Anti-GM₁ antibodies in patients with Guillain-Barré syndrome

L H van den Berg, J Marrink, A E J de Jager, H J de Jong, G W van Imhoff, N Latov, S A Sadiq

Abstract

University Hospital, Groningen, The Netherlands, Department of Neurology L H van den Berg A E J de Jager

Department of Internal Medicine J Marrink H J de Jong G W van Imhoff

Department of Neurology, Columbia University, College of Physicians and Surgeons, New York, USA N Latov S A Sadiq

Correspondence to: Dr L H van den Berg, Department of Neurology, University Hospital Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands. Received 12 February 1991 and in revised form 13 May 1991.

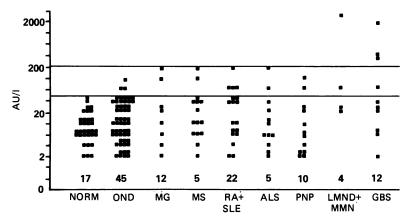
Accepted 22 May 1991

Anti-GM₁ antibodies were measured in 22 patients with the Guillain-Barré syndrome (GBS) and compared with anti-GM₁ antibody activity in patients with other neurological or immunological diseases and in normal subjects. Four out of 22 patients with GBS had raised IgM, IgG, or IgA anti-GM₁ antibody activities. All four patients were tetraparetic with only minimal or no sensory deficit. Three of the patients had highly raised antibody activity and showed severe residual deficits, while of the remaining patients with GBS, only one remained severely affected. One patient had anti-GM₁ antibodies specific for GM₁, whereas the other three patients showed antibody activity with asialo-GM₁ or GD_{1b}. The presence of anti-GM₁ antibodies may define a subgroup of patients with GBS who have a poor prognosis.

Increased titres of IgM anti-GM₁ antibodies are associated with lower motor neuron disease, sensorimotor neuropathy, or motor neuropathy.¹ Therapeutic reduction of antibody concentrations is associated with clinical improvement, suggesting that the antibodies have a role in the disease. $^{2-4}$

To determine whether anti- GM_1 antibodies are also increased in the Guillain-Barré syndrome (GBS) we measured antibody activities in 22 patients with the syndrome and compared them with anti- GM_1 antibody activity in patients with other neurological or immunological diseases and in normal subjects.

Patients and methods PATIENTS


ATTENTS

Included in the study were 22 patients with GBS (13 female, nine male, mean age 43 years) seen during the acute phase of the disease at the Department of Neurology of the University Hospital, Groningen. All patients fulfilled the criteria for GBS of the National Institute of Neurological and Communicative Disorders and Stroke.⁵ Serum samples from patients with myasthenia gravis (20), multiple sclerosis (20), rheumatoid arthritis (20), systemic lupus erythematosus without neurological disease (20), amyotrophic lateral sclerosis (18), various types of neuropathies (22), lower motor neuron disease or multifocal motor neuropathy (8), other neurological diseases (stroke (20),

Table 1 Clinical and laboratory data on 22 patients with acute Guillain-Barré syndrome

Case No	Age (years)	PD	Paresis	Ven		Sensory deficit	MNCV (m/s)	EMG	Recovery (after 1 year)	Anti-GM,		
					Ventilation					IgM	IgG	Ig A
1	10	GI	UE3	LE3	_	S- P-	M, 40.5	++	Bad	+	+ +	
2	47	_	UE<3	LE<3	+	S- P+	M, 47	++	Bad	+ +	+	-
3	53	GI	UE<3	LE<3	+	S- P+	M, nm	++	Bad	+	++	++
4	28	ŪR	UE3	LE3	_	S- P+	M, 52	+	Good	-	+	+
5	16	UR	UE3	LE3	+	S+ P+	M, 52	+	Good		_	-
6	17	_	UE3	LE3	+	S+ P++	M, 32.5	++	Moderate	-	-	-
7	18	GI	UE3	LE<3	+	S++P++	M, 43		Good	-	_	-
3	24	ŪR	UE4	LE3	_	S+ P+	M, 42	+	Good	-	_	-
9	28	UR	UE4	LE4	_	S+ P+	P, 34		Good	-	-	
5	33	ĞI	UE<3	LE<3	+	S+ P++	M, nm	++	Bad	-	-	-
i	33	ŪR	UE4	LE4	_	S++P+	M, 50	-	Good	-	-	—
2	36	UR	UE4	LE<3	-	S++P++	P, 34	-	Good	-	-	
3	43	ĞĪ	UE4	LE3	-	S + + P +	M, 58	-	Good	-	-	-
4	47	_	UE4	LE4	-	S+ P+	P, 40		Good	-		-
5	51	UR	UE4	LE4	_	S+ P++	M, 48	+	Good	_	-	-
6	59		UE5	LE4	-	S- P+	P, 44	+	Good	-	-	-
7	59	GI	UE<3	LE<3	+	S+ P++	M, 26	++	Moderate	-	-	-
3	61	_	UE < 3	LE < 3	+	S- P+	M, 47	nd	Dead	-	-	-
	65	UR	UE4	LE4	-	S- P+	M, 25	+	Good	-		-
Ď	68	UR	UE<3	LE<3	+	S+ P++	M, 40	++	Good	-	-	-
1	70	UR	UE3	LE4	-	S+ P++	P, 32	+	Moderate	-	-	-
2	72	UR	UE3	LE<3	+	S++P+	M, 20·5	+	Moderate		-	

PD = prodromal disease: - = none, GI = gastrointestinal, UR = upper respiratory. Paresis: UE = upper extremity, LE = lower extremity, 5 = MRC (Medical Research Council) 5, 4 = MRC 4, 3 = MRC 3, <3 = MRC 0-2 (mean of three muscles). Ventilation: - = no additional ventilation, + = additional ventilation. Sensory deficit: S = superficial, - = normal, + = stocking/glove deficit, + + = more, P = proprioceptive, - = normal, + = diminished proprioception, + + = absent proprioception; $\text{MNCV} = \text{motor nerve conduction velocity: } M = \text{median nerve} (normal <math>\geq 50 \text{ m/s}$); $P = \text{peroneal nerve} (normal <math>\geq 42 \text{ m/s}$), nm = not measurable. EMG = electromyogram: - = no denervation, + = sporatic denervation potentials, + = sever denervation, n = not denervation; gate $- \text{motor signs/slight sensory signs and/or paraesthesia; moderate = residual motor and sensory signs/fully ambulant; bad = serious residual motor signs/braces or wheelchair; dead = died during acute phase. Anti-GM₁ antibodies: <math>- = \text{not raised}$, + = mildly raised (<1000 AU/l), + = highly raised.

Activities of IgM anti-GM₁ antibodies in arbitrary units per litre (AU|l). NORM = normal subjects; OND = other neurological diseases; MG = myasthenia gravis; MS = multiple sclerosis; RA = rheumatoid arthritis; SLE = systemic lupus erythematosus; ALS = amyotrophic lateral sclerosis; PNP = various types of polyneuropathies; LMND = lower motor neuron disease; MMN = multifocal motor neuropathy; GBS = Guillain-Barré syndrome. Numbers given along x axis represent numbers of patients with antibody activities of <2 AU/l.

epilepsy (20), concussion (20), Alzheimer's disease (20), Parkinson's disease (20)), as well as normal subjects (50), served as controls.

ANTI-GM1 ANTIBODY ASSAYS

Anti-GM₁ antibodies were measured by enzyme linked immunosorbent assay (ELISA). Microwells in a flat bottomed, 96 well ELISA (Hycult, Diagnostic Systems, plate Peyrelevade, France) were coated with 100 μ l methanol containing 5 μ g/ml GM₁ (Sigma, St Louis, Missouri, United States). In other microwells only methanol was added to act as control. The methanol evaporated overnight. Wells were saturated with 100 μ l ELISA solution containing 1% bovine serum albumin (BSA), in phosphate buffered saline (0.15M NaCl, 0.01M NaH₂PO₄, pH 7.4) for four hours. 100 μ l of each patient's serum diluted 1:50 in ELISA solution was added in duplicate and the plates incubated overnight. All incubations and washes were carried out at 4°C. The plates were then washed five times in ELISA solution, and peroxidase-conjugated rabbit antibodies to human IgM, IgG, or IgA (Dakopatts, Glostrup, Denmark) diluted 1:1000 in ELISA solution were added. Antibody binding was detected spectrophotometrically at 492 nm as previously described.¹

The optical density (OD) was compared with the OD obtained from the serum of a patient with raised IgM anti-GM₁ antibodies (case HU^{2}) or with that of a patient with raised IgG and IgA anti- GM_1 antibodies (case 3, table 1). Undiluted serum from these positive controls (used as standards) was set at 100 000 AU/l (arbitrary units per litre). Standard curves were obtained by using eight dilutions of the positive control in each experiment. With a log-logit transformation⁶ computer program each patient's serum GM₁ antibody activity was determined by plotting the OD on a standard curve and the activity of antibodies was thus calculated in AU/l. Calculated values in wells coated with BSA were subtracted from those in experimental wells coated with GM_1 . For patients with high initial anti-GM₁ antibody

readings serum samples were diluted until an OD corresponding to the linear part of the standard curve was obtained.

To determine the fine specificities of the anti-GM₁ antibodies serum samples were also tested for antibody binding to asialo-GM₁ and GD_{1b} (Bio-Carb, Lund, Sweden), which share a terminal Gal(β 1-3)GalNAc determinant with GM₁. Standard curves were obtained from serum samples of patients with high antibody activity to asialo-GM₁ and GD_{1b} (case HU²) for IgM antibodies to asialo-GM₁ and GD_{1b}, case 1 (table 1) for IgG and IgA antibodies to asialo-GM₁, case 3 (table 1) for IgG and IgA antibodies to GD_{1b}). AU/l were set in the standard curves at a level where the OD corresponded to the OD in the standard curve for IgM anti-GM₁ antibodies.

Results

In normal individuals IgM anti-GM₁ antibody activity ranged from 0 to 34 AU/l (figure). In patients with neurological or immunological diseases 7% (range 0%-12%) had IgM anti- GM_1 antibodies in the range of 34 to 200 AU/l. This range was defined as borderline-not specific for one disease or syndrome. Only activities higher than 200 AU/l for IgM anti-GM₁ antibodies were considered to be raised. In the control groups one patient had increased activity of IgM anti-GM₁ antibodies (3450 AU/l). This patient had a multifocal motor neuropathy. Activities of IgG and IgA anti-GM₁ antibodies in normal controls were 0 AU/l and 0-2 AU/l respectively. In normal controls and in patients with GBS without anti-GM₁ antibodies activities of IgM, IgG, and IgA antibodies to asialo-GM₁ were 0-130 AU/l, 0–80 AU/l, and 0–100 AU/l respectively; the ranges of IgM, IgG, and IgA antibody activities to GD_{1b} were 0-10 AU/l, 0-25 AU/l, and 0-10 AU/l respectively.

The clinical and laboratory data obtained for the 22 patients with GBS are shown in table 1. Increased activities of anti-GM₁ antibodies were present in four patients with GBS. In case 1 both IgM and IgG anti-GM₁ antibodies were raised. Case 2 showed predominantly raised IgM and mildly raised IgG anti-GM₁ Case 3 showed predominantly antibodies. raised IgG and IgA and mildly raised IgM anti-GM₁ antibodies. IgG and IgA anti-GM₁ antibodies were mildly raised in case 4. All four patients with increased anti-GM₁ antibodies had severe tetraparesis with only minimal or no sensory deficits. The patients in cases 1, 2, and 3, who had raised anti-GM1 antibody activities, remained severely disabled. The patient in case 4, who had mildly raised anti-GM₁ antibodies, completely recovered. In contrast, only one out of 18 patients with GBS without anti-GM₁ antibodies had severe tetraparesis with minimal sensory deficits (case 18), and only one remained severely disabled (case 10).

Antibodies in cases 1 and 2 also bound to the gangliosides GD_{1b} and asialo- GM_1 (table 2) and may have been specific for the Gal(B1–3)GalNAc epitope. In case 3, however, the antibodies were specific for GM_1 . The

Table 2 Fine specificities and course of raised activities of IgM, IgG, and IgA antibodies to GM_1 , asialo- GM_1 (aGM_1), and GD_{1b} (in $AU|l_1$, -= not raised)

	IgM			IgG			IgA		
Day	GM,	aGM,	GD _{1b}	GM,	aGM ₁	GD _{1b}	GM,	aGM,	GD _{1b}
					Case 1	······			
12	350	900	250	1800	2000	500	-	-	
30	170	40	12	700	900	300	_	-	-
30 99	50	30	_	240	250	30	_	_	_
156	_	_	_	140	200	_	_	_	-
					Case 2				
3	1300	1480	950	130	270	250	_		_
3 17	520	690	490	_	_		_	_	_
30	220	250	160	_	_		_		_
35	180	250	130		_	_	-	_	
35 101	23	70	25	-	-	-	-	-	_
472	_	_	_	-	_		-	_	_
					Case 3				
7*	110	_	_	7000	_	200	5000	_	100
10*	210	-	_	9000	-	200	4000	_	100
13*	200	_	-	9000	_	140	3000	-	150
17*	90	-	_	3500	-	140	2000	_	110
20*	90		-	2600	_	80	1000	-	50
22	120	_	-	2300	-	60	1500	-	240
20* 22 34	20	_	_	1000		-	150	-	-
111		-		300	-	-		-	-
					Case 4				
5	-	_	-	600	-	550	55 3	-	200
5 17	-	_	_	200	-	300	3	-	100
32	_		-	30	-	200	-	-	-
32 103	-	-	-		-		-	-	-
159		_	-	_	-	_	-		_

*Plasmapheresis.

antibodies in case 4 also bound to GD_{1b} but not to asialo- GM_1 .

The IgM, IgG, and IgA antibody activities to GM_1 , asialo- GM_1 and GD_{1b} were highest at the onset of the disease and decreased with time (table 2).

Discussion

Patients with GBS antibody binding to glycolipids, including gangliosides, has been reported.7-i1 Ilyas et al reported antibodies to several gangliosides, but not to GM_1 in five out of 26 patients with GBS, and antibody titres improvement.8 decreased with clinical Svennerholm et al detected antiganglioside antibodies in 39 out of 50 patients with GBS, including one with anti-GM₁ antibodies, but no correlation was found with the severity or course of the disease.9 Ksunoki et al reported antibodies to gangliosides in eight out of 11 cases of GBS, four with IgM anti-GM₁ antibodies.¹⁰ Yuki et al recently reported two cases of an axonal form of GBS with anti-GM₁ antibodies. The illness in both patients was preceded by campylobacter enteritis.

We detected increased activity of anti-GM₁ antibodies in four out of 22 patients with GBS. These patients predominantly had motor neuropathy with severe denervation and the three patients with the highest activities remained severely disabled. The patient in case 3, however, also had markedly slowed motor nerve conduction velocities. This patient was the only one with anticampylobacter antibodies. indicating that anti-GM antibodies are not specific for this organism. It is not known whether the anti-GM₁ antibodies define a distinct syndrome or whether they occur in some cases of otherwise typical or severe GBS. They could contribute to the disease by binding to the surface of neurons or to the nodes of Ranvier, as has previously been suggested.^{12 13}

In cases 1, 3, and 4 the anti-GM₁ antibodies were predominantly of the IgG and IgA isotypes, suggesting that the anti-GM1 response in these cases was driven by T cells.¹³ Since gangliosides by themselves do not typically induce a T cell response, the anti-GM₁ antibodies might be induced by complexes that contain both GM₁ and a T cell antigen. The response could be stimulated by bacteria or viruses that bear GM₁ or a cross reactive antigen, by complexes composed of toxins or other proteins from foreign organisms that bind to GM_1 as a receptor, or by neural complexes that contain GM₁ associated with a protein recognised by T cells.^{14 15} In patients with campylobacter, the enterotoxin which binds to GM_1^{16} might cause disease or induce antibodies to the GM₁-toxin complex. The presence of antibodies to several neural glycolipids in GBS supports a model in which the neural tissue itself is the source of the antigenic stimulus, but the breakdown of tissue alone is unlikely to be responsible for the antibodies, as raised titres are not found in other types of neuropathies or inflammatory diseases as the antibodies occur early in the course of the disease. A neurotropic virus or an activated latent virus might incorporate neural glycolipids into its coat and induce an autoimmune response¹⁵ or the antibodies could be generated in the course of an ongoing T cell response to a neural antigen associated with GM₁. Investigations of the mechanisms responsible for induction of anti-GM₁ antibodies in GBS might thereby provide clues to the identity of the T cell antigen.

The study suggests that patients with acute GBS who have highly raised anti-GM₁ antibody activities constitute a subgroup with motor neuropathy predominantly and substan-

tial axonal damage. Detection of anti-GM₁ antibodies in patients with GBS therefore may be of prognostic value. Further elucidation of the pathogenic role of these autoantibodies in GBS may help in developing more specific and effective treatment.

We are grateful to Dr J B M Kuks for his help.

- Sadiq SA, Thomas FP, Kilidireas K, Protopsaltis S, Hays AP, Lee KW, et al. The spectrum of neurologic disease associated with anti-GM₁ antibodies. Neurology 1990; 40:072-772 40:1067-72.
- 2 Latov N, Hays AP, Donofrio PD, Liao J, Ito H, McGinnis S, et al. Monoclonal IgM with unique specificity to ganglio-sides GM_1 and GD_{1b} and to lacto-N-tetraose associated with human motor neuron disease. Neurology 1988; 38:763-8.
- 3 Shy ME, Heiman-Patterson T, Parry GJ, Tamoush A, Evans VA, Schick PK. Lower motor neuron disease in a Evans VA, Schick PK. Lower motor neuron disease in a patient with autoantibodies against Gal(BI-3)GalNAc in gangliosides GM₁ and GD₁₅; Improvement following immunotherapy. Neurology 1990;40:842-4.
 Pestronk A, Cornblath DR, Ilyas AA, Baba H, Quarles RH, Griffin JW, et al. A treatable multifocal motor neuropathy with antibodies to GM₁ ganglioside. Ann Neurol 1988; 24:73-8
- 24:73-8
- 5 Asbury AK, Arnason BG, Karp HR, McFarlin DE. Criteria for diagnosis of Guillain-Barré syndrome. Ann Neurol 1978;3:565-6.
- 6 Rodbard D, Bridson W, Rayford PL. Rapid calculation of radioimmunoassay results. J Lab Clin Med 1969;74: 770-81.

- 7 Koski CL, Chou DKH, Jungalwala FB. Anti-peripheral nerve myelin antibodies in Guillain-Barré syndrome bind
- nerve myelin antibodies in Guillain-Barré syndrome bind a neutral glycolipid of peripheral myelin and cross-react with Forssman antigen. J Clin Invest 1989;84:280-7.
 8 Ilyas AA, Willison HJ, Quarles RH, Jungalwala FB, Cornblath DR, Trapp BD, et al. Serum antibodies to gangliosides in Guillain-Barré Syndrome. Ann Neurol 1988;23:440-7.
 9 Svennerholm L, Fredman P. Antibody detection in Guillain-Barré syndrome. Ann Neurol 1990;27(suppl): S36-40
- \$36-40
- 10 Kusunoki S, Chiba A, Shimizu H, Yamada H, Mannen T.
- Kusunoki S, Chiba A, Shimizu H, Famada F, Mainen T. Serum antiglycolipid antibody in Guillain-Barré syn-drome. J Neurol Sci 1990;98(suppl):260.
 Yuki N, Yoshino H, Sato S, Miyatake T. Acute axonal polyneuropathy associated with anti-GM₁ antibodies following campylobacter enteritis. Neurology 1990;40: 1000-2 1900-2
- 1900-2.
 Santoro M, Thomas FP, Fink ME, Lange DJ, Uncini A, Wadia NH, et al. IgM deposits at nodes of Ranvier in a patient with amyotrophic lateral sclerosis, anti-GM₁ antibodies, and multifocal motor conduction block. Ann Neurol 1990;28:373-7.
 Latov N. Antibodies to glycoconjugates in neurologic dis-ease. Clinical Aspects of Autoimmunity 1990;4(4):18-29.
 Feizi T, Childs RA. Carbohydrate structure of glycoproteins and glycolinide as differentiation antigens, tumour
- Feizi T, Childs RA. Carbohydrate structure of glycoproteins and glycolipids as differentiation antigens, tumour associated antigens, and components of receptor systems. *Trends in Biochemical Sciences* 1985;10:24–9.
 Pathak S, Illavia SJ, Khalili-Shirazi A, Webb HE. Immunoelectron microscopical labelling of a glycolipid in the envelopes of brain cell-derived budding viruses, Semliki Forest, influenza and measles, using a monoclonal antibody directed chiefly against galactocerebroside resulting from Semliki Forest virus infection. J Neurol Sci 1990;96:293-302.
 Klinstein FA. Emeert RE Immunological relationship of the
- 16 Klipstein FA, Engert RF. Immunological relationship of the β subunit of Campylobacter jejuni and Escherichia coli heat-labile enterotoxin. Infect Immun 1985;48:629–33.