (pom) as indicated, using FlagCRBN 

purified from CRBN-KO 293FT cells stably expressing FlagCRBN, and non-acetylated or 

acetylated biotin-GS peptides immobilized on streptavidin resin. The input and bound 

fractions were analyzed by immunoblotting with Flag and DDB1 antibodies. S.E., L.E.: 

short and long exposures.
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Figure 7. Proposed model for regulation of glutamine-induced degradation of GS by CRL4CRBN

After exposure of cells to high glutamine, the N-terminal peptide of GS becomes exposed 

and p300/CPB acetylates it at lysines 11 and 14 to create a degron that binds CRBN, 

resulting in ubiquitylation and degradation of GS. For the sake of simplicity, other amino 

acids in the N-terminal extension of GS are omitted.
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