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Aging hair follicles rejuvenated by transplantation to a young subcutaneous
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ABSTRACT
We demonstrate in the present study that young host mice rejuvenate aged hair follicles after
transplantation. Young mice promote the hair shaft growth of transplanted old hair follicles, as well as
young follicles, in contrast to old host mice, which did not support hair-shaft growth from transplanted old
or young follicles. Nestin-expressing hair follicle-associated pluripotent (HAP) stem cells of transplanted
old and young hair follicles remained active in young host nude mice. In contrast, the nestin-expressing
HAP stem cells in young and old hair follicles transplanted to old nude mice were not as active as in young
nude host mice. The present study shows that transplanted old hair follicles were rejuvenated by young
host mice, suggesting that aging may be reversible.
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Introduction

Recently, parabiosis experiments pairing old and young mice
have suggested that some features of aging organs in old mice,
in particular stem cells, can be reversed by factors in blood of
young mice,1 including brain,2,3 spinal cord,4 and heart.5

The hair follicle, which cycles through telogen (resting), ana-
gen (growing), and catagen (regression) throughout the life of
mammals, undergoes obvious age-related changes including
hair loss.6 The hair follicle contains hair-follicle-associated plu-
ripotent (HAP) stem cells,7-21 which may also deteriorate dur-
ing aging.

Instead of using complex parabiosis surgery,3 we used hair-
follicle subcutaneous transplantation in order to determine if
the hair follicle, including its ability to produce hair shafts, and
its HAP stem cells, can be rejuvinated.

Results and discussion

Young host nude mice rejuvenate aging hair follicles to
regrow long hair shafts

We transplanted young whisker hair follicles subcutaneously
into both young and old nude mice. We also transplanted old
whisker hair follicles into young and old nude mice (Fig. 1). In
young nude mice, the transplanted young hair follicles started
to establish blood vessel connections and hair shafts began to
grow by week 2, at which time the average length of the 10 lon-
gest hair shafts was 1.03 mm§ 0.16 mm. By week 4, the growth
rate of the hair shafts began to increase and the average of the
10 longest hair-shaft length was 4.37 mm § 0.88 mm. By week

6, the hair-shaft length was 5.99 mm § 1.69 mm, and at week
8, the hair-shaft length was 6.52 mm § 1.49 mm. The old hair
follicles transplanted to young nude mice also established blood
vessel connections by week 2, at which time the average length
of the 10 longest hair shafts was 0.73 mm § 0.12 mm. The
hair-shaft growth rate increased by week 4, having a hair-shaft
length of 1.98 mm § 0.55 mm and continued to grow at week
6 with a hair-shaft length of 2.70 mm § 0.81 mm, and at week
8 with a hair-shaft length of 3.62 mm § 0.59 mm. The growth
rate of old hair follicles in young nude mice was somewhat
slower than young hair follicles (Figs. 2 and 3).

In contrast, in old nude mice, both transplanted young and
old hair follicles failed to regrow extensive hair shafts (Figs. 2
and 3). At week 2 and week 4, both the young and old trans-
planted hair follicles had less blood vessel connections with old
host mice, in contrast to blood vessel connections in young
mice.

Therefore, our results showed that both young and old hair
follicles can regrow extensive hair shafts when transplanted to
young nude mice, while neither young nor old hair follicles can
regrow extensive hair shafts when transplanted to old nude
mice. These results suggest that young nude mice can provide a
more suitable environment to subcutaneously-transplanted
hair follicles, both young and old, than old nude host mice.
These results also suggest a large influence of the host nude on
the donated hair follicles, due to the fact that both young and
old hair follicles fail to regrow long hair shafts in old host mice.
Old hair follicles had the capability to regrow long hair shafts
when transplanted to young host mice, suggesting that old hair
follicles can be rejuvenated by young host mice.
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Hair follicle-associated pluripotent (HAP) stem cell
behavior in transplanted follicles in young and old mice

In young nude host mice, HAP stem cells in the trans-
planted follicles were active throughout the 8-week experi-
mental period as can be seen by their expression of nestin-
driven green fluorescent protein (ND-GFP). ND-GFP
expressing cells were widely distributed in both young and
old hair follicles transplanted to young host nude mice.
HAP stem cells were located in various areas of the follicle,
including the follicle sensory nerve, hair matrix bulb and
outer-root sheath. HAP stem cells surrounded the hair bulb
at week 8 suggesting their role in hair-shaft regrowth
(Fig. 4). In old hair follicles of old nude mice, most of the
ND-GFP expressing cells were located in the attached sen-
sory nerves but not in the center of the hair follicle as they
were in young follicles transplanted to young mice (Fig. 5).
Thus, the subcutaneous environment has a strong influence
on the HAP stem cells of young and old hair follicles.

Recent results have shown that young blood rejuvenates
aging organs, possibly via stem cells.1 Similarly, the young sub-
cutaneous environment stimulates or rejuvenates hair-shaft
growth in old follicles, also possibly via stem cells. We observed
that both young and old hair follicles established blood vessel
connections within 2 weeks after transplantation to young mice
(Fig. 2). In contrast, in old nude mice, both young and old hair
follicles failed to establish sufficient blood vessel connections.

This result indicated that hair-shaft regrowth failure of trans-
planted hair follicles in old host mice may be due to a deficiency
in angiogenesis in old nude mice.

The rejuvenated hair shaft regrowth capability of aging hair
follicles effected by subcutaneous transplantation into young
nude mice suggests that the aging hair loss (alopecia) may be
reversible. Furthermore, this hair follicle aging model is a rela-
tively short-term experiment compared to other life-long aging
experiments and an efficient tool to test hair-growth promoting
drugs.

Circadian-clock genes have been shown to regulate the hair
growth cycle, possibly by modulating the cell cycle in the sec-
ondary hair germ.22 The circadian genes may play a role in
aging of the hair follicle which is manifested in hair loss and
color.23 TP53 can convert CDKN1A (p21CIP1)-induced irre-
versible senescence into reversible quiescence possibly by inhib-
iting the mechanistic target of rapamycin (MTOR).24,25 High
doses of doxorubicin and nutlin-3a, an inhibitor of the interac-
tion between TP53 and its major negative regulator HDM2,
promoted reversible quiescence, instead of irreversible senes-
cence.25,26 MTOR inhibitors, such as rapamycin, may be able to
rejuvenate stem cells within the aging hair follicle, as well as
restore the responsiveness of the aging stem cells to stimuli.27

Future experiments will also focus on the role of stem cells in
the aging hair follicle and pharmaceutical rejuvenation of this
process, such as with rapamycin.

Figure 1. Experimental scheme for subcutaneous transplantation of whisker hair follicles. Whisker hair follicles were first isolated from both young and old nestin-driven
green fluorescent protein (ND-GFP) transgenic hairy mice and placed into culture medium. Both young and old hair follicles were subsequently transplanted into the sub-
cutis on both flanks of young and old non-transgenic nude mice. Please see the Materials and Methods for details.
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Materials and methods

Mice

Nestin-driven green fluorescent protein (ND-GFP) trans-
genic immunocompetent mice and non-transgenic nude
mice (AntiCancer, Inc., San Diego, CA), at different ages,
were used. ND-GFP is expressed in the hair-follicle associ-
ated pluripotent (HAP) stem cells.7,28 Mice were kept in a
barrier facility under HEPA filtration. Mice were fed with
an autoclaved laboratory rodent diet. All mouse surgical
procedures and imaging were performed with the animals
anesthetized by subcutaneous injection of a ketamine mix-
ture (0.02 ml solution of 20 mg/kg ketamine, 15.2 mg/kg
xylazine, and 0.48 mg/kg acepromazine maleate). All animal
studies were conducted with an AntiCancer Institutional
Animal Care and Use Committee (IACUC)-protocol

specifically approved for this study and in accordance with
the principles and procedures outlined in the National

Figure 2. Comparsion of hair-shaft growth from young and old hair follicles transplanted in young or old nude mice. Whisker follicles were isolated from young and old
ND-GFP transgenic hairy mice and transplanted to young and old non-transgenic nude mice. Hair-shaft length was measured with the Dino-Lite microscope imager.
Please see Materials and Methods for details.

Figure 3. Quantitative time-course growth data of the average of the 10 longest
hair shafts in the different groups after hair-follicle subcutaneous transplantation.
Please see legend to Figure 2 for details.
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Institutes of Health Guide for the Care and Use of Animals
under Assurance Number A3873-1, as described above.

Isolation and subcutaneous transplantation of whisker
hair follicles

Mice were anesthetized with the ketamine mixture described
above. The whisker pad of the nestin-GFP transgenic mice was
removed, and its inner surface was exposed and dissected under
a binocular microscope with a small scissors to separate each
follicle. The isolated follicles were quickly washed in PBS for
2 seconds and maintained in DMEM (GIBCO Life Technolo-
gies, Grand Island, NY) for transplantation.

Both young and old hair follicles were then transplanted into
the subcutis on both flanks of young and old nude mice (Fig. 1).
An “L” shape incision in the skin on the back of nude mice was
made using fine scissors and the hair follicle was carefully
inserted under the skin. On day-0, after obtaining images with
the portable Dino-Lite microscope imager (AM4113TGFBW

Dino-Lite Premier; AnMo Electronics Corporation, Taiwan),29

the skin was closed with a 6–0 suture. The host young nude
mice were approximately 4 weeks old, and aging host nude
mice were approximately 7.5 months old. Donor young hairy
ND-GFP mice were approximately 6 weeks old, while the
donor aging hairy ND-GFP mice were 14 months old. Four
groups were set up as follows: young transplanted hair follicle –
young host nude mice group (Young HF-Young mice); old
transplanted hair follicle – young host nude mice (Old HF-
Young mice); young transplanted hair follicle – old host nude
mice (Young HF-Old mice); and old transplanted hair follicle –
old host nude mice (Old HF-Old mice). Each group consisted
of 17-20 hair follicles. The skin flap, which contained the trans-
planted hair follicles was exposed and observed every 2 weeks
(0, 2, 4, 6, and 8 weeks). The transplanted hair follicles were
exposed by making a larger “L” shape incision around the edge
of the scar in the skin which resulted from transplantation of
the hair follicles as described above, on the back of nude mice,
and avoiding the hair follicles and connected blood vessels

Figure 4. Time-course comparison of ND-GFP fluorescence of HAP stem cells and their location in young and old hair follicles transplanted to young nude host mice. ND-
GFP expressing HAP stem cells were located in various areas: sensory nerve, hair matrix bulb area, and outer-root sheath area. HAP stem cell ND-GFP fluorescence was
imaged with the Dino-Lite. In the fluorescence images, each follicle is outlined with a dashed line and numbered for comparison with the brightfield images where the
follicles are numbered. Please see the Materials and Methods for details.
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associated with them. The skin was lifted and the skin-flap
opened in order to obtain images with the portable Dino-Lite
microscope imager. After obtaining the images, the incision
was closed with a 6–0 suture.

Measurement of hair shaft length

In vivo hair-follicle images, obtained with the Dino-Lite, were
used to determine the length of each hair shaft using Image Pro
Plus 6.0 software. The average length of the 10 longest hair
shafts in each group is presented as the mean § SEM. Group
differences were obtained using the ANOVA test. The signifi-
cance level for all tests was P < 0.05.
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