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Biological carbon fixation is a key step in the global carbon cycle that
regulates the atmosphere’s composition while producing the foodwe
eat and the fuels we burn. Approximately one-third of global carbon
fixation occurs in an overlooked algal organelle called the pyrenoid.
The pyrenoid contains the CO2-fixing enzyme Rubisco and enhances
carbon fixation by supplying Rubisco with a high concentration of
CO2. Since the discovery of the pyrenoid more that 130 y ago, the
molecular structure and biogenesis of this ecologically fundamental
organelle have remained enigmatic. Here we use the model green
alga Chlamydomonas reinhardtii to discover that a low-complexity
repeat protein, Essential Pyrenoid Component 1 (EPYC1), links Rubisco
to form the pyrenoid. We find that EPYC1 is of comparable abun-
dance to Rubisco and colocalizes with Rubisco throughout the pyre-
noid. We show that EPYC1 is essential for normal pyrenoid size,
number, morphology, Rubisco content, and efficient carbon fixation
at low CO2. We explain the central role of EPYC1 in pyrenoid bio-
genesis by the finding that EPYC1 binds Rubisco to form the pyrenoid
matrix. We propose two models in which EPYC1’s four repeats could
produce the observed lattice arrangement of Rubisco in the Chlamy-
domonas pyrenoid. Our results suggest a surprisingly simple molecu-
lar mechanism for how Rubisco can be packaged to form the pyrenoid
matrix, potentially explaining how Rubisco packaging into a pyrenoid
could have evolved across a broad range of photosynthetic eukary-
otes through convergent evolution. In addition, our findings repre-
sent a key step toward engineering a pyrenoid into crops to enhance
their carbon fixation efficiency.
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Rubisco, the most abundant enzyme in the biosphere (1), fixes
CO2 into organic carbon that supports nearly all life on Earth

(2, 3). Over the past 3 billion y, the enzyme became a victim of its
own success as it drew down the atmospheric CO2 concentration to
trace levels (4) and as the oxygen-producing reactions of photo-
synthesis filled our atmosphere with O2 (4). In today’s atmosphere,
O2 competes with CO2 at Rubisco’s catalytic site, producing the
toxic compound phosphoglycolate (5). Phosphoglycolate must be
metabolized at the expense of energy and loss of fixed carbon and
nitrogen (6). To overcome Rubisco’s limitations, many photosyn-
thetic organisms have evolved carbon-concentrating mechanisms
(CCMs) (7, 8). CCMs increase the CO2 concentration around
Rubisco, decreasing O2 competition and enhancing carbon fixation.
At the heart of the CCM of eukaryotic algae is an organelle

known as the pyrenoid (9). The pyrenoid is a spherical structure in
the chloroplast stroma, discovered more than 130 y ago (10–12).
Pyrenoids have been found in nearly all of the major oceanic
eukaryotic primary producers and mediate ∼28–44% of global
carbon fixation (SI Appendix, Table S1) (3, 13–17). A pyrenoid
typically consists of a matrix surrounded by a starch sheath and

traversed by membrane tubules continuous with the photosynthetic
thylakoid membranes (18). This matrix is thought to consist primarily
of tightly packed Rubisco and its chaperone, Rubisco activase (19).
In higher plants and non–pyrenoid-containing photosynthetic eu-
karyotes, Rubisco is instead soluble throughout the chloroplast stroma.
The molecular mechanism by which Rubisco aggregates to form the
pyrenoid matrix remains enigmatic.
Two mechanisms for Rubisco accumulation in the pyrenoid have

been proposed: (i) Rubisco holoenzymes could bind each other
directly through hydrophobic residues (20), or (ii) a linker protein
may link Rubisco holoenzymes together (18, 20). The second model
is based on analogy to the well-characterized prokaryotic carbon
concentrating organelle, the β-carboxysome, where Rubisco aggre-
gation is mediated by a linker protein consisting of repeats of a
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domain resembling the Rubisco small subunit (21). Here we find that
Rubisco accumulation in the pyrenoid of the model alga Chlamy-
domonas reinhardtii is mediated by a disordered repeat protein, which
we term Essential Pyrenoid Component 1 (EPYC1). Our findings
suggest a mechanism for aggregation of Rubisco in the pyrenoid
matrix, and highlight similarities and differences between the mech-
anisms of assembly of the eukaryotic and prokaryotic organelles.

Results
EPYC1 Is an Abundant Pyrenoid Component. We hypothesized that
the pyrenoid contains unidentified components that are important
for its biogenesis. Therefore, we used mass spectrometry to analyze
the protein composition of the pyrenoid of Chlamydomonas, before
and after applying a stimulus that induces pyrenoid growth. When
cells are transferred from high CO2 (2–5% CO2 in air) to low CO2
(∼0.04% CO2 in air), the CCM is induced (22) and the pyrenoid
increases in size (23). We developed a protocol for isolating largely
intact pyrenoids by cell lysis and centrifugation, and applied this
protocol to cells before and after a shift from high to low CO2 (Fig.
1A and SI Appendix, Fig. S1 A–C). Mass spectrometry indicated that
the most abundant proteins in the low-CO2 pyrenoid fraction in-
cluded the Rubisco large (rbcL) and small (RBCS) subunits, as well
as Rubisco activase (RCA1) (Fig. 1B, SI Appendix, Fig. S1D, and
Dataset S1).
Strikingly, a fourth protein, previously identified as a low-CO2–

induced nuclear-encoded protein (LCI5; Cre10.g436550) (24), was
found in the low-CO2 pyrenoid fraction with comparable abun-
dance to Rubisco (Fig. 1B). Based on the data presented herein, we
propose naming this protein Essential Pyrenoid Component 1
(EPYC1). Under low CO2, the stoichiometry of EPYC1, estimated
by intensity-based absolute quantification (iBAQ), was ∼1:6 with
rbcL and ∼1:1 with RBCS (25). Consistent with EPYC1 being a
component of the pyrenoid, the abundance of EPYC1 in the

pyrenoid fraction was increased by ∼12-fold after the shift from high
to low CO2 (Fig. 1B and SI Appendix, Fig. S1D and Dataset S1), an
increase similar to that of rbcL (7-fold), RBCS (7-fold), and RCA1
(19-fold). To confirm the pyrenoid localization of EPYC1, we
coexpressed fluorescently tagged EPYC1 and RBCS. Venus-tagged
EPYC1 showed clear colocalization with mCherry-tagged RBCS in
the pyrenoid (Fig. 1C and SI Appendix, Fig. S1E).

EPYC1 Is Essential for a Functional CCM. The high abundance of
EPYC1 in the pyrenoid led us to ask whether EPYC1 is required
for the CCM. We isolated a mutant in the 5′ UTR of the EPYC1
gene (SI Appendix, Fig. S2A and Table S2), which contains mark-
edly reduced levels of EPYC1 mRNA (SI Appendix, Fig. S2B and
Table S3) and EPYC1 protein (Fig. 2A), and lacks transcriptional
regulation in response to CO2 (SI Appendix, Fig. S2B). Similar to
previously described mutants in other components of the CCM, the
epyc1 mutant showed defective photoautotrophic growth in low
CO2, which was rescued by high CO2 and by reintroducing the
EPYC1 gene (Fig. 2B and SI Appendix, Fig. S2 C–E).
We further tested the CCM activity in the epyc1 mutant by

measuring whole-cell affinity for inorganic carbon, inferred from
photosynthetic O2 evolution. When grown under low CO2, the
epyc1 mutant showed a reduced affinity for inorganic carbon (in-
creased K0.5) relative to WT (P = 0.0055, Student’s t test; n = 5)
(Fig. 2C and SI Appendix, Fig. S2F and Table S4). The affinity of the
epyc1mutant under low CO2 was slightly greater than that of WT at
high CO2, indicating a residual level of CCM activity. This activity
may be due to trace levels of EPYC1 in the epyc1 mutant (SI Ap-
pendix, Fig. S2 A and B), or a normal CO2 concentration followed
by inefficient capture by Rubisco.

EPYC1 Is Required for Normal Pyrenoid Size, Number, and Matrix
Density. Given that EPYC1 is in the pyrenoid and is required
for the CCM, we explored whether the epyc1 mutant shows any
visible defects in pyrenoid structure. Thin-section transmission
electron microscopy (TEM) revealed that the epyc1 mutant had
smaller pyrenoids than WT at both low and high CO2 (low CO2:
n = 37–79, P < 10−19, Welch’s t test; high CO2: n = 18–22, P < 10−5,
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Fig. 1. EPYC1 is an abundant pyrenoid protein. (A) TEM images of Chlamy-
domonas whole cells and pyrenoid-enriched pellet fraction from cells grown at
low CO2. The yellow arrow indicates the pyrenoid, and green arrows indicate
pyrenoid-like structures. (Scale bar: 2 μm.) (B) Mass spectrometry analysis of 366
proteins in pyrenoid-enriched pellet fractions from low- and high-CO2–grown
cells (mean of four biological replicates; raw data are provided in SI Appendix
and Dataset S1). RbcL, RBCS, EPYC1, and RCA1 (black) are abundant in low-CO2

pellets, as determined by iBAQ (y-axis). In addition, these proteins showed in-
creased abundance in low-CO2 pellets compared with high-CO2 pellets, as de-
termined by label-free quantification (LFQ; x-axis). (C) Confocal microscopy of
EPYC1-Venus and RBCS1-mCherry coexpressed in WT cells. (Scale bar: 5 μm.)
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Fig. 2. EPYC1 is an essential component of the carbon-concentrating mecha-
nism. (A) EPYC1 protein levels in WT and epyc1 mutant cells grown at low and
high CO2were probed byWestern blot analysis with anti-EPYC1 antibodies. Anti-
tubulin is shown as a loading control. (B) Growth phenotypes of WT, epyc1, and
three lines complemented with EPYC1. Serial 1:10 dilutions of WT, epyc1,
epyc1::EPYC1, epyc1::EPYC1-mCherry, and epyc1::EPYC1-Venus lines were spot-
ted on TP minimal medium and grown at low and high CO2 under 500 μmol
photons m−2 s−1 illumination. (C) Inorganic carbon affinity ofWT and epyc1 cells.
Cells were pregrown at low and high CO2, and whole-cell inorganic carbon af-
finity was measured as the concentration of inorganic carbon at half-maximal O2

evolution. Data are a mean of five low-CO2 or three high-CO2 biological repli-
cates. Error bars represent SEM. *P = 0.0055, Student’s t test.
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Welch’s t test) (Fig. 3 A and B and SI Appendix, Fig. S3 A and B
and Fig. S4). Chlamydomonas typically has one pyrenoid per cell
(17). The epyc1 mutant showed a higher frequency of multiple py-
renoids; 13% of nondividing epyc1 cells (n = 231) showed multiple
pyrenoids, compared with 3% of WT cells (n = 252; P = 0.00048,
Fisher’s exact test of independence) (SI Appendix, Table S5).
Higher-resolution quick-freeze deep-etch electron microscopy
(QFDEEM) indicated a lower packing density of granular material
in the pyrenoid matrix of the epyc1 mutant (Fig. 3C and SI Ap-
pendix, Figs. S3C and S5). This defect was most noticeable when
cells were grown in low CO2, but was also visible at high CO2.

Interestingly, the epyc1 mutant retains a number of canonical
pyrenoid characteristics (17), including correct localization in the
chloroplast, the presence of a starch sheath under low CO2, and
traversing membrane tubules, suggesting that normal levels of
EPYC1 are not required for these characteristics. In addition,
the epyc1 mutant showed normal levels of the carbonic anhy-
drase CAH3, which is thought to be central in delivering CO2 to
Rubisco in the pyrenoid (SI Appendix, Fig. S2G).

EPYC1 Is Required for Rubisco Assembly into the Pyrenoid. Our ob-
servations of decreased pyrenoid size and apparent matrix density in
the epyc1 mutant could be explained by decreased whole-cell levels
of Rubisco. However, Western blot analysis revealed no detectable
difference in rbcL and RBCS abundance in epyc1 relative to WT
cells or between cells grown at low and high CO2 levels (Fig. 3D and
SI Appendix, Fig. S3D). This result led us to hypothesize that the
localization of Rubisco was perturbed in the epyc1 mutant. To test
this hypothesis, we generated WT and epyc1 cell lines expressing
Rubisco tagged with mCherry, and determined the distribution of
fluorescence signal by microscopy. Remarkably, a large fraction of
Rubisco was found outside the pyrenoid in the epyc1 mutant. In
epyc1 cells grown in low CO2, 68% of fluorescence from Rubisco
tagged with mCherry was found outside the pyrenoid region,
compared with 21% in WT cells (n = 27; P < 10−15, Student’s t test)
(Fig. 3 E and F and SI Appendix, Fig. S6). Immunogold-EM con-
firmed the mislocalization of Rubisco in epyc1. In pyrenoid-con-
taining sections of low-CO2–grown epyc1 cells, 42% of anti-Rubisco
immunogold particles were found outside the pyrenoid, whereas
only 6% were found outside the pyrenoid in WT (WT: n = 26 cells,
8,123 gold particles; epyc1: n = 27 cells, 2,708 gold particles; P < 10−15,
Student’s t test) (Fig. 3 G and H and SI Appendix, Fig. S7).
If EPYC1 functions in the recruitment of Rubisco to the py-

renoid solely at low CO2 (23), then the epyc1 mutant could be
trapped in a “high-CO2” state of Rubisco localization (23).
However, the epyc1 mutant showed a defect in Rubisco localiza-
tion even under high CO2 (SI Appendix, Fig. S3 E and F and Fig.
S6), where the fraction of Rubisco-mCherry fluorescence outside
the pyrenoid region increased to 80% in epyc1, compared with
68% in the WT (WT: n = 20; epyc1: n = 20; P = 10−6, Student’s
t test). We conclude that EPYC1 is required for Rubisco locali-
zation to the pyrenoid not only at low CO2, but also at high CO2.

EPYC1 and Rubisco Are Part of the Same Complex. EPYC1 could
promote the localization of Rubisco to the pyrenoid by a physical
interaction. Thus, we immunoprecipitated EPYC1 and Rubisco,
and probed the eluates by Western blot analysis (Fig. 4A and SI
Appendix, Fig. S8A). Immunoprecipitation of tagged EPYC1
pulled down the Rubisco holoenzyme, and, reciprocally, tagged
RBCS1 pulled down EPYC1. We conclude that EPYC1 and
Rubisco are part of the same supramolecular complex in the py-
renoid. The high abundance of EPYC1 in the pyrenoid, EPYC1’s
physical interaction with Rubisco, and the dependence of Rubisco
on EPYC1 for localization to the pyrenoid all suggest that EPYC1
plays a structural role in pyrenoid biogenesis.

The EPYC1 Protein Consists of Four Nearly Identical Repeats. To gain
insight into how EPYC1 might contribute to pyrenoid biogenesis,
we performed a detailed analysis of the EPYC1 protein sequence.
This analysis indicated that EPYC1 consists of four nearly identical
∼60-aa repeats (Fig. 4 B–D), flanked by short N and C termini, in
contrast to a previous study suggesting only three repeats (26). We
found that each repeat consists of a predicted disordered domain
and a shorter, less disordered domain containing a predicted alpha
helix (Fig. 4C and SI Appendix, Fig. S8 B and C). Given that these
repeats cover >80% of the EPYC1 protein, it is likely that the
Rubisco binding sites are contained within the repeats.

Fig. 3. EPYC1 is essential for Rubisco aggregation in the pyrenoid. (A) Rep-
resentative TEMs of WT and epyc1 cells grown at low CO2. (B) Quantification
of the pyrenoid area as a percentage of cell area of WT and epyc1 cells grown
at low CO2. Data are from TEM images as represented in A. epyc1: n = 37; WT:
n = 79. P < 10−19, Welch’s t test. (C) QFDEEM of the pyrenoid of WT and epyc1
cells grown at low CO2. M, pyrenoid matrix; St, stroma; Th, thylakoids; SS,
starch sheath. (Inset) Four hundred percent zoom view of the pyrenoid matrix.
(D) Rubisco protein levels in WT and epyc1 cells grown at low and high CO2

were probed by Western blot analysis. (E) Localization of Rubisco was de-
termined by microscopy of WT and the epyc1 mutant containing RBCS1-
mCherry. The sum of the fluorescence signals from Z stacks was used for
quantitation. (F) The fraction of RBCS1-mCherry signal from outside the py-
renoid region (inner dotted line in E) was quantified in WT and epyc1 cells at
low CO2. epyc1: n = 27; WT: n = 27. ***P < 10−15, Student’s t test. (G) Rep-
resentative images of anti-Rubisco immunogold labeling of WT and epyc1 cells
grown at low CO2. Gold particles were enlarged 10× for visibility. (H) The
fraction of immunogold particles outside the pyrenoid was quantified.WT: n =
26 cells, 8,123 gold particles; epyc1: n= 27 cells, 2,708 gold particles. ***P < 10−15,
Student’s t test. In F and H, data are mean values, with error bars indicating SEM.
Yellow arrows indicate pyrenoids. (Scale bars: 1 μm.)
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We Propose Two Models for Rubisco Assembly into the Pyrenoid
Matrix by EPYC1. If each repeat of EPYC1 binds Rubisco, then
EPYC1 could link multiple Rubisco holoenzymes together to form
the pyrenoid matrix. Multiple Rubisco binding sites on EPYC1
could arrange Rubisco into the hexagonal closely packed or cubic
closely packed arrangement observed in recent cryoelectron to-
mography studies of the Chlamydomonas pyrenoid (18). EPYC1
and Rubisco could interact in one of two fundamental ways:
(i) EPYC1 and Rubisco could form a codependent network (Fig.
4E), or (ii) EPYC1 could form a scaffold onto which Rubisco
binds (Fig. 4F). Importantly, the 60-aa repeat length of EPYC1 is
sufficient to span the observed 2- to 4.5-nm gap between Rubisco
holoenzymes in the pyrenoid (18), and a stretched-out repeat
could potentially span the observed 15-nm Rubisco center-to-
center distance. A promising candidate for an EPYC1-binding site
on Rubisco would be the two alpha-helices of the small Rubisco
subunit. When these helices are exchanged for higher-plant alpha-
helices, pyrenoids fail to form and the CCM does not function, but
holoenzyme assembly is normal (20).

Proteins with Similar Physicochemical Properties to EPYC1 Are
Present in a Diverse Range of Eukaryotic Algae. The primary se-
quences of disordered proteins like EPYC1 are known to evolve
rapidly compared with those of structured proteins, but their physi-
cochemical properties are under selective pressure and are evolu-
tionarily maintained (27). Therefore, we searched for proteins
with similar physicochemical properties (i.e., repeat number, length,

high isoelectric point, disorder profile, and absence of transmembrane
domains) across a broad range of algae (SI Appendix, Table S6).
Excitingly, proteins with similar properties are found in most
pyrenoid-containing algae and appear to be absent from pyrenoid-
less algae, suggesting that EPYC1-like proteins may play similar
roles in pyrenoids across eukaryotic algae. A thorough assessment
of the generality of linker proteins will be enabled by future
proteomic analyses of pyrenoids from a diverse range of algae.

Discussion
Our data provide strong support for the concept that Rubisco
clustering into the pyrenoid is required for an efficient CCM in
eukaryotic algae (9). Current models of the CCM (17, 28) suggest
that CO2 is released at a high concentration from the thylakoid
tubules traversing the pyrenoid matrix. The mislocalization of
Rubisco to the stroma of the epyc1 mutant could decrease the
efficiency of CO2 capture by Rubisco, explaining the severe CCM
defect observed in this mutant.
The observations presented here suggest that Rubisco packag-

ing to form the matrix of the eukaryotic pyrenoid is achieved by a
different mechanism than that used in the well-characterized
prokaryotic β-carboxysome. In the β-carboxysome, aggregation of
Rubisco is mediated by the protein CcmM (CO2 concentrating
mechanism protein M). CcmM contains multiple repeats of a
domain resembling the Rubisco small subunit, and incorporation
of these domains into separate Rubisco holoenzymes is thought to
produce a link between Rubisco holoenzymes (21). Given that the

A B

C

D

E

F

Fig. 4. EPYC1 forms a complex with Rubisco. (A) Anti-FLAG coimmunoprecipitation (co-IP) of WT cells expressing Venus-3×FLAG, EPYC1-Venus-3×FLAG, and
RBCS1-Venus-3×FLAG. For each co-IP, the input, flow-through (FT), fourth wash (wash), 3×FLAG elution (FLAG Elu.), and boiling elution (Boil. Elu.) were
probed with anti-FLAG, anti-Rubisco, or anti-EPYC1. Labels on the right show the expected sizes of proteins. (B) Analysis of the EPYC1 protein sequence
showing that EPYC1 consists of four nearly identical repeats. (C) Each repeat has a highly disordered domain (light blue) and a less-disordered domain (dark
blue) containing a predicted alpha-helix (thicker line) rich in charged residues. (D) Amino acid alignments of the four repeats. Asterisks indicate residues that
are identical in all four repeats. (E and F) Two models illustrate how EPYC1 could bind the Rubisco holoenzyme in a manner compatible with the observed
packing of Rubisco in the pyrenoid. (E) EPYC1 and Rubisco could form a codependent network. If each EPYC1 can bind four Rubisco holoenzymes, and each
Rubisco holoenzyme can bind eight EPYC1s, eight EPYC1 proteins could connect each Rubisco to twelve neighboring Rubiscos. (F) EPYC1 could form a scaffold
onto which Rubisco binds. Both arrangements could expand indefinitely in every direction. For clarity, the spacing between Rubisco holoenzymes was in-
creased and EPYC1 is depicted in both yellow and blue.
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EPYC1 repeats show no homology to Rubisco and are highly dis-
ordered, it is likely that they bind to the surface of Rubisco holo-
enzymes rather than becoming incorporated in the place of small
subunits. The simplicity of such a surface-binding mechanism po-
tentially explains how Rubisco packaging into a pyrenoid could have
evolved across a broad range of photosynthetic eukaryotes through
convergent evolution (17, 29), leading to the dominant role of py-
renoids in aquatic CO2 fixation. Such a surface-binding mechanism
may even organize Rubisco in prokaryotic α-carboxysomes, where the
intrinsically disordered Rubisco-binding repeat protein CsoS2 plays a
poorly understood role in assembly (30).
In addition to being a key structural component, EPYC1 could

regulate Rubisco partitioning to the pyrenoid or Rubisco kinetic
properties. The Rubisco content of the pyrenoid changes in re-
sponse to CO2 (23 and our data), whereas total cellular Rubisco
remains constant (Fig. 3D). Given that EPYC1 is required for
Rubisco localization to the pyrenoid, changes in EPYC1 abun-
dance and/or Rubisco-binding affinity could affect Rubisco parti-
tioning to the pyrenoid. Consistent with this hypothesis, EPYC1
was previously found to be up-regulated at both the transcript and
protein levels in response to light and low CO2 (26), and our data
further support this finding (Fig. 2A and SI Appendix, Fig. S2A).
Moreover, previous studies have shown that EPYC1 becomes
phosphorylated at multiple sites in response to low CO2 (26, 31),
potentially affecting its binding affinity for Rubisco.
Another mode of regulation of EPYC1–Rubisco binding could be

through the methylation of Rubisco. Rubisco is methylated in multiple
residues (32), and inChlamydomonas, the predicted methyltransferase
CIA6 is required for Rubisco localization to the pyrenoid (33). It is
also possible that EPYC1 binding to Rubisco alters the kinetic
properties of Rubisco to fine-tune its performance in the pyrenoid.
Along with advancing our understanding of the molecular mech-

anisms underlying global carbon fixation, our findings may contribute
to the future engineering of crops with enhanced photosynthesis.
There is great interest in introducing a CCM into C3 plants, given
that this enhancement is predicted to increase yields by up to 60%
and to improve the efficiency of nitrogen and water use (34). Al-
though much remains to be done to improve our understanding of
the algal CCM, recent work suggests that algal components may be
relatively easy to engineer into higher plants (35). Our discovery of a
possible mechanism for Rubisco assembly to form the pyrenoid is a
key step toward engineering an algal CCM into crops.

Materials and Methods
Strains and Culture Conditions. WT Chlamydomonas CC-1690 (36) was used for
pyrenoid enrichment and proteomics. WT Chlamydomonas cMJ030 (CC-4533)
(37) was used for all other experiments. The epyc1mutant was isolated from a
collection of high-CO2–requiring mutants generated by transformation of the
pMJ016c mutagenesis cassette into cMJ030 (37). All experiments were per-
formed under photoautotrophic conditions supplemented with high CO2 (3%
or 5% vol/vol CO2-enriched air) or low CO2 (air, ∼0.04% vol/vol CO2).

Proteomics. Pyrenoid enrichment was performed using a modified protocol
based on previous studies (38, 39). In brief, cells were harvested by centri-
fugation (3,220 × g for 2 min at 4 °C), lysed by sonication, and then centri-
fuged again at 500 × g for 3 min at 4 °C to obtain a soluble fraction and a
pellet fraction. Shotgun proteomics on the soluble and pellet fractions was
performed as described by Mühlhaus et al. (40). Raw MS data files were
processed with MaxQuant version 1.5.2.8 (41).

Cloning. EPYC1 (Cre10.g436550) and RBCS1 (Cre02.g120100) ORFs were
amplified from gDNA and cloned into pLM005 (Venus) or pLM006 (mCherry)
by Gibson assembly (42).

Transformation of Chlamydomonas. Constructs were transformed into the nu-
clear genome of WT and epyc1 strains by electroporation as described by Zhang
et al. (37). To screen for Venus- and mCherry-expressing colonies, transformation
plates were imaged with a Typhoon Trio fluorescence scanner (GE Healthcare).

Microscopy. TEM images of the enriched pyrenoid fraction and whole cells
before pyrenoid enrichmentwere prepared and taken according to Nordhues
et al. (43). TEM imaging for pyrenoid area analysis and immunogold locali-
zation of Rubisco was based on methods described by Meyer et al. (20).
QFDEEM was performed as described by Heuser (44). Fluorescence micros-
copy was performed using a spinning-disk confocal microscope (Leica
DMI6000) with the following settings: Venus, 514 nm excitation with 543/
22 nm emission; mCherry, 561 nm excitation with 590/20 nm emission; and
chlorophyll, 561 nm excitation with 685/40 nm emission.

Quantitative Real-Time PCR. EPYC1 gene transcript levels were determined by
qRT-PCR. CDNAwas synthesized from total RNA, and relative gene expression
was measured in real time using SYBR Green. Gene expression was calculated
according to the method of Livak and Schmittgen (45), relative to RCK1
(Cre06.g278222) (46). The primers used are listed in SI Appendix, Table S2.

Western Blot Analysis. Protein levels of EPYC1 and CAH3 in WT and the epyc1
mutant were measured according to Heinnickel et al. (47). Rubisco levels
were measured as described by Meyer et al. (20).

O2 Evolution and Spot Tests. Apparent affinity for inorganic carbon was de-
termined using the oxygen evolution method described by Badger et al. (48).
Spot tests were performed by spotting serially diluted WT, epyc1, and com-
plemented cell lines onto Tris-phosphate (TP) plates. Plates were incubated in
low or high CO2 under 100 or 500 μmol photons m−2 s−1 of light for 7 d.

Coimmunoprecipitation. Cell lysate from WT cells expressing the bait proteins
(Venus-3×FLAG, EPYC1-Venus-3×FLAG, or RbcS1-Venus-3×FLAG) was in-
cubated with anti-FLAG M2 antibody (Sigma-Aldrich) bound to protein G
Dynabeads (Life Technologies). Bait proteins with interaction partners were
eluted by 3×FLAG competition, followed by boiling in 1× Laemmli buffer.

EPYC1 Sequence Analysis. To understand the intrinsic disorder of EPYC1, the full-
length amino acid sequence was run through several structural disorder pre-
diction programs, including VL3, VLTX (49), and GlobPlot 2 (50). To look for
regions of secondary structure, the full-length and repeat regions of the EPYC1
amino acid sequence were analyzed by PSIPRED v3.3 (51) and Phyre2 (52).

Proteins with EPYC1-Like Physicochemical Properties in Other Algae. Complete
translated genomic sequences from pyrenoid and non-pyrenoid algae were
analyzed for tandem repeats using Xstream (53). The isoelectric point, dis-
order profile (54), and presence of transmembrane domains (55) of Xstream
hits were calculated. Proteins with three or more repeats, a pI >8, an oscil-
lating disorder profile with a frequency between 40 and 80 amino acids, and
no transmembrane domains were classified as potential EPYC1-like Rubisco
linker proteins.

More detailed information on thematerials andmethods used in this study
is provided in SI Appendix, SI Materials and Methods.
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