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ABSTRACT
G protein-coupled receptors (GPCRs) are critical players in tumor growth and progression. The redundant
roles of GPCRs in tumor development confound effective treatment; therefore, targeting a single common
signaling component downstream of these receptors may be efficacious. GPCRs transmit signals through
heterotrimeric G proteins composed of Ga and Gbg subunits. Hyperactive Gas signaling can mediate
tumor progression in some tissues; however, recent work in medulloblastoma and basal cell carcinoma
revealed that Gas can also function as a tumor suppressor in neoplasms derived from ectoderm cells
including neural and epidermal stem/progenitor cells. In these stem-cell compartments, signaling through
Gas suppresses self-renewal by inhibiting the Sonic Hedgehog (SHH) and Hippo pathways. The loss of
GNAS, which encodes Gas, leads to activation of these pathways, over-proliferation of progenitor cells, and
tumor formation. Gas activates the cAMP-dependent protein kinase A (PKA) signaling pathway and
inhibits activation of SHH effectors Smoothened-Gli. In addition, Gas-cAMP-PKA activation negatively
regulates the Hippo pathway by blocking the NF2-LATS1/2-Yap signaling. In this review, we will address
the novel function of the signaling network regulated by Gas in suppression of SHH-driven tumorigenesis
and the therapeutic approaches that can be envisioned to harness this pathway to inhibit tumor growth
and progression.
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Introduction

The G protein coupled receptor (GPCR) signaling pathway
plays critical roles in development, normal physiology, and dis-
ease. GPCRs transmit extracellular signals through heterotri-
meric G proteins, which consist of three main subunits, Ga,
Gb, and Gg. GDP-bound Ga is associated with Gbg in an inac-
tive state. Binding of ligands to GPCR causes exchange of GDP
for GTP on Ga, leading to its dissociation from a membrane-
anchored Gbg complex. Downstream signaling from both Ga
and Gbg subunits is maintained until the GTPase activity of
Ga hydrolyzes bound GTP to GDP, a process accelerated by
Regulators of G protein Signaling (RGS) proteins.1-3 G proteins
have been linked to modulation of tumor growth, invasion, and
metastasis, making this an important pathway for cancer ther-
apy.4-9 The Ga protein subunits differ in function and sequence
homology. Gas activates adenylyl cyclase and increases cyto-
solic cAMP levels; Gai inhibits adenylyl cyclase and decreases
intracellular cAMP levels; Gaq/11 activates phospholipase C;
Ga12 and Ga13 regulate RhoA signaling via Rho-GEFs.1-3 Het-
erotrimeric G proteins therefore represent a point of signaling
convergence from multiple GPCRs, and they exert a pivotal
role in mediating the functions of various GPCRs in cell growth
and tumorigenesis.

Of these G protein subunits, Gas, encoded by GNAS, is one
of the most frequently mutated genes in cancer.10 Many of

these mutations in GNAS trigger gain-of-function of GPCR sig-
naling that leads to enhanced intracellular cAMP levels,
increased cell growth, and metastasis of human cancers.1 In
contrast, activating mutations in the opposing subunit, Gai,
decrease cAMP levels and are associated with adrenal cortical
cancers and ovarian sex-cord tumors.11 Thus, both elevation
and reduction of cAMP levels may be oncogenic; it appears
that an imbalance of intracellular cAMP may lead to an onco-
genic transformation in a context-specific manner.9 Recently, a
series of genetic studies pointed to a critical role of GNAS in
tumor suppression.12-14 Genetic loss of a single GNAS allele in
neural and skin progenitor cells causes medulloblastoma (MB)
and basal cell carcinoma (BCC) respectively with full pene-
trance.12,13 In this review, we will discuss the role of Gas as a
tumor suppressor by exploring underlying mechanisms
whereby Gas signaling regulates tumorigenesis through cAMP-
dependent PKA, Sonic Hedgehog (SHH), and Hippo-LATS sig-
naling pathways. We will further discuss how to target this
novel tumor suppressive pathway for cancer treatment.

GNAS is a tumor suppressor gene in medulloblastoma

MBs are the most common malignant brain tumor in children,
accounting for approximately 25% of all pediatric brain can-
cers. At present, molecular events and signaling pathways that
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drive the initiation and progression of these tumors are not
fully understood. Mutations in genes encoding SHH signaling
components Patched1, Smoothened (SMO), and Suppressor-
of-fused (SUFU) account for approximately half of sporadic
human SHH-subgroup MBs,15,16 leading to hyperactivation of
the SHH signaling pathway.

Analysis of two independent cohorts of SHH-associated MB
patients in Boston and Heidelberg revealed that low expression
of GNAS is correlated with significantly reduced overall sur-
vival.12 Moreover, a recent report indicated that an infant car-
rying a homozygous nonsense mutation in GNAS developed
aggressive MB.17 These observations suggest that low expres-
sion or loss of GNAS specifically defines a subset of aggressive
SHH-group MBs.

The loss of a single Gnas gene in neural progenitor cells is
sufficient to initiate formation MB-like tumors in animal mod-
els.12 The deletion of Gnas alleles in human glial fibrillary acidic
protein (GFAP) promoter-expressing neural stem/progenitor
cells, atonal homolog 1 (Atoh1) promoter-expressing cerebellar
granular neuron progenitor cells (GNPs), or progenitors that
express oligodendrocyte transcription factor 1 gene (Olig1)
leads to an expansion of granule neuron progenitors and ulti-
mately to formation of malignant SHH-associated MB in
mice.12 The tumors in these mice developed from anatomically
distinct progenitors of the developing hindbrain recapitulating
their human counterparts. Thus, Gnas is a critical determinant
of progenitor cell competency and proliferation for MB initia-
tion across disparate cells of origin. The identification of Olig1C

progenitor cells in the dorsal brainstem as the cellular origin
for a subset of an anatomically distinct SHH-associated MB
highlights the tumor heterogeneity with regard to cellular ori-
gin and anatomical location.

Gas suppresses progenitor self-renewal and tumor
formation in basal cell carcinoma

SHH signaling activation has been implicated in the etiology of
the most common human cancer, basal cell carcinoma.18 Muta-
tions in the Patched gene, which negatively regulates SHH-
SMO signaling have been identified in sporadic BCCs as well as
those from patients with the rare genetic syndrome nevoid
BCC.18 When Gnas is knocked out in murine stem cells of the
skin under an epidermal stem cell-specific promoter, the pro-
moter that drives Keratin 14 expression, epidermal stem cells
undergo uncontrolled proliferation, leading to the tumor
lesions that resemble superficial and nodular human basal cell
carcinoma.13 Conversely, overexpression of Gas in these same
cells leads to premature differentiation of hair follicle stem cells
and basal cells.13 Thus, in both neural and skin progenitor pop-
ulations, Gas acts as a brake on excessive self-renewal or prolif-
eration of progenitor cells.

GNAS methylation, which results in a low level of GNAS
expression, has also been linked to poor prognosis in neuro-
blastoma.19 Neuroblastoma is a neuroendocrine tumor,
which arises from the neural crest cell lineage of the sympa-
thetic nervous system. Thus, the tumor-suppressive action
of Gas is not limited to primordial neural progenitor cells
in the cerebellum and hindbrain. Thus, current evidence
suggests a broader role for Gas in inhibiting multiple cancer

types. One potential mechanism for the effect of GNAS loss
in neural and epidermal progenitors is alteration in SHH
and Hippo signaling pathways.

Gas controls tumor formation by activating the
PKA-cAMP signaling axis

Gas suppresses SHH signal transduction through different cel-
lular mechanisms. In the canonical signaling pathway, Gas acti-
vation stimulates adenylyl cyclase activity to produce cAMP,
which in turn activates the cAMP-dependent PKA. PKA is a
major signaling effector of Gas downstream of cAMP activa-
tion.20,21 Activation of PKA has been shown to inhibit SHH sig-
naling in a variety of cell types. PKA phosphorylates and
inactivates Gli transcription factors, the SHH downstream
effectors, and recruits the ubiquitin ligase b-TRCP. b-TRCP
ubiquitinates Gli1 and Gli2, leading to their degradation, and
enhances Gli3 processing into a Gli3R repressor form, thereby
inhibiting SHH signaling.22-24

The Gas-cAMP-PKA signaling axis has an important role
in suppression of MB and BCC tumors.12,13 The loss of Gas
in the progenitor cells of the cerebellum and hindbrain
leads to a decrease in intracellular cAMP levels and a recip-
rocal increase in SHH downstream target expression, lead-
ing to MB formation. Conversely, elevation of Gas signaling
effectors cAMP by either forskolin (an adenylyl cyclase ago-
nist) or rolipram (a selective inhibitor of phosphodiesterase-
4, PDE-4), which blocks cAMP degradation,25,26 inhibits
SHH signaling activation and reduces tumor cell prolifera-
tion and tumor size in the Gnas mutation-induced MB
model.12 Similarly, in basal stem cells of the skin, inhibition
of PKA increases Gli-mediated transcription in vitro and
leads to tumor formation, which phenocopies the tumori-
genic phenotype in Gnas-mutant mice.13 In addition, activa-
tion of cAMP-PKA via forskolin suppresses tumor growth
in a K14-Rosa26-SmoM2 model of basal cell carcinoma.27

Thus, there appears to be an inverse correlation between
levels of cAMP/PKA activation and SHH signaling induced
Gli-transcription-associated tumor growth. Because the loss
of Gnas occurs independently of changes in other Hedgehog
signaling components,12 this Gas-mediated signaling path-
way may not only represent a novel mechanism for regulat-
ing the Hedgehog pathway but also underlie the drug
resistance in MB treated with SMO antagonists alone.28,29

In addition to activation of PKA-cAMP intracellular events
in murine cerebellar GNPs, Gas activity also modulates SHH
signaling component trafficking in the primary cilium, a struc-
ture believed to be a center for Hedgehog signaling.30,31 Strik-
ingly, Gas protein is highly enriched at the primary cilium of
GNPs.12 Depletion of Gas promotes the translocation of Gli2, a
SHH downstream effector, onto the tip of primary cilia,12

which activates the SHH signaling cascade. This is consistent
with a role of PKA in restraining Gli2 activation.32,33 Gas can
inhibit both ciliary translocation of SMO and Gli2 accumula-
tion at the tip of primary cilia while maintaining the position-
ing of the SMO inhibitory protein Patched1 at the primary
cilium.12 This effect of Gas on hedgehog signaling component
trafficking provides an additional level of regulation of SHH
signaling. Therefore, dual-mode regulation of both SHH
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signaling component trafficking at the primary cilia and cAMP-
PKA mediated signaling cascade by Gas activity reinforces the
inhibition of SHH signaling activation and MB tumorigenesis
(Fig. 1A).

Gas-PKA signaling suppresses Hippo signaling-
mediated cell proliferation

In the Hippo pathway, signaling through kinases LATS1/2 and
MST1/2 leads to phosphorylation and inactivation of the tran-
scription factors Taz and Yap, the Hippo effectors that promote
cell proliferation. Deletion of Gnas leads to an increase in Yap1
expression in BCC 13 and MB murine tumor models.12 Consis-
tently, in other mouse models of SHH-signaling induced MB,
Yap1 is upregulated in cerebellar progenitor cells that express
neural stem cell markers CD15 and nestin.34

Inhibition of Yap1 expression in keratinocytes in the keratin
14-Cre-Gnas mouse BCC model leads to a profound reduction
in colony formation.13 This reduction appears to be even stron-
ger than that caused by the loss of Gli1, pointing to a prominent
role for the Hippo pathway in driving cell proliferation and
self-renewal in tumors derived from epidermal progenitors.13

Elevation of cAMP-PKA signaling induced by Gas activity
leads to LATS1 phosphorylation and activation. LATS1 in turn
phosphorylates Yap1 to induce the cytoplasmic retention of
Yap1 and thereby keep it in a transcriptionally inactive state.
Furthermore, in a human keratinocyte cell line, inhibition of
expression of LATS1/2 and NF2 (a co-regulator of LATS1/2)
diminishes the cAMP-induced Yap1 phosphorylation,13 sug-
gesting that cAMP-dependent PKA can act on NF2/LATS1/2
to activate Hippo-LATS1/2 signaling to suppress Yap1 tran-
scriptional activity (Fig. 1B).

Loss of Gnas activates tumorigenic signaling and
unmasks oncogenic activity of heterotrimeric G
proteins

The coordinated and balanced activity of heterotrimeric G pro-
tein-mediated GPCR signaling regulates SHH and Hippo sig-
naling to ensure proper tissue development and homeostasis by
preventing uncontrolled cell growth.13,14,35 The loss of Gas may
therefore disrupt the balance between pro-proliferative and
pro-differentiation G proteins, leading to excessive signaling
through pro-proliferative G proteins.

One of the potential oncogenic heterotrimeric G proteins that
may regulate SHH signaling is Gai. Gai counteracts Gas signal-
ing by inhibiting production of intracellular cAMP. The GPCR-
like SMO can interact with Gai to activate Gli-dependent tran-
scription in NIH 3T3 fibroblasts and in Drosophila.36-38

Although the existence of SMO-Gai coupling has been contro-
versial,39,40 it might represent a non-canonical branch of the
pathway that activates Rac-RhoA-dependent signaling to
enhance cell migration and proliferation.41

Intriguingly, Gai2 and Gai3 are expressed in the external
granular layer of rat cerebella and localized to the primary
cilium. The loss of these heterotrimeric G proteins sup-
presses SHH-induced proliferation of cerebellar GNPs,42

suggesting a potential role for Gai signaling in MB forma-
tion. Recently, a cilia-enriched orphan GPCR Gpr175

(which has also been called Tpra1 or Tpra40) was shown to
inhibit cAMP levels and activate SHH signaling through
Gai.

43 These findings are consistent with a model where
Gassuppresses, while Gai promotes, oncogenic signaling in
the primary cilium.

Recent studies indicate that Hippo signaling through Yap is
suppressed by Gas and is activated by a panoply of other heter-
otrimeric G proteins including Ga12/13, Gaq/11, Ga14, Ga15, and
Gai.

14,35,44 Of these, the most potent activators of Yap tran-
scription are Ga12/13 and Gaq/11. Signaling through the lyso-
phospholipid (LPA) receptor, a GPCR that couples to Ga12/13,
drives serum-induced Yap transcription.14 In addition, Ga12,
Ga11, Gaq, and Gai also regulate the activity of LATS1/2 kin-
ases in Hek293T cells and uveal melanoma cells.14,35,44 indicat-
ing a complex interplay between GPCRs and Hippo signaling.
It is worth noting that EDG4, a member of the LPA receptor
family, is overexpressed in Wnt and SHH subgroup MBs.45

The functions of these heterotrimeric G proteins in MB forma-
tion remain to be defined. Nonetheless, the balance between
GPCR signaling through adenylyl cyclase activator and sup-
pressor heterotrimeric G proteins at least likely regulates
tumorigenic events.

Loss of GNAS in neural and skin progenitors leads to
tumor formation with full penetrance, suggesting a role of
Gas as a potent regulator of cell proliferation in SHH-sig-
naling dependent progenitors originating from the neural
tube and surface ectoderm during early lineage progression.
In contrast, cancers in which hyperactivation of GNAS is
oncogenic, such as in thyroid cancers and pituitary adeno-
mas, arise from terminally differentiated cells derived from
the endoderm.1 This may suggest a potential correlation
between cell type or stage in lineage progression and the
effect of cAMP on tumorigenesis. Unraveling which cancers
will respond positively, as opposed to negatively, to cAMP
elevation is critical to the safe clinical application.

Therapeutic targeting of Gas-cAMP-PKA signaling
suppresses tumor growth

The studies of signaling events following dysregulation of het-
erotrimeric G proteins identified cAMP as a convergent down-
stream signaling node, making it an attractive target for tumor
suppression. Several Gas-coupled GPCRs that inhibit SHH tar-
get gene expression have been identified including GPR161 and
PAC1.46,47 These receptors activate PKA resulting in an
increase in intracellular cAMP levels. Activation of the ciliary
GPR161 elevates cAMP, leading to PKA activation and repres-
sion of Gli1/2 transcription.46 At present, the role of GPR161
in tumor formation remains undefined. The PAC1 receptor,
which binds the PACAP ligand also resulting in increased
cAMP levels, has been shown to inhibit SHH signaling and Gli
activation by PKA.47 Reduced levels of PACAP enhance MB
incidence in Patched heterozygous mice,48 suggesting that sig-
naling through PAC1 blocks the proliferation of GNPs during
cerebellar development and MB formation.

Gai-protein coupled receptors have been shown to synergize
with Hedgehog signaling. CXCL12 stimulation of CXCR4, a
Gai coupled chemokine receptor, results in a significant reduc-
tion of intracellular cAMP levels and enhances the growth of
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SHH-driven medulloblastoma carrying an activated SmoA1
mutation49,50 suggesting that CXCR4 activation maximizes pro-
liferation of SHH-driven tumors. Inhibition of CXCR4 signal-
ing via small molecule inhibitors AMD 3100 and AMD 3465
elevates cAMP levels and suppresses the growth of MB xeno-
grafts in vivo,50 suggesting that dual inhibition of SHH and
CXCR4 pathways may be beneficial for treating CXCR4-
expressing SHH subtype MBs.

Phosphodiesterases, the enzymes responsible for the deg-
radation of cAMP, have been shown to regulate MB
growth.51 Treatment with rolipram, an inhibitor of PDE4,
suppresses SHH signaling and the growth of MB in
Gnas-mutant mice without major changes in cerebellar
architecture.12 An unbiased in vivo chemical genetic screen
identified that PDE4 inhibitors such as eggmanone exert a
potent inhibitory effect on Hedgehog signaling.52 PDE4
inhibition decreases the viability of the DAOY cell, an MB
cell line.53 In addition, blocking of PDE4D by roflumilast
suppresses the growth of MB tumors resistant to the SHH
antagonist vismodegib in mice,54 whereas overexpression of
PDE4A1, an isoform of PDE4, enhances the growth of
DAOY cells in a mouse xenograft model.55 Collectively,
these studies suggest that PDE4, at least the A and D sub-
types, represents a potential therapeutic target for SHH-
dependent cancers. What is particularly exciting is that a
number of PDE4 inhibitors such as rolipram and roflumi-
last have been used clinically for other indications and are
well-tolerated while affording an avenue to tackle SHH
antagonist resistance, raising hope in treating an otherwise
challenging type of cancer (Fig. 1).

Concluding remarks

GPCR-Gas signaling has long been considered an oncogenic
pathway in human cancer; however, recent studies defined
a novel tumor suppressive action of the Gas protein in MB
and BCC, suggesting that Gas may function as a tumor
suppressor in certain contexts. Future studies will determine
whether GNAS plays a tumor-suppressive role in other pri-
mordial tumors of the developing nervous system such as
pineoblastoma, supratentorial primitive neuroectodermal
tumor, and neuroblastoma, the solid cancers most com-
monly observed in childhood. Targeting PDE4 with cAMP-
raising agents has been shown to afford additional efficacy
when combined with inhibitors of SMO to diminish the
growth of MB cells 12 and to suppress the growth of vismo-
degib-resistant MB in mice.54 This suggests that in combi-
nation with existing therapies, cAMP-raising agents might
be repurposed to overcome multi-drug resistance in treat-
ment of SHH-associated MBs.56,57 Given that signaling con-
trol mediated via Ga proteins such as Gas may be a point
of signaling convergence for numerous GPCRs, targeting of
Gas and downstream pathway components such as cAMP-
PKA may circumvent the drug resistance seen with SMO
antagonists alone 28,29,58 and could be beneficial in the treat-
ment of an array SHH-driven tumors including MB, BCC,
small cell lung cancer, and pancreatic cancer.22,29,59,60
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Figure 1. Gas-cAMP-PKA signaling suppresses progenitor proliferation and SHH-driven tumorigenesis. (A) A schematic diagram depicts the role of Gas as a molecular
switch that controls SHH-Gli and Hippo-Yap signaling activation. Gas is highly enriched in the primary cilia of GNPs and blocks SMO-Gli ciliary translocation to block SMO
activation. These Gas-mediated intracellular cascades inhibit SHH-driven tumorigenic processes. Inactivation of Gas activity in cerebellar and epidermal progenitors leads
to activation of SHH-Gli and Hippo-Yap signaling and is sufficient to promote progenitor expansion and initiate MB and BCC formation, respectively. (B) GPCR-mediated
Gas activation, counterbalanced by Gaiactivity, increases cAMP levels and subsequently activates cAMP-dependent PKA signaling, leading to phosphorylation of Gli and
Yap, the effectors of canonical SHH and Hippo signaling, respectively, and inactivation of their transcriptional activity for cell proliferation and tumorigenesis.
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