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R esearch over the past 2 decades has suggested that
significant differences exist in the action potentials of

endocardial, epicardial, and mid-myocardial (M) cells that
comprise the ventricular myocardium. Relative differences in
the time course of repolarization of these 3 cell types,
referred to as transmural dispersion of repolarization (TDR), is
largely responsible for the inscription of the T wave on the
electrocardiogram (ECG). Both the morphology and duration
of the T wave appear to represent underlying heterogeneity in
repolarization, a process initially linked to increased risk of
arrhythmia and sudden death in patients with congenital long
QT-syndrome (LQTS). It is increasingly apparent that repolar-
ization heterogeneity is present in a variety of cardiovascular
diseases and syndromes and is even predictive of sudden
death in the general population. Furthermore, repolarization
heterogeneity has also been associated with abnormalities in
myocardial mechanics, a finding that may have direct
implications for understanding the pathophysiology and
treatment of heart failure. This review will focus on summa-
rizing current understanding of repolarization heterogeneity,
with particular focus on clinical implications.

Physiology of Myocardial Repolarization
Heterogeneity
It has been nearly 3 decades since the description of the M
cell reframed understanding that regional differences exist in

the electrical properties of the ventricular myocardium.
Canine models developed in the early 1990s for studying
ventricular action potentials first identified electrophysiolog-
ically distinct mid-myocardial cells, termed M cells, which
were found to exhibit unique repolarization properties com-
pared to the cells contained in the endocardium and
epicardium.1,2 M cells are similar to epicardial and endocar-
dial cells histologically, but electrophysiologically and phar-
macologically appear to be a hybrid between Purkinje and
ventricular cells. The hallmark of the M cell is the character-
istic of its action potential (AP) to prolong disproportionately
relative to the action potential of other ventricular myocardial
cells in response to heart rate slowing and action potential
duration (APD)-prolonging agents.1

The ionic basis for these M-cell features include the
presence of a smaller slowly activating delayed rectifier
potassium (K+) current (IKs), a larger late sodium (Na+) current,
and a larger Na+-calcium (Ca2+) exchange current.3,4 Accord-
ingly, there are prominent differences between M cells and
the surrounding myocardial cells in the response to various
drugs. Alpha-adrenergic agonists, such as phenylephrine,
produce a prolongation of Purkinje APD, whereas they
abbreviate the M-cell APD.5 Rapidly activating delayed
rectifier K+ current (IKr) blockers, including d-sotalol and
erythromycin, produce a much greater prolongation of APD in
M cells than cells in the epicardium or endocardium. Other
differences include the mechanisms of development of early
afterdepolarizations (EADs). EADs induced in the M cell are
more sensitive to changes in intracellular Ca2+ levels, whereas
EADs elicited in Purkinje cells are not.6 These differences at
the cellular level allow for development of larger regional
repolarization variations that were finally demonstrated
in vitro through development of an arterially perfused
myocardial wedge preparation.

In vivo models in dogs and rabbits have the disadvantage
of requiring anesthesia, which can directly affect myocardial
conduction and repolarization.7,8 Anesthetics, including
sodium pentobarbital, were found to be protective of torsades
de pointes (TdP) in dogs, whereas halothane offered no
protection.7,8 Development of an arterially perfused left
ventricular (LV) myocardial wedge preparation allowed for
examination of the interaction between these cell types under
physiological conditions, without the confounding effects of
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anesthesia (Figure 1).9 The qualitative differences between
the 3 ventricular cell types previously described in isolated
tissues and cells are present in the intact canine LV wall
preparations.9 TDR is the result of intrinsic differences in APD
of cells spanning the ventricular wall. In the absence of
electrolyte or pharmacological provocation, myocytes isolated
from the M region display APDs as much as several 100 ms
longer than those recorded from the endocardium or
epicardium. As a result, transmural dispersion represents
the net differences in repolarization times between these
distinct action potentials. Accordingly, drugs such as sotalol
and erythromycin, which preferentially prolong M-cell APD,
will increase dispersion of repolarization dramatically.10

Subsequent studies found that the currents flowing
adjacent to M cells are, in large part, responsible for the
morphology of the ECG T wave (Figure 2).10 The interplay
between these opposing currents determines the height of
the T wave as well as the degree to which either the
ascending or descending limb of the T wave is interrupted,
causing a bifurcated or notched appearance (Figure 3).10

Under basal conditions, the epicardial cells are always the
earliest to repolarize and the M cells are the last. Full
repolarization of the M-cell region marks the end of the T
wave.10 The time interval between the peak and end of the T
wave, referred to as Tpeak�Tend (TpTe), therefore represents

the surface ECG manifestation of dispersion of repolarization
across the ventricular wall, hereafter referred to as repolar-
ization heterogeneity.

Electrocardiographic Assessment of
Repolarization Heterogeneity
The most often used ECG markers for measuring repolariza-
tion heterogeneity include TpTe and QT dispersion (QTD).
TpTe is calculated by measuring the interval from the peak of
the T wave to its offset. The offset of the T wave is frequently
defined as the intersection of the tangent to the steepest
portion of the terminal portion of the T wave and the
isoelectric line.11 Most typically, lead V5 is used because
previous studies have suggested that precordial leads best
reflect repolarization heterogeneity across the ventricular
wall, in contrast to limb leads, which reflect apical-basal or
interventricular spatial heterogeneity.12 A large increase in
TDR is likely to be arrhythmogenic because the dispersion of
repolarization and refractoriness occurs over a very short
distance (the width of the ventricular wall), creating a steep
repolarization gradient. Difficulties can arise in measuring the
exact duration of TpTe, particularly with low T-wave amplitude,
or when T waves are notched or biphasic.9,13

Whereas the canine wedge model suggested that TpTe was
an accurate measure of “transmural” dispersion, studies of
in vivo animal models have suggested that the generation of
the T wave may be more complex. Work done by Xia et al.
revealed that in open-chest pig models, the peak of the T
wave often occurred 30 to 40 ms before the full repolarization
of the epicardium. They concluded that the peak of the T wave
likely represented a summation of repolarization gradients
both transmurally and apicobasally.14 Opthof et al. also
showed that TpTe intervals did not correlate with TDR, but
did correlate with global dispersion of repolarization in the
whole heart.15 Validation of TpTe as a direct measure of TDR
is still debated, but most studies agree that TpTe provides at
least some measure of spatial dispersion or repolarization
heterogeneity.

Another potential measure of TDR is QTD. QTD is
calculated as the difference between the maximum and
minimum QT intervals measured on all 12 leads of the ECG.
Reported values of QTD vary widely, with studies showing
normal values between 10 and 71 ms.16 Work in rabbits
revealed that QTD showed significant correlation with disper-
sion of monophasic AP.17 Higham et al. found a high positive
correlation between the monophasic action potentials and
ECG dispersion indices.18 There has been argument, however,
that the main cause of QTD may, in fact, be the unreliable
localization of the T-wave offset in patients with abnormal T
waves.19 This was underscored in a study by Malik et al.,

Figure 1. Arterially perfused left ventricular wedge model of
canine myocardium. Schematic diagram of the arterially perfused
canine LV wedge preparation. The wedge is perfused by a small
native branch of the left descending coronary artery and
stimulated from the endocardial surface. Transmembrane action
potentials are recorded simultaneously from epicardial (Epi), M
region (M), and endocardial (Endo) sites using three floating
microelectrodes. A transmural ECG is recorded along the same
transmural axis across the bath, registering the entire field of the
wedge. Reproduced with permission from Yan et al.9 Promotional
and commercial use of the material in print, digital, or mobile
device format is prohibited without the permission from the
publisher Wolters Kluwer Health. ECG indicates electrocardio-
gram; LV, left ventricular.
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which revealed that although QTD differed between healthy
controls and patients with dilated cardiomyopathy and
ischemic heart disease, QTD was not correlated with T-wave
residuum (TWR).20 TWR and several other ECG metrics for
quantifying TDR have been proposed and are summarized
inTabl. This suggests that structural heart disease may be
associated with more-abnormal T-wave loops, increased
difficulty in measuring T-wave offset, and hence increased
QTD indices. However, QTD per say may not represent
underlying heterogeneity in repolarization and does not itself
confer increased cardiovascular risk.

Mechanisms of Repolarization Heterogeneity
in Congenital and Acquired LQTS
Much of the current understanding of the arrhythmic risk
associated with repolarization heterogeneity comes from
work in patients with LQTS, both congenital and acquired.
In a landmark work, Moretti et al. linked congenital and
physiology models of LQTS. The investigators induced
pluripotent stem cells from family members affected by
LQTS-1 and directed differentiation into cardiomyocytes.
Differentiated cardiomyocytes exhibited electrophysiologic

features of the LQTS, including prolonged APD. This was
associated with a 70% to 80% reduction in IKs current and
altered channel activation and deactivation properties. This
work linked congenital and physiological models of LQTS
and helped elucidate underlying molecular mechanisms of
arrhythmogenicity.21

Congenital LQTS is associated with abnormal T-wave
morphologies on ECG that appear to be specific to the
different channel mutations and have even been suggested as
a screening tool.22 Work with the canine wedge-preparation
model revealed underlying mechanisms for increased arrhyth-
mogenicity of abnormal “LQTS-type” T waves. Combined IKr
and IKs blockade simulating LQTS led to development of
complex T waves with a late “bump sign.”13 When an IKS
blocker was used to prolong the QT interval in an LQTS-1
model, this was not associated with widening of the T wave,
increased TDR, or inducible TdP. However, addition of
isoproterenol abbreviated the APD of epicardial and endocar-
dial cells, but not that of the M cell, resulting in widening of
the T wave and increase in TDR. Only after this exposure to
isoproterenol was the myocardium vulnerable to TdP, sug-
gesting that heterogeneously increased APD across the
ventricular wall mediates vulnerability to TdP.23 IKr block with

Figure 2. Cellular basis for normal T-wave inscription. Shown here is the temporal relationship between
transmembrane action potentials recorded from epicardial, M region, and endocardial (A) or subendocardial
Purkinje fiber regions (B). Note that M cell repolarization is aligned with end of the T wave, whereas
repolarization of the epicardial cells is coincident with the peak of the T wave. ECG indicates
electrocardiogram; Endo, endocardial; Epi, epicardial; M Cell, Masonic myocardial Moe cell. Reproduced
with permission from Yan et al.10 Promotional and commercial use of the material in print, digital, or mobile
device format is prohibited without the permission from the publisher Wolters Kluwer Health.
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sotalol, simulating an LQTS-2 model resulted in the develop-
ment of broad- and low-amplitude bifurcated T waves,
associated with increased TDR and TpTe in a rate-dependent
manner.24 Clinically, TDR is increased in LQT2 more than
LQT1, but LQTS-1 patients show a heart-rate–dependent
increase in TDR.25

When observed in other populations without congenital
LQTS, the LQTS-like T-wave abnormalities described previ-
ously seem to similarly represent increase arrhythmic risk. In
patients with bradycardia, LQTS-2-like T waves were more
frequent in those who developed TdP. Furthermore, increased
TpTe was highly associated with development of TdP and
performed better as a predictor of TdP than either QTc or QT
intervals.26 Findings were similar in patients with drug-
induced QT-prolongation, in whom TpTe did not correlate
with changes in QTc, suggesting that the arrhythmic risk is
not mediated simply by prolonged QTc.12 In patients initiated
on sotalol, LQTS-2-like T-wave changes developed, which
were independent of changes in QTc.27 And, when QT does
prolong, dispersion of the QT interval, rather than QT
prolongation itself, seems to contribute most to

arrhythmogenicity.28 Thus, work in both congenital and
acquired LQTS populations suggested that other ECG markers
besides QT interval, including abnormal T-wave morphologies
and increased TpTe are associated with abnormalities in
repolarization heterogeneity, and even increased arrhythmic
risk.

Repolarization Heterogeneity as a Risk Factor
for Mortality in the General Population
Repolarization heterogeneity is associated with adverse
outcomes, including mortality, in the general population. An
analysis of 5812 healthy individuals over the age of 55 years
in the Rotterdam Study showed that during a 4-year follow-up

Figure 3. Transmural dispersion of repolarization. Shown here
are the baseline (A) and sotalol-induced changes (B) in APD of
each layer of the canine left ventricular arterially perfused wedge.
Note the disproportionately prolonged M-cell action potential and
its corresponding contribution to the prolongation of the time
from the peak to the end of the T wave (Tpeak�end). Note as well
the bifurcated or notched T-wave morphology. The bottom of the
figure shows the calculated voltage differences between epicar-
dial and M-cell APs (M-Epi) and between the M-cell and
endocardial responses (Endo-M) (bottom). AP indicates action
potential; APD, action potential duration; ECG, electrocardiogram;
Endo, endocardial; Epi, epicardial; M Cell, Masonic myocardial
Moe cell. Reproduced with permission from Yan et al.10 Promo-
tional and commercial use of the material in print, digital, or
mobile device format is prohibited without the permission from
the publisher Wolters Kluwer Health.

Table. Electrocardiographic Measures of Repolarization
Heterogeneity

ECG Measure Definition

Principal component
analysis of the T wave

Ratio of the second to first eigenvalues of
the spatial T-wave vector generated from
the 12-lead digital ECG

QRS-T angle Adding the mean vector representing all of
the electrical forces produced by
depolarization and repolarization. This is
accomplished by forming a parallelogram
using the QRS vector and the T-wave
vector as its sides; the diagonal of the
figure is the spatial ventricular gradient.

QT dispersion Difference in ms between maximal and
minimal QTc intervals from between 3
and 6 leads in a simultaneous 12-lead
ECG

Simplified QRS-T angle Absolute difference between the QRS and
T-wave axes on the 12-lead ECG

T peak T end Time in ms between the peak of the T
wave to the end of the T wave, as defined
by the intersection of the tangent to the
down slope of the T wave and the
isoelectric line. Typically measured in V5

T-wave area (total and
late)

Area between the curve and baseline from
J point to T end and T peak to T end,
respectively

T-wave residuum Absolute value of the sum of the squares of
the fourth to eighth eigenvalues of the
reconstructed T wave after singular value
decomposition

T-wave loop dispersion Dissimilarities between the T-wave shapes
in individual leads, based on
reconstruction vectors of individual ECG
leads

Total cosine R-to-T Calculating cosine values between the 3-
dimensional R- and T-wave loop vectors

ECG indicates electrocardiogram.
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period, those in the highest tertile of QTc dispersion (QTcD)
had a nearly 2-fold increased risk of cardiac death, increased
rates of sudden cardiac death (SCD), and overall 40%
increased mortality, compared to the lowest tertile.29 TpTe
was independently associated with SCD in the Oregon Sudden
Unexplained Death Study, and a 1-SD increase in TpTe
increased odds of SCD by 3.5-fold.30 As part of the Finnish
Health Study, Porthan et al. examined several T-wave mor-
phology parameters, including principal component analysis
(PCA) ratio, T-wave morphology dispersion, total cosine R-to-T
(TCRT), and TWR. PCA ratio and T-wave morphology disper-
sion were independent predictors of all-cause and
cardiovascular mortality in males. In females, TCRT and TWR
were independent predictors of cardiovascular mortality, and
TWR was also an independent predictor of all-cause
mortality.31

T-wave markers were also studied in a population of Native
Americans as part of the Strong Health Study, in which 1729
Native Americans were followed for a mean of 4.8 years.
Increased PCA ratio and TWR were significant predictors of
cardiovascular mortality, and TWR was an independent
predictor of all-cause mortality.32 The investigators also
demonstrated that QTD was a predictor of cardiovascular
mortality in females.33 Finally, Kardy et al. showed that in
6134 participants in the Rotterdam Study community-based
cohort, increased QRS-T angle (defined inTabl) was indepen-
dently associated with increase hazard of cardiac death,
sudden death, and total mortality.34

Repolarization Heterogeneity in Specific
Populations
Repolarization heterogeneity has also been linked to adverse
outcomes in numerous cardiovascular disease populations. In
patients presenting with acute coronary syndromes (ACSs),
repolarization heterogeneity has been associated with
increased risk of fatal arrhythmias. TpTe and TpTe/QT were
significantly increased in ST-elevation myocardial infarction
(STEMI) patients who experienced ventricular fibrillation (VF)
within 24 hours of admission.35 Eslami et al. found that
percutaneous coronary intervention (PCI) reduced both QTD
and TpTe in patients presenting with STEMI.36 Interestingly,
failure of these ECG parameters to improve after reperfusion
was associated with development of major arrhythmias within
1 year.37 Post-MI (myocardial infarction) patients who show
clinical or inducible ventricular tachycardia (VT) have longer
TpTe than those who are not inducible.38 TpTe is indepen-
dently associated with all-cause mortality as well as risk of
fatal cardiac arrhythmia within the first year after ACS.39,40

Repolarization heterogeneity is also linked to adverse
long-term outcomes in ACS populations. Haarmark et al.

showed that pre-PCI TpTe was associated with increased
mortality in STEMI patients during 22 months of follow-up.41

In 334 survivors of acute MI followed for 41 months, TCRT
was an independent predictor of long-term arrhythmic
mortality.42 And, in patients who develop left ventricular
systolic dysfunction post-ACS, TpTe is independently predic-
tive of implantable cardioverter defibrillator therapy and all-
cause mortality.43 Repolarization heterogeneity has also
been linked to adverse outcomes in genetic arrhythmia
syndromes, congenital heart disease, and valvular heart
disease. In patients with Brudaga syndrome, TpTe and TpTe
dispersion were prolonged in patients with recurrent aborted
SCD or syncope compared to asymptomatic individuals.44

TpTe and TpTe/QT were predictive of VT/VF inducibility in
Brugada patients undergoing programmed ventricular stim-
ulation.45 Patients with repaired tetralogy of Fallot were
found to have increased QTcD and TpTe compared to
healthy controls.46 QTD was increased in patients with mitral
valve prolapse and ventricular arrhythmias on Holter,
compared to matched controls. QTD and QTcD were
increased in patients with aortic stenosis, compared to
controls, and were linearly related to disease severity.47 In
patients with hypertrophic cardiomyopathy, QTD and mark-
ers of T-wave complexity were increased, compared to
controls, and were significantly greater in symptomatic
patients.48,49 TpTe has also been predictive of outcomes in
other populations, including end-stage renal disease, LV
hypertrophy (LVH), and hypertension, as summarized in
Table S1.50–52

Mechanical Abnormalities in Patients With
LQTS
Studies in LQTS have revealed that electrical repolarization
abnormalities were accompanied by abnormal myocardial
mechanics. Nador et al. noted that patients with LQTS had a
more-rapid early phase of ventricular contraction, as noted by
a decreased time to early contraction (Th1/2). Hence, they
reached half maximal systolic contraction more rapidly than
controls. Furthermore, slow-speed thickening in late systole,
termed TsTh, was increased in LQTS patients, indicating that
they spend more time at a low thickening rate. Taken
together, rapid early contraction and prolonged slow thicken-
ing phase represent a particular pattern of abnormal myocar-
dial mechanisms that was observed more frequently in
symptomatic versus asymptomatic patients.53 The same
group then assessed the response of these contraction
abnormalities to verapamil. Verapamil was associated with
increase in Th1/2 and reduction in TSTh, with normalization
of the abnormal thickening patterns at peak effect. They
suggested that symptomatic LQTS patients may have an
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abnormal increase in transcellular Ca levels which normalized
with administration of Ca-channel blockers.54

Haugaa et al. used tissue Doppler to show that contraction
duration was longer in LQTS patients with past cardiac events
compared to those without.55 Prolonged contraction duration
showed higher specificity and sensitivity than QTc at predicting
events. Greatest heterogeneity in contraction was observed in
symptomatic LQTS mutation carriers compared to asymp-
tomatic carriers or controls. The investigators concluded that
prolonged myocardial contraction may lead to heterogeneous
and delayed onset of the tissue Doppler e0 wave, implying
diastolic dysfunction.55 Strain analysis confirmed longer mean
contraction duration in symptomatic LQTS mutation carriers
compared to asymptomatic carriers and healthy controls.
Contraction duration by longitudinal strain was longer than by
circumferential strain in symptomatic patients, suggesting
increased transmural dispersion.56 Haguaa et al. recently
demonstrated reduced global longitudinal strain in subjects
with LQTS compared to healthy controls, as well as reduced e0

velocity (implying impaired LV relaxation) and increased left
atrial volume index.57 Table S2 summarizes studies that have
found associations between echocardiographic parameters
and repolarization heterogeneity.

Electromechanical Heterogeneity in Heart
Failure

Early work by Alessandrini et al. revealed that electrocardio-
graphic repolarization changes in T-wave amplitude and QT
interval induced through ventricular pacing were accompanied
by echocardiographic changes in peak left ventricular filling
rate and isovolumic relaxation time (IVRT). Specifically, QT
prolongation was associated with increase IVRT and T-wave
amplitude was correlated with increase in peak LV filling rate.
These findings were not accompanied by changes in systolic
function and thus could not be explained on this basis. This
link between electrical repolarization and diastolic mechanics
may be, in part, mediated by the effects of calcium handling.58

Specifically, increase in APD (as was observed with ventricular
pacing) has been linked to near doubling of cellular calcium
influx and marked slowing of its decline.59 It is thus not
surprising that prolonged APD may be associated with
changes in LV relaxation and filling, processes that are
calcium dependent. When relaxation and filling are most
abnormal, in end-stage heart failure, mapping of coronary-
perfused LV wedge preparations from human hearts con-
firmed prolongation of APD.60

Figure 4. Proposed mechanism of electromechanical heterogeneity as a marker or contributor to heart
failure. Progression from normal (left-hand side) to overt heart failure (right-hand side) is propagated by
accumulation of risk factors such as hypertension, coronary artery disease, and diabetes and their
consequences, which include left ventricular hypertrophy, heterogeneous dysregulation of Ca handling, and
fibrosis. This manifests as electrical repolarization heterogeneity and abnormal myocardial mechanics,
which includes diastolic dysfunction, reduction in peak longitudinal systolic strain, as well as contraction-
relaxation heterogeneity observed using strain imaging. AP indicates action potential; Endo, endocardial;
Epi, epicardial; LVH, left ventricular hypertrophy; M Cell, Masonic myocardial Moe cell.
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During the progression from structural heart disease to
heart failure, there is development of an extensive amount of
intercellular variability in Ca2+ kinetics. Disorganization in T
tubules and impairment in Ca2+ cycling accompany reductions
in absolute strain values and tissue Doppler velocities in
spontaneously hypertensive rats.61 Initial myocardial remod-
eling is associated with heterogeneous increase in Ca2+

transient duration, which may, in part, explain the develop-
ment of diastolic dysfunction as the result of a prolonging in
relaxation. These changes in strain and diastolic function
occur early in the remodeling process and precede the
development of cardiac fibrosis and overt LV systolic
dysfunction (Figure 4).61

Additionally, derangement in calcium cycling leads to
increased vulnerability to intercellular repolarization gradients
and cellular Ca2+ alternans, a setup for reentrant and
triggered ventricular arrhythmias. Deficient sarcoplasmic
reticulum Ca2+ uptake has been identified in cardiac myocytes
from failing human hearts and has been linked to a decrease
in expression and activity of the enzyme, Ca2+-ATPase
(SERCA2a). In animal models, transfection of SERCA2a
reduced Ca2+ alternans, decreasing susceptibility to ventric-
ular arrhythmias.62 In the Calcium Upregulation by Percuta-
neous Administration of Gene Therapy in Cardiac Disease
(CUPID) gene therapy trial, intracoronary delivery of SERCA2a

was associated with decreased events, clinical improvement
in heart failure symptoms, as well as LV remodeling.63

Finally, it has recently been shown that QTc correlates with
severity of diastolic dysfunction on echocardiography in the
general population, as well as in patients with clinical
symptoms of heart failure.64 Sauer et al. recently showed
that increased baseline TpTe was inversely associated with e0

velocity as well as peak exercise E/e0 ratio (Figure 5).65

Additionally, a linear association was noted between TpTe and
SD in time to peak radial strain, a measure of heterogeneity in
contraction duration. This finding was novel in establishing
that the link between electrical repolarization and myocardial
contractility occurred in patients without LQTS or significant
cardiomyopathy.66 “Excitation-contraction” coupling may rep-
resent a unifying theory linking the subclinical changes in
myocardial dysfunction, calcium handling, and repolarization
abnormalities with the development of symptomatic heart
failure syndromes.

Unanswered Questions
Cellular work, animal models, and human cohorts have all
suggested that heterogeneity in myocardial repolarization
exists, is increased in numerous disease states, and appears
to confer increased cardiovascular risk. Unfortunately to date

A B

Figure 5. Correlation between tissue Doppler and ECG markers of repolarization heterogeneity. Shown
here is an example of the relationship between tissue Doppler e0 velocity and ECG TpTe interval. A, Normal
e0 velocity (12.1 cm/s) and short TpTe interval (65 ms). B, Abnormally reduced e0 velocity (7.8 cm/s) and
long TpTe interval (115 ms). Asterisks denote e0 wave on tissue Doppler tracings. Arrows denote TpTe
interval on ECG tracings. Reproduced from Sauer et al.65 Promotional and commercial use of the material in
print, digital, or mobile device format is prohibited without the permission from the publisher Wolters
Kluwer Health. ECG indicates electrocardiogram.
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there is no consensus as to how best to measure repolar-
ization heterogeneity in human subjects, given that various
techniques in open-chest animal models have revealed
conflicting results. Furthermore, controversy also exists as
to whether commonly used ECG measures, such as TpTe or
QTD, truly represent the repolarization heterogeneity itself or
are simply a surrogate for it. Future efforts should focus on
prospectively assessing outcomes to determine which of the
currently identified ECG measures of repolarization hetero-
geneity provides the greatest predictive value.

Furthermore, there is limited understanding currently as
the role of repolarization heterogeneity in the development or
progression of heart failure syndromes. Recent work revealed
an association between abnormal TpTe duration and
increased abnormalities in diastolic function, as well as
several other structural and mechanical myocardial abnor-
malities. It is not yet clear whether increased repolarization
heterogeneity is a marker of myocardial mechanical dysfunc-
tion, let alone causative. Understanding the role of repolar-
ization heterogeneity in clinical heart failure symptoms
represents a promising avenue of future investigation.
Demonstrating independent association of repolarization
heterogeneity with outcomes in heart failure populations
would be noteworthy, given that it may identify a subgroup of
patients that could uniquely be tailored for certain heart
failure therapies. Similarly, whether normalization of repolar-
ization heterogeneity with medical therapy is associated with
improved outcomes in heart failure represents another
avenue for further research. If improvements in ejection
fraction are associated with decrease in repolarization
heterogeneity, then perhaps identifying a pharmacological
intervention to restore repolarization to a more-normal state
may have a role in improving cardiovascular risk for numerous
populations.

Conclusions
Accumulating evidence suggests that repolarization hetero-
geneity, a process initially understood at the cellular level
through work on canine wedge preparations, may play a
significant role in the pathophysiology of several cardiovas-
cular conditions. Though initially linked to increased risk of
arrhythmia in patients with inherited LQTSs, repolarization
heterogeneity is now known to predict sudden death even in
the general population. Analysis of T-wave characteristics on
the ECG may help in risk stratification in multiple cardiovas-
cular conditions. More-recent work linking repolarization
heterogeneity to abnormalities in myocardial mechanics may
provide insight into development and progression of clinical
heart failure syndromes. Whether drugs that stabilize repo-
larization heterogeneity can improve electromechanical

abnormalities or clinical outcomes requires further analysis.
Additional studies are needed to identify other populations in
which repolarization heterogeneity may confer risk, and
determine whether targeting these electrical and mechanical
abnormalities leads to improved cardiovascular outcomes.
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Table S1. Studies of clinical outcomes related to increased repolarization heterogeneity 
 

Authors Population Size Metric Results 

Okin et al, 20021 American Indians 1839 QTD and 

PCA  

PCA ratio was an independent predictor of 

CV mortality in men and women. QTD was a 

significant predictor in women only 

Okin et al, 20052 American Indians 1729 PCA, TWR Increased PCA ratio and TWR were 

significant predictors of CV mortality and 

TWR of all-cause mortality 

Okin et al, 20043 American Indians with 

DM 

994 PCA PCA ratio was an independent predictor of 

CV and all cause mortality  

Ducceschi et al, 19984 Aortic stenosis  70 QTD, QTcD QTD and QTcD both linearly correlated with 

severity of aortic stenosis 

Castro Hevia et al, 20065 Brugada  58 TpTe  TpTe was prolonged in patients with recurrent 

VT/VF 

Letsas et al, 20106 Brugada  23 TpTe and 

TpTe/QT 

TpTe and TpTe/QT were increased in patients 

with inducible VT/VF 

Morin et al 20127 Decreased EF 327 TpTe TpTe predicted of ICD therapy, all-cause 

mortality, and the composite endpoint of ICD 

therapy or death 

Lin et al, 20078 ESRD 325 TWR TWR was an independent predictor of CV and 

arrhythmia-related mortality 

Tun et al, 19999 ESRD   188 QTcD, TpTe QTcD and TpTe were significantly higher in 

the ESRD group compared to controls 

Shimizu et al, 200210 HCM  47 TpTe/QT, 

QTD 

QTD increased in HCM.  TpTe/QT was 

increased in HCM patients with SCD/VT  

Yetman et al, 199811 HCM 99 QTcD QTcD was associated with reduced time to 

death or resuscitated SCD 

http://www.ncbi.nlm.nih.gov.ezproxy.galter.northwestern.edu/pubmed/?term=Ducceschi%20V%5BAuthor%5D&cauthor=true&cauthor_uid=9579817


Yi et al, 199812 HCM   83 QTD QTD was increased in patients with 

symptomatic HCM and worse NYHA class  

Kardys et al, 2003 13 Healthy  6134 QRST angle Abnormal QRST angle was associated with 

cardiac death, non-fatal cardiac events, sudden 

death, and total mortality 

Porthan et al, 200914 Healthy  5917 PCA, 

TCRT, 

TWR 

PCA ratio was independent predictor of all-

cause and CV mortality in men.  In women, 

independent mortality predictors were total 

TCRT (CV mortality) and TWR (all-cause 

and CV mortality) 

Ferrucci et al, 201515 HTN 40 TpTe TpTe was higher in hypertensive than in 

normotensive individuals  

Saba et al, 200516 LVH 300 TpTe TpTe increased in patients with LVH 

compared to controls 

Smetana, et al 201117 Male CV patients  813 TpTe, TWR TpTe was shorter in non-survivors 

Zabel et al, 200218 Male CV patients  813 TWR TWR was an independent predictor of all-

cause mortality 

Tieleman et al, 1995 19 MVP 64 QTD QTD was increased in patients with MVP and 

ventricular arrhythmias 

Watanabe et al, 200420 NSVT, VT, VF, 

syncope, SVT 

130 TpTe TpTe was greatest in the VT inducible and VT 

spontaneous groups 

de Bruyne MC, 199821 Patients age >55 5812 QTD Highest tertile relative to the lowest tertile had 

a twofold risk for cardiac death and sudden 

cardiac death, and 40% increased risk for total 

mortality 

Batchvarov et al, 200422  Post MI 334 TCRT  TCRT was an independent predictor of 

cardiac and arrhythmic mortality 



Bonnemeier et al, 2001 22 Post MI 97 QTV PCI was associated with decrease in QTV.  

Failure of QTV to decrease following 

reperfusion was associated with subsequent 

arrhythmic events 

Erikssen et al, 201223 Post MI 1359 TpTe TpTe was a predictor of death and fatal 

cardiac arrhythmia 

Eslami et al, 201324 Post MI 80 TpTe, QTD QTD and TpTe were reduced following PCI 

Haarmark et al, 200925 Post MI  101 TpTe Pre-PCI TpTe interval predicted subsequent 

all-cause mortality 

Lubinski et al, 200026 Post MI  34 TpTe TpTe increased in patients with inducible VT 

Oikarinen et al, 2001 27 Post MI  73 TpTe TpTe was increased in patients with inducible 

VT  

Perkiomakl et al, 200628 Post MI 437 TWLD, 

TCRT  

TWLD was an independent predictor of 

cardiac mortality, TCRT was not 

Shenthar et al, 201529 Post MI 100 TpTe TpTe and TpTe/QT were prolonged in 

patients post MI compared with healthy 

individuals, and predicted acute ventricular 

arrhythmias 

Tatlisu et al, 201430 Post MI 488 TpTe TpTe interval was associated with in-hospital 

VT/VF, target vessel revascularization, death, 

as well as long-term target vessel 

revascularization and death 

Zabel et al, 199831 Post MI 280 TpTe, QTD TpTe and QTD did not predict VT/VF or 

death in post MI patients 

Zabel et al, 200032 Post MI 280 TCRT, 

TWLD 

TCRT but not TWLD, yielded independent 

predictive value of numerous CV outcomes 

Savelieva et al, 199833  Post MI, HCM 156 TpTe, QTD TpTe was increased in HCM but not MI 

http://www.ncbi.nlm.nih.gov.ezproxy.galter.northwestern.edu/pubmed/?term=Bonnemeier%20H%5BAuthor%5D&cauthor=true&cauthor_uid=11153771
http://www.ncbi.nlm.nih.gov.ezproxy.galter.northwestern.edu/pubmed/?term=Oikarinen%20L%5BAuthor%5D&cauthor=true&cauthor_uid=11699519


patients. QTD was significantly greater in 

both, compared to controls 

Sarubbi et al, 199934 Repaired TOF  74 QTD, TpTe TOF patients have increase QTD and TpTe 

interval 

Panikkath et al, 201135 SCD 695 TpTe TpTe was increased in patients with SCD than 

in controls. Odds of SCD increased stepwise 

with increase in TpTe 

Pye et al, 199436 VT  109 QTD QTD increased in patients with sustained 

ventricular arrhythmias compared with 

controls 

CV, cardiovascular; DM, diabetes mellitus; EF, ejection fraction; ESRD, end stage renal disease; HCM, hypertrophic 

cardiomyopathy; HTN, hypertension; ICD, implantable cardiac defibrillator; LVH, left ventricular hypertrophy; MI, myocardial 

infarction; MVP, mitral valve prolapse; NSVT, non sustained ventricular tachycardia; NYHA, New York Heart Association; PCA, 

principal component analysis; PCI percutaneous coronary intervention; QTcD, QTc dispersion; QTD, QT dispersion; QTV, QT 

variability; SCD, sudden cardiac death; SVT, supraventricular tachycardia; TCRT, total cosine R to T; TOF, tetralogy of fallot; 

TpTe, T peak T end; TWLD, T wave loop dispersion; TWR, T wave residuum; VF, ventricular fibrillation; VT, ventricular 

tachycardia 



 

Table S2. Echocardiographic parameters associated with repolarization heterogeneity 

 

Author Parameter Definition Echo mode 

Nador et al, 199137 
Thl/2 

 

Time to reach half of maximal systolic 

thickening 

MM 

 

Nador et al, 199137 

 

TSTh 

 

Slow movement in the late thickening 

phase 

MM 

 

Nakayama et al, 199838 Wall thickening time (ThT) 

 

 

Period in which the instantaneous wall 

thickness exceeds 90% of the maximum 

wall thickness  

MM 

 

 

Mayet et al, 199639 E/A ratio 

 

Ratio of early and late mitral inflow 

velocities 

PWD 

 

Sauer et al, 201240 Diastolic dysfunction grade 

 

Composite score using mitral inflow 

patters, TD velocity, and left atrial size  

PWD, TD 

 

Sauer et al, 201240 E/E’ 

 

Ratio of early mitral valve inflow velocity 

to TD velocity 

PWD, TD 

 

Haugaa at al, 201041 Delta contraction duration 

 

Time difference between the longest and 

shortest contraction durations  

Strain 

 

Haugaa et al, 201041 Mean contraction duration 

 

Time from ECG onset of the R wave to 

maximum myocardial shortening  

Strain 

 

Haugaa et al, 201041 

 

Mechanical dispersion 

 

 

Time difference in longitudinal and 

circumferential contraction duration in the 

6 basal LV segments 

Strain 

 

 

Haugaa, et al 200942 E'  

 

Peak E' velocity 

 

TD 

 

Haugaa, et al 200942 Post ejection velocity Upstroke of the biphasic spike after TD 



   MM, m-mode; TD, tissue doppler; PWD, pulsed wave doppler 
 
 
 
 

 ejection.  

Haugaa, et al 200942 Onset E' wave Time from start of R wave to onset of E' TD 

Haugaa, et al 200942 Contraction duration 

by velocity 

Time from start of R wave to end of post 

ejection velocity 

TD 

 

Savoye et al, 200343 Isovolumic relaxation time 

 

Time between closure of the aortic valve 

and the opening of the mitral valve 

TD 
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