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Specific interactions are a hallmark feature of self-assembly and
signal-processing systems in both synthetic and biological settings.
Specificity between components may arise from a wide variety of
physical and chemical mechanisms in diverse contexts, from DNA
hybridization to shape-sensitive depletion interactions. Despite this
diversity, all systems that rely on interaction specificity operate under
the constraint that increasing the number of distinct components
inevitably increases off-target binding. Here we introduce “capacity,”
the maximal information encodable using specific interactions, to
compare specificity across diverse experimental systems and to com-
pute how specificity changes with physical parameters. Using
this framework, we find that “shape” coding of interactions
has higher capacity than chemical (“color”) coding because the
strength of off-target binding is strongly sublinear in binding-
site size for shapes while being linear for colors. We also find
that different specificity mechanisms, such as shape and color, can
be combined in a synergistic manner, giving a capacity greater than
the sum of the parts.
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Specific interactions between many species of components are
the bedrock of biochemical function, allowing signal trans-

duction along complex parallel pathways and self-assembly of
multicomponent molecular machines. Inspired by their role in
biology, engineered specific interactions have opened up tremen-
dous opportunities in materials synthesis, achieving new mor-
phologies of self-assembled structures with varied and designed
functionality. The two major design approaches for program-
ming specific interactions use either chemical specificity or shape
complementarity.

Chemical specificity is achieved by dividing binding sites into
smaller regions, each of which can be given one of A “colors” or
unique chemical identities. Sites bind to each other based on the sum
of the interactions between corresponding regions. For example, a
recent two-color system paints the flat surfaces of three-dimensional
polyhedra with hydrophobic and hydrophilic patterns (1) or with a
pattern of solder dots (2), allowing polyhedra to stick to each other
based on the registry between their surface patterns. Another pop-
ular approach uses DNA hybridization, where specific matching of
complementary sequences has been used to self-assemble structures
purely from DNA strands (3, 4) and from nanoparticles coated with
carefully chosen DNA strands (5–9).

Shape complementarity uses the shapes of the component sur-
faces to achieve specific binding, even though the adhesion is via a
nonspecific, typically short-range potential. In the synthetic context,
shape-based modulation of attractive forces over a large dynamic
range was first proposed and experimentally demonstrated for col-
loidal particles (10, 11), using tunable depletion forces (12, 13).
Recent experiments have explored the range of possibilities opened
up by such ideas, from lithographically designed planar particles (14)
with undulating profile patterns to “Pacman” particles with cavities
that exactly match smaller complementary particles (15). The num-
ber of possible shapes that can be made using these types of methods
depends on fabrication constraints but the possibilities can be quite
rich (16, 17). Using only nonspecific surface attraction, experiments
have achieved numerous and complex morphologies such as clusters,
crystals, glasses, and superlattices (10, 18–21).

A further class of programmable specific interactions combines
both chemical specificity and shape complementarity. The canonical
example is protein-binding interactions (22); the binding interactions
between two cognate proteins are specified by their amino acid se-
quence, which programs binding pockets with complex shape and
chemical specificity. Recent efforts (23, 24) aim to rationally design
these protein interactions for self-assembly. Because both the shape
of the binding pocket and its chemical specificity are determined by
the same amino acid sequence, these two features cannot be con-
trolled independently. Other synthetic systems offer the promise of
independent control of chemical and shape binding specificity, giving
a larger set of possible interactions.

These diverse systems achieve specific interactions through dis-
parate physical mechanisms, with different control parameters for
tuning binding specificity. However, they must all solve a common
problem (25, 26): create a family of N “lock” and “key” pairs that
bind well within pairs but avoid off-target binding across pairs
(“crosstalk”). Any crosstalk limits the efficacy of the locks and keys.
For example, in the context of DNA-based affinities, although there
are 4L unique sequences of length L, the strong off-target binding
severely restricts the number that can be productively used. Analo-
gously, for colloidal systems driven by depletion interactions, there
can be significant off-target binding due to partial contact. The
performance of a system of specific interactions depends acutely on
how the system constraints (e.g., number of available bases, fabri-
cation length scale, etc.) limit its ability to avoid crosstalk.

In this paper, we develop a general information theory-based
framework for quantitatively analyzing specificity in both natural and
synthetic systems. We use a metric based on mutual information to
derive a bound on the number of different interacting particles that a
system can support before crosstalk overwhelms interaction speci-
ficity. Increasing the number of nominally distinct pairs beyond this
limit cannot increase the effective number of distinguishable species.
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We compute this information-theoretic “capacity” for different ex-
perimental systems of recent interest, including DNA-based affini-
ties and colloidal experiments in shape complementarity. We show
that shape-based coding fundamentally results in lower crosstalk and
higher capacity than color-based coding. We also find that shape-
and color-based coding can be combined synergistically, giving a
superadditive capacity that is greater than the sum of the color and
shape parts.

The Capacity of Random Ensembles
We consider systems where every component is designed to interact
specifically with a single cognate partner, whereas interactions be-
tween “off-target” components are undesirable crosstalk. We assume
that N distinct “locks” x1, x2,. . ., xN ∈X, have unique binding part-
ners, “keys” y1, y2,. . ., yN ∈Y (Fig. 1A). The physics of a particular
system determines the binding energy Eij ≡Eðxi, yjÞ between every
lock and key. Assuming equal concentrations of locks and keys in a
well-mixed solution, binding between lock xi and key yj will occur
with probability pðxi, yjÞ= e−βEij=Z, where Z is a normalization factor
such that

P
i,jpðxi, yjÞ= 1 (Supporting Information) and β−1 = kBT is

the temperature scale. The mutual information IðX ;Y Þ transmitted
through binding is defined as

IðX ;Y Þ=
X

xi∈X , yj∈Y
p
�
xi, yj

�
log2

p
�
xi, yj

�

pðxiÞp
�
yj
�, [1]

where pðxiÞ is the marginal distribution of xi, representing the
total probability of seeing xi in a bound pair [and similarly
pðyjÞ]. Mutual information IðX ;Y Þ is a global measure of inter-
action specificity in systems with many distinct species; it quan-
tifies how predictive the identity of a lock xi is of the identity of a
key yj found bound to it.

Consider a set of interacting lock–key pairs for which Eii = s for all
cognate pairs (strong binding), whereas for crosstalking interactions
(weak binding) Eij =wij = s+Δij. We assume Δij are independent and
identically distributed random numbers drawn from a distribution of
gap energies ρðΔÞ, with Δ> 0, where the exact form of ρðΔÞ depends
on the physics of the system. Denoting hi as an average with respect
to ρðΔÞ, one can approximate Eq. 1 as

I = log2NeffðNÞ, [2]

NeffðNÞ= N
1+ ðN − 1Þhe−βΔi e

−
�
ðN−1ÞhβΔe−βΔi

�
1+ðN−1Þhe−βΔi

���
[3]

(Supporting Information). In a system with crosstalk that contains
N nominally distinct lock–key pairs, NeffðNÞ is the effective num-
ber of fully distinguishable lock–key pairs. Neff can be much
smaller than N if crosstalk is significant [e.g., if he−βΔi∼Oð1Þ].

Intuitively, information theory predicts that a system with NeffðNÞ
noncrosstalking lock–key pairs can perform a task with the same
effectiveness as a system with N crosstalking species. For example, in
the self-assembly of a multicomponent structure, distinct but cross-
talking species can take each other’s place, decreasing the effective
number of species. This effect has been shown to reduce self-
assembly yield (27–29). Similarly, the efficacy of N parallel signaling
pathways is known to be reduced by crosstalk (30). In Fig. 1B we
show a typical plot of I = log2NeffðNÞ. Neff grows initially with N, but
stops growing at N ∼NC, the point of diminishing returns; adding any
further species beyond NC increases only the superficial diversity of
species but cannot increase Neff.

Paralleling Shannon’s theory of communication, we define
“capacity” C as

C ≡ max
N

I = log2NeffðNCÞ [4]

(Fig. 1B). [Capacity in information theory is often measured in
bits per second, whereas here we intentionally use the same units as
I. Furthermore, capacity is traditionally defined as a maximum over
all possible distributions pðXÞ; here we restrict to maximizing only
over one parameter, N, where all N pairs are randomly chosen from
the ensemble (Supporting Information).] The capacity is the largest
number of bits of information that can be encoded using a system of
specific interactions and still be uniquely resolved by the physics
of interactions. Determining C, or equivalently the largest value
of Neff, is of crucial importance to both synthetic and biological
systems because it limits, for example, the number of independent
signaling pathways or the complexity of self-assembled structures.

We can compute capacity for any crosstalk energy distribution
ρðΔÞ by finding the maximum of Eq. 3. A useful approximation is

C≈−log2
�
βΔe−βΔ+1

�
, [5]

giving a simple rule for the dependence of capacity on the
binding energy distribution (Supporting Information). The impor-
tance of maximizing βΔ̂≡ − loghβΔe−βΔi in Eq. 5 is intuitive: To
increase the capacity of the system, the (exponential average of
the) gap between on-target binding βs≡ − loghe−βsi and off-target
binding βw≡ − loghe−βwi should be made as large as possible (see
Supporting Information for the precise relationship between Δ̂, s
and w). Fig. 1C shows three distinct probability distributions, two
of which have identical Δ̂. As predicted, Neff reaches a higher
maximum for distributions with larger Δ̂.

We note that our definition of capacity uses equilibrium binding
probabilities and hence applies only at long times compared with
unbinding times. In practice, this typically limits jsj≤ 10  kBT, and so
we use this bound on s herein. The formalism can be easily extended
to include kinetic effects by computing pðxi, yjÞ at a finite time t, al-
though this is not our focus here.

In what follows, we show how capacity depends on binding interac-
tions and fabrication constraints for several systems of recent interest. In
most systems, the on-target binding energy typically strengthens with the
binding surface area S of cognate pairs as s=−eS, where « is the binding
energy per unit area. However, we find that the off-target energies w can
grow with S at very different rates across several systems we study. We
parameterize this variation as
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Fig. 1. Information theory determines the capacity of systems of specific
interactions. (A) A model system of locks (black) that each bind with energy s
to their specific key (gray) via some specific interaction. (B) As the number N
of lock–key pairs is increased, noncognate locks and keys inevitably start
resembling each other as they fill up the finite space of all possible com-
ponents (boxes), both with optimized or random design of lock–key pairs
(circles). Consequently, mutual information I between bound locks and keys
rises with N for small N but reaches a point of diminishing returns at N=NC;
due to the rapid rise in off-target binding energy, I can no longer increase
and, for randomly chosen pairs, will typically decrease. The largest achiev-
able value of I is the capacity C. (C) Capacity C can be estimated from the
distribution ρðΔÞ of the gap Δ=w − s between off-target binding energy w
and on-target binding energy s for randomly generated lock–key pairs.
Among the three distinct ρðΔÞ shown, the blue distributions have the same
βΔ̂=−loghβΔe−βΔiρ. (C, Inset) IðNÞ (compare Eq. 3) is the same for the blue
distributions that, despite being markedly different in shape, have the same
Δ̂, which captures the essential aspects of crosstalk.
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w=−eαSγ , [6]

where α, γ depend on the details of binding interactions. We
show below that if the specificity is determined purely by “colors”
(i.e., chemical identities), then γ = 1. In contrast, if specificity
arises from shape complementarity, γ ≈ 0, as long as the range
of the surface attraction is small compared with the length scale
of shape variation. Thus, crosstalk grows very slowly with the
number of independent binding units in shape-based systems,
allowing for a dramatic decrease in crosstalk and improvement
of capacity relative to systems that use chemical specificity.

The Capacity of Color
We first consider the capacity of interactions mediated through
binding sites that are subdivided into multiple regions, each of which
can be assigned any one of A chemical identities or colors. We take
inspiration from DNA coding that acts via complementary hybrid-
ization between single-stranded DNA. Previous work (31) developed
engineering principles for determining the optimal length and nucleo-
tide composition of these DNA strands based on detailed models of the
binding energy. Information theoretic measures have also been used
to understand binding of transcription factors to DNA and other se-
quence-based molecular recognition problems (32–36). Although the
theory of DNA coding has a long history (37), our contribution here
formulates the problem in a mutual information framework that relates
the capacity to a physical quantity and hence allows for direct com-
parison of varied chemical (color) and shape systems.

In our simplified color model, a lock is composed of L units, each of
which is painted with one of A chemical colors (Fig. 2A). Each color
binds to itself with energy −e and binds to other colors with energy 0,
such that locks and their cognate keys have the same sequence. The
binding energy of any two strands xi and yj is given by Eij =

PL
l=1−eδxli ,ylj

(where xli is the color of the lth site of xi, and δ is the Kronecker
delta). We analyze this system with translations, where Eij is given by
the strongest binding across all possible translations of the two strands
relative to each other, as well as without translations.

We calculate IðNÞ by sampling N randomly selected pairs of locks
and keys, constructing the interaction matrix E, and computing IðNÞ
using Eq. 1. We average IðNÞ over many repetitions. An approximate
but faster method to compute IðNÞ (necessary for large L,N) uses
Eq. 3, sampling random pairs of off-target locks and keys to estimate
he−βΔi and hβΔe−βΔi. The two methods give nearly identical results
(Supporting Information and Fig. S2), and the calculations in this
paper henceforth are carried out with the second method.

Fig. 2B examines IðNÞ when L= 10, A= 4, and e= 1  kBT so that a
lock and its key bind together with on-target energy βs=−10. The
mutual information has a maximum of 5.5 bits near NC = 146, far less
than the total number of unique sequences (410 = 1,048,576). Due to
crosstalk, even though there are nominally 146 pairs at capacity, the
system behaves as if there are only Neff = 44 independent pairs.

An obvious way of increasing capacity is to boost Δ̂ by increasing
L. This strengthens both on-target binding and off-target binding,
because both s and w scale with L ðβw=−L logððA− 1+ eβeÞ=AÞÞ.
However, the gap between them widens (Fig. 2C, solid lines), and the
capacity scales linearly with L (Fig. 2C, Inset) (Supporting Information).
As a comparison, we also show the capacity when translation is
allowed between any two strands. Off-target strands can now translate
until they find the strongest binding, increasing crosstalk and thus
lowering capacity.

In practice, on-target binding jsjmust be limited to below ∼10 kBT
for the binding to be reversible; hence L cannot be increased arbi-
trarily without also decreasing «. An alternate way to increase ca-
pacity at fixed s is to increase the number of colors A. As A→∞,
accidental mismatches in off-target binding are rare; jwj→ 0, and the
capacity is limited only by s. In Fig. 2D, capacity in the large A limit
can be approximated by setting βΔ=−s= 10 in Eq. 5, giving C= 9.6
bits. However, in practice, alphabet size A cannot be easily increased in
experiments, and other techniques must be used to decrease the off-
target binding strength, such as the use of shape complementarity.

The Capacity of Shape
Systems of interacting, complementary shapes are characterized by
the nonspecific binding of surfaces mediated by a short-range force
of characteristic length λshape. The components’ shapes sterically allow
or inhibit two surfaces from coming into contact, dictating specificity.
We find that crosstalk is qualitatively weaker in such shape-based
systems, resulting in higher capacity than in color-based models.

We examine the capacity of a model inspired by a recent experi-
mental system consisting of lithographically sculpted micron-sized
particles with complementary shapes (14) whose attractive interac-
tions are mediated by the depletion force. The constraints on the
shapes of these components (size <  10 μm, line width >  400 nm,
radius of curvature >  200 nm) still leave a large variety of shapes that
can interact in a lock and key fashion, yet crosstalk between similarly
shaped components reduces the number of effectively unique pairs.
We model this system by defining each solo component as a series of
L adjoining bars of various heights, whose profile is similar to a
Tetris piece. For each lock xi, the shape of the cognate key yi is ex-
actly complementary, as in Fig. 3A. We account for fabrication
constraints by setting the width of each bar to 1 μm and restricting
the change of one bar height relative to its neighboring bars to be
less than δ= 1 μm. Depletant particles of diameter d (typically
100  −   200 nm) create an attractive energy of −eðd− hÞ for two
surfaces separated by h< d. Thus, λshape ∼ d. In experiments, « is set
by the depletant particle volume fraction and the temperature. In
principle, the fabrication fidelity must also be accounted for, as local
defects in the shape will disrupt cognate binding. The effect of such
defects is shown in Fig. S3; we find that defects of size much less than
d, the depletant particle size, have minimal impact on capacity. We
assume such a limit in the remainder of the text.

We find that crosstalk with shapes differs fundamentally from
the color models discussed earlier. Whereas on-target binding
strength still increases linearly with L, off-target binding is almost

A B

C D

Fig. 2. Complementary color components demonstrate the capacity of pro-
grammable interactions. (A) Each lock xi has L distinct units, each of which can
be one of A= 4 colors or chemical identities. Each color has a strong affinity «

for itself. Cognate locks and keys have the same sequence of colors and bind
with energy s=−eL. Off-target binding energy w is given by the number of
accidental color matches; w =−5e in the example shown. (B) Mutual in-
formation as a function of N, the number of lock–key pairs. I increases initially
as logðNÞ, but then reaches a maximum value, the capacity, and then decreases
(L= 10, e= 1  kBT, A= 4). (C) Increasing L increases both the on-target strength
jsj and the off-target strength jwj. (C, Inset) Capacity scales linearly with L. If
translation is allowed, jsj is unaffected, but jwj is higher (black, dashed line),
and therefore the capacity is lower (red, dashed line) (L= 10, e= 1  kBT, A= 4).
(D) Increasing the alphabet size A does not affect on-target binding s, but does
decrease jwj, thereby increasing Δ̂ (L= 10, e= 1  kBT).
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independent of L (Fig. 3C). In fact, we find that for large enough L,
off-target binding w∼ −L0; for larger δ=d (or smaller L), w is still
strongly sublinear in L (Supporting Information and Fig. S4). The
weak dependence of w on L can be understood intuitively, as a lock
pressed to a random mismatched key will typically come into contact
at a single location. In contrast, in color-based systems, off-target
locks and keys are in full contact and hence w∼ −L. Thus, Δ̂ and
hence capacity C for shape systems can be significantly higher than
for color-based systems with the same strong binding energy s. In Fig.
3B, Cshape = 7.8 bits whereas Ccolor = 5.5 bits with similar parameters
(s=−10  kBT, L= 10). Finally, in Fig. 3D, for fixed L, we find that
capacity falls rapidly and all specificity is lost when the spatial range
of depletion interactions λshape ∼ d exceeds the scale of spatial fea-
tures δ, as expected. These results are consistent with earlier ex-
periments (12) and computational models (13) that established a
high dynamic range in the strength of depletion interactions between
surfaces roughened by asperities and in particular found that the
attraction between surfaces was diminished when the asperity height
was below the depletion particle size.

Our results, although intuitive in retrospect, point to a qualitative
advantage for coding through shapes; random mismatched shapes
have a crosstalk that is, at worst, sublinear in binding-site size
whereas crosstalk is linear in site size for color-based systems. Our
work suggests that such increased specificity is very robust as it is
derived from basic properties of shape itself. Knowing the precise
benefits of shape-based coding is important in deciding to in-
corporate it in engineering efforts going forward.

We may further apply this framework to the recent experimental
system of Pacman-like lock–key colloids. In this system (15), a key is
a sphere of radius r (typically 1–3 μm), whereas its cognate lock is a
larger sphere with a hemispherical cavity of radius r, complementary to
its key (Supporting Information and Fig. S5). The attraction is mediated
by depletant particles of diameter d≈ 50− 100 nm. Multiple pairs of

locks and keys may be used concurrently, with the ith pair having a key
radius of ri, with the risk of keys binding to incorrect locks.

How should one choose N lock–key radii ri to minimize crosstalk
and maximize capacity? We may gain some intuition by considering a
system containing only two lock–key pairs of radii r1 and r2, re-
spectively. The on-target binding energies of the two pairs are pro-
portional to the area of contact: E11 ∼ r21, E22 ∼ r22 because each key
makes perfect contact with its own lock. Assuming r1 < r2, crosstalk
energy E12 ∼ r1, corresponding to the larger key of size r2 contacting
an annulus around the smaller lock of size r1. The other crosstalk
energy E21 ∼ r22 − ðr2 − r1Þf ðr2, dÞ is typically much larger, corre-
sponding to the smaller key fitting into the larger lock of size r2 (see
Supporting Information for complete derivation). Thus, there are two
competing pressures on the radii r1, r2: Increasing the overall size of
both pairs r1, r2 improves specificity because the on-target energies
r21 , r

2
2 grow faster than the crosstalk terms. However, E21 grows rap-

idly if the radii are too similar to each other. Hence the optimal
solution for N = 2 requires setting r2 =Rmax (the largest allowed ra-
dius) and r2 − r1 ≈ d. The binding energy of six particles (in this case
optimally chosen to maximize I) is shown in Fig. 4A, with on-target
binding and the two types of off-target binding shown.

This intuitive argument does not capture many-body effects that
determine capacity for larger N. We find the optimal frigN at fixed N
by maximizing the mutual information I in Eq. 1 numerically through
gradient descent; note that Eq. 3 cannot be used because the on-
target binding energy s varies across pairs. Fig. 4B (solid line) shows
the mutual information of optimally chosen radii as a function of N,
an improvement over randomly chosen radii (dashed line). Fig. 4C
shows the optimal set of radii for various N, with d= 100 nm and
Rmax = 3 μm; the optimal spacing of the radii is OðdÞ.

Interestingly, when N > 6, the system has saturated. I does not in-
crease any further (Fig. 4B) and the optimal set involves repeating locks
and keys of the smallest radii. Intuitively, the smallest lock–key pairs
have become so small that making an additional lock–key pair of an
even smaller radius would yield very low self-binding energy relative to
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Fig. 3. Complementary shapes demonstrate the capacity of programmable
interactions. (A) Each shape xi is made of L vertical bars of different heights
and has a corresponding binding partner yi shaped exactly as its complement;
interactions are mediated via depletant particles of diameter d, and each
adjoining bar can change by a maximum amount of δ. (B) Mutual information
as a function of N, the number of lock–key pairs, showing a capacity of 7.8 bits
(L= 10, d= 0.2 μm, δ= 1 μm, s=−10  kBT). (C) Increasing L increases the on-
target binding strength jsj (blue), but has little effect on off-target binding
strength jwj (black), unlike with colors (Fig. 2C). (C, Inset) Capacity scales lin-
early with L. Allowing translations has no effect on jsj, but increases jwj (black,
dashed line) and therefore decreases C (red, dashed line). (d = 0.07 μm,
δ= 1 μm, e= 1  kBT). (D) Fixing s=−10  kBT, the capacity can be increased by
increasing δ: When δ=d is small, on-target keys are indistinguishable from off-
target keys, and so capacity is small. Increasing δ decreases the crosstalk, and
capacity increases accordingly.

A B

C D

Fig. 4. Pacman lock–key pairs demonstrate the capacity of shape space.
(A) Interaction energies of six optimally selected lock–key pairs. Cognate locks
and keys fit snugly, whereas crosstalk is most severe between small keys and
larger locks. (B) Mutual information plotted as a function of the number of
pairs N shows that both optimal (solid) and random (dashed) sets of frigN
display a maximum in mutual information. [The radius for random lock–key
pairs is drawn uniformly from (1, 3) μm.] (C) Each row, plotted at y =N, shows
the optimal frigN for N lock–key pairs. After saturation (N> 6), particles
are duplicated (overlapping circles). (C, Inset) Mutual information with r2
held fixed at 3 μm varies as r1 changes and has a maximum at r1 ≈ r2 −d
(d= 100 nm, smax =−8  kBT). (D) The capacity decreases with larger depletant
particle size. (On-target binding at r =Rmax is fixed to −8  kBT.)
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the incurred crosstalk. Hence the only way to increase N without de-
creasing I is to create new nominal pairs at the smallest radius; such
pairs are obviously indistinguishable through physical interactions and
hence do not increase mutual information any further. We find that the
capacity decreases with increasing size of depletant particles and that by
d= 400 nm the system is saturated (reuses radii) when N > 2. Similarly,
increasing Rmax (with fixed largest cognate binding energy s=−8  kBT)
increases capacity.

Thus, we find that this colloidal particle system can support about
N ∼ 6  −   8 lock–key pairs without much crosstalk, with depletion
particles of diameter 100 nm and restricting the largest binding energy
to smax =−10  kBT. This is far smaller than the capacity of the previously
described DNA sequences or general shape-based strategies. However,
these lock–key colloidal pairs are characterized by only one parameter
(the radius), so the space of available pairs is significantly smaller than
DNA or shape systems with L parameters. In particular, in the current
system, additional lock–key pairs are forced to be of smaller radii and
hence of lower and lower cognate binding energies. Such considerations
emphasize the importance of quantitative information-theoretic opti-
mization in systems with such a limited shape space.

Combining Channels
Thus far we have focused on locks and keys interacting exclusively
through a single kind of physical interaction. Using our quantitative
framework, we may now ask how capacity increases when multiple
sources of specificity, such as shape and color, are combined in a
single set of locks and keys. As is known in information theory (38,
39), the combined capacity of two interacting channels can be sig-
nificantly higher than the sum of the individual capacities.

Linking Two Systems. The simplest model for combining two chan-
nels is to physically link a lock of system 1 to a lock of system 2. We
assume that there is no interaction between the two parts of the lock
or between the key from one system and the lock of the other system.
(We do not take into account entropic effects due to avidity.) Thus,
for a linked system (which we denote as System1 ⊕ System2), the two
independent systems with gaps of Δ1 and Δ2 are combined such that
ΔTot =Δ1 +Δ2. Hence the gap distribution of the linked system is the
convolution of the independent systems: ρTotðΔÞ= ρ1ðΔÞ * ρ2ðΔÞ, and
the capacity can be computed using Eq. 3 in terms of the gap dis-
tributions of the individual systems.

When two channels are linked in this form without any interaction,
we expect the total capacity of the system to be CTot =C1 +C2 (39).
We explicitly compute this linked capacity for the physical system
shown in Fig. 5A, Left, in which a color system of length L is linked to
a shape system of length L (Shape ⊕ Color). The distribution ρTotðΔÞ,
obtained by convolving ρcolorðΔÞ and ρshapeðΔÞ, is shown in Fig. 5B.
The resulting capacity CTot ≈C1 +C2 is additive up to logL correc-
tions that are small when L is large (Supporting Information).

Mixing Two Systems. In a mixed system, the physics of the individual
systems are combined, and there is no general formula for the
resulting gap distribution because ΔTot ≠Δ1 +Δ2. We study a model
in which the surfaces of shapes are coated with chemical colors, and
we denote mixed systems by System1 ⊗ System2 (Fig. 5A, Right). The
energy is the sum of the shape and color interactions, but the color
interaction energy implicitly depends on the shape; only when the
surfaces are near each other can the color-dependent interaction
matter. We assume a distance dependence of the color interaction,
with length scale λcolor, such that the energy of interaction decays as
e−h=λcolor for two surfaces separated at a distance h.

We can intuitively understand how the mixed model differs from
the linked model by examining random off-target pairs, as shown in
Fig. 5A. In the ⊕ model, crosstalk arises from accidental matches in
either independent channel; hence the crosstalk is simply the sum of
the number of matching sites in the two channels. However, in the ⊗
model, crosstalk in the color channel can arise at a site only when there
is an accidental match in both color and shape channels at that site.
For example, in Fig. 5A, all three matching color sites contribute to
crosstalk in the ⊕ model. However, in the ⊗ model, these three sites
are not accidentally matched in the shape channel; because the three
color sites are not in contact, they do not contribute to crosstalk. As a
result, off-target binding is generally weaker and the typical gap Δ
higher in the ⊗ model, as we find in Fig. 5B. Thus, the mixing of shape
and color in this interactive manner increases the capacity.

We may further examine how the capacity changes as a function of
λcolor, the interaction range of the color system. When λcolor is small
compared with δ, the maximum height of local shape features, shape
features can be easily distinguished by the color force and so the
color and shape work in concert to increase capacity. Increasing λcolor
blurs the shape contours and the color interactions no longer dis-
tinguish shapes, thereby becoming less specific. Indeed, Fig. 5C
shows that when λcolor=δ becomes large, the color system and the
shape system act independently, and the capacity relaxes to the ca-
pacity of the linked system Shape ⊕ Color.

In summary, laying out color-based codes on undulating surfaces
significantly reduces the total crosstalk because color-matched sites
must also be matched in shape to contribute to crosstalk. Such color–
shape synergy persists as long as the spatial range of color interac-
tions is shorter than the length scale of shape variation.

Discussion
Here we have shown that mutual information provides a general
metric for specificity, bounding the number of distinct lock–key pairs
that can be supported by systems of programmable specific affinities.
Mutual information is well suited as a measure of specificity for
many reasons. First, mutual information is a global measure of
specificity, accounting for all possible interactions between N species
of locks and keys. Second, as a result, it provides a precise answer as
to how many particle pairs can be productively used in a given sys-
tem. As N is increased, crosstalk necessarily increases as we crowd

A

B C

Fig. 5. Color and shape can be combined synergistically. (A) Shape and color
can be “linked” in an independent manner (Left, ⊕ ) or “mixed” in a de-
pendent manner (Right, ⊗ ), where the shapes are coated with the chemical
binding agent. Crosstalk in ⊕ results from accidental matches in either channel,
whereas in the ⊗ model, accidental matches in color contribute to crosstalk
only if shapes are also matched at the same sites. (B) As a result, the gap energy
for Shape ⊗ Color is higher than for Shape ⊕ Color. Here L= 10 for both color
and shape, d = 0.05 μm, δ= 1 μm, A= 4, and λcolor = 0.01 μm. (C) The capacity
as a function of λcolor, the spatial range of color-based interactions. When λcolor
is smaller than δ, the typical size of shape-based features, shape helps reduce
crosstalk in color. This synergy is lost when λcolor ∼ δ, and color and shape act
independently (exl=yl = 0.5  kBT , exl≠yl = 0.25  kBT) (Supporting Information).
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the space of possible components (Fig. 1B) (25), with more and more
lock–key pairs. Capacity is determined by the point N =NC at which
the information gain due to larger N is negated by the increase
in crosstalk.

Third, we can use mutual information to quantitatively compare
disparate types of programmable interactions, from DNA hybrid-
ization to depletion-driven interactions. Our framework can also
quantitatively predict how varying physical parameters (e.g., de-
pletion particle size, range of interactions, elastic modulus of shapes)
raises or lowers specificity. The models we discuss can be further
refined in various ways, for example by allowing DNA strands to
fold, examining shapes in three dimensions, or taking into account
the entropic effects of multivalency and avidity (40).

Using such an approach, we found that (i) shape complementarity
intrinsically suffers less crosstalk than color (i.e., chemical specific-
ity)-based interactions and (ii) multiple physical interactions, such as
color-based and shape-based interactions, can be combined in a
synergistic manner, giving a capacity that is greater than the sum of
the parts. Such predictions are especially valuable, given the pro-
liferation of different mechanisms for creating and combining dis-
tinct mechanisms of specificity: Mutual information provides an
unbiased way of comparing their efficacy to each other. As pro-
grammable specificity continues to drive technological developments
in self-assembly (41), understanding how the mutual information of
paired components can be built up toward creating larger, multi-
component objects is a critical future direction of this work.

Although we focus on applications to colloidal systems, we note
that the framework developed here can be used to study biological
systems as well. In 1894, Emil Fischer proposed the “lock and key”
model as an analogy for understanding enzyme–substrate specificity
(42), focusing on the physical shapes of paired interacting components;

mutual information encompasses this idea and can be applicable to a
large number of biological systems. In particular, our model is useful
for predicting the differences between interacting proteins that use
shape complementarity alone and those that combine both shape and
electrostatic complementarity (e.g., Dpr-DIP vs. Dscam proteins) (43)
and may also be applied to a host of other biological interaction net-
works (22) where information transmission and pair specificity play
critical roles in biological function [e.g., histidine kinase/response reg-
ulator proteins (44) and the immune system (25)]. Crucially, the mutual
information model provided above is flexible enough to be extended
to some of the challenging physics encountered in biology. Non-
equilibrium systems can be accounted for by computing time-de-
pendent probabilities of interactions instead of the equilibrium
probabilities, whereas hypotheses for increased specificity like “in-
duced fit” and recent variants (35) can be tested directly for their
impact on capacity.

In this work, we have shown that mutual information is a powerful
tool to describe diverse specificity models. The strength of our
framework is that it is broadly applicable—it may immediately be
applied to any system for which the pairwise energies of interactions
are known, both in biology and in synthetic experiments. We believe
that using the capacity as a measure of system specificity will provide
a simple metric for analyzing, comparing, and optimizing systems of
programmable interactions.
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