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Abstract Recent advances have identified a signaling

cascade involving receptor interacting protein kinase 1

(RIPK1), RIPK3 and the pseudokinase mixed lineage

kinase domain-like (MLKL) that is crucial for induction of

necroptosis, a non-apoptotic form of cell death. RIPK1–

RIPK3–MLKL-mediated necroptosis has been attributed to

cause many inflammatory diseases through the release of

cellular damage-associated molecular patterns (DAMPs).

In addition to necroptosis, emerging evidence suggests that

these necroptosis signal adaptors can also facilitate

inflammation independent of cell death. In particular, the

RIP kinases can drive NF-jB and inflammasome activation

independent of cell death. In this review, we will discuss

recent discoveries that led to this realization and present

arguments why cell death-independent signaling by the

RIP kinases may have a more important role in inflam-

mation than necroptosis.
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Introduction

Organismal homeostasis is achieved through an intricate

balance of cellular proliferation, senescence and cell

death. Apoptosis is an evolutionary conserved process for

complex organisms to eliminate unwanted or damaged

cells. Early during the process, apoptotic cells express the

‘‘eat-me’’ signal phosphatidyl serine (PS) on the cell

surface, which prompts their clearance by macrophages or

phagocytes. This process is normally efficient, which

explains why apoptotic cells are hard to detect in situ.

Immunologists have long recognized the anti-inflamma-

tory nature of apoptosis. This is an important

characteristic since apoptosis is prevalent during meta-

zoan development and inflammation would not be a

desired outcome. However, excessive apoptosis can occur

in certain pathological conditions such as infections. In

this situation, apoptosis can progress to secondary

necrosis, leading to plasma membrane leakage, release of

immunogenic cellular contents and inflammation. In

mouse models, inhibition of apoptotic cell clearance often

promotes autoinflammatory disease-like symptoms. These

observations highlight the intimate link between cell

death and inflammation.

In contrast to apoptosis, necrosis is generally consid-

ered to be pro-inflammatory and immunogenic. Although

necrosis was thought to be the consequence of non-

specific trauma to the cells, recent advances demonstrate

that necrosis can also be executed in a regulated manner.

The receptor interacting protein kinases (RIPKs) are key

drivers for a form of regulated necrosis termed necrop-

tosis. The regulation of necroptosis is extensively

discussed in other reviews in the same issue and will not

be the focus of this review. Instead, we will discuss the

emerging evidence that points to a necroptosis-indepen-

dent role for the RIPKs in inflammation. We present an

alternative viewpoint that the RIPKs predominantly drive

inflammation through necroptosis-independent mecha-

nisms, and that necroptosis is a fallback option when the

inflammatory process goes awry.
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The RIPK1 and NF-jB activation

The serine/threonine kinases RIPK1 and RIPK3 are

essential adaptors for TNF-induced necroptosis. RIPK1

was originally identified in a yeast two-hybrid screen as a

Fas/CD95-interacting adaptor [1]. Although early studies

showed that overexpression of RIPK1 could lead to cell

death, subsequent studies revealed that RIPK1 predomi-

nantly signals for NF-jB activation downstream of TNF

receptor 1 (TNFR1) [2–4]. Because NF-jB is a transcrip-

tion factor that drives expression of many inflammatory

genes, it is clear from the early days that RIPK1 can pro-

mote cell death-independent inflammation. However, it is

noteworthy that studies from different groups have not

consistently detected defects in TNF-induced NF-jB acti-

vation in Ripk1-/- MEFs [5–7]. In the RIPK1-deficient T

cell leukemia cell line Jurkat, early TNF-induced phos-

phorylation and degradation of IjBa (5 min) was abolished

compared with wild-type Jurkat cells. However, by 15 min

after TNF stimulation, phosphorylation of IjBa was

comparable between wild-type and RIPK1-deficient Jurkat

cells [8]. Given the multi-phasic nature of NF-jB-depen-
dent gene expression [9], it is possible that the moderate

delay in NF-jB activation in Ripk1-/- cells can result in

altered gene expression pattern. Regardless of the extent of

its impact on gene expression, it is safe to say that RIPK1

plays only an accessory role in NF-jB activation by

modulating the kinetics of IjBa phosphorylation and

degradation. Since the majority of signal adaptors of the

TNFR1 pathway are ubiquitinated species, they may

compensate for the loss of RIPK1 to facilitate IKK com-

plex and NF-jB activation in Ripk1-/- cells [10].

The kinase activity of RIPK1, which is crucial for death

receptor-mediated apoptosis and necroptosis, is dispens-

able for NF-jB activation [2, 3]. Interestingly, while

germline Ripk1-/- mice suffer from post-natal lethality [4],

knock-in mice expressing kinase-inactive RIPK1 are viable

[11–13]. This indicates that RIPK1 has a unique function in

organismal survival that is scaffold dependent, but kinase

independent [14–17]. This is an emerging theme for RIPK1

and RIPK3 (see below): that they can promote inflamma-

tion through scaffold-dependent and necroptosis-

independent mechanisms. In contrast to Ripk1-/- mice,

mice lacking the canonical NF-jB subunit RelA/p65 die in

utero on e15.5 [18], and deficiency of the non-canonical

NF-jB subunit RelB did not compromise post-natal sur-

vival [19]. As such, RIPK1 mediates post-natal survival

independent of NF-jB.
Scaffold-dependent signaling by RIPK1 is critical for

survival of intestinal and skin epithelial cells and

hematopoietic stem cells (HSCs) [6, 7, 16, 20]. Although

RIPK1 is crucial for HSCs survival [16, 20], it is

dispensable for survival of fully differentiated mature bone

marrow-derived dendritic cells (BMDCs) ([21] and

unpublished observation). Similarly, mature T cells from

Ripk1-/-Fadd-/- mice proliferated normally in response

to viral pathogen challenge [22]. Hence, RIPK1 is dis-

pensable once HSCs differentiate beyond a certain

developmental checkpoint. A similar function for RIPK1

may also protect rapidly dividing tissues such as the skin

and intestinal epithelium from cell death-induced

inflammation.

RIPK3 and NF-jB activation

Because of its homology to RIPK1, early studies on RIPK3

also focused on its ability to induce apoptosis and NF-jB.
Results from overexpression studies were confusing, with

reports showing both an activating and inhibitory role for

RIPK3 in NF-jB activation. For instance, RIPK3 inhibited

NF-jB activation by the toll-like receptor 3 (TLR3) and

TLR4 signal adaptor TRIF, TNFR1 and DNA activator of

interferon (DAI) [23–26], but enhanced NF-jB activation

in other studies [27, 28]. In mouse embryonic fibroblasts

(MEFs) and bone marrow-derived macrophages

(BMDMs), RIPK3 was reported to be dispensable for TNF-

or TLR4-induced NF-jB activation [29, 30]. Hence, it was

widely accepted that RIPK3 plays no major role in NF-jB
activation. However, closer examination of the published

results showed that although TNF, TLR2 and TLR4-in-

duced IjBa phosphorylation and degradation was normal

in Ripk3-/- cells, LPS-induced TNF, IL-6 and IL-1b
expression and hypothermia were reduced in Ripk3-/-

mice [30–32].

We re-evaluated the role of RIPK3 in NF-jB activation

and found that RIPK3 expression in BMDCs is crucial for

LPS-induced and NF-jB-dependent cytokine expression

[33]. Consistent with results from MEFs and BMDMs, the

initial LPS-induced IjBa phosphorylation and degradation

was normal in Ripk3-/- BMDCs [30, 33]. However, LPS-

induced nuclear translocation of the RelB-p50 heterodimer

was severely impaired in Ripk3-/- BMDCs [33]. Strik-

ingly, nuclear translocation of other NF-jB subunits was

not affected. These results indicate that while RIPK1

facilitates the early phosphorylation and degradation of

IjBa, RIPK3 regulates NF-jB activation downstream of

IjBa in a cell type-specific manner. Thus, although RIPK1

and RIPK3 often act in synergy to promote cell death, they

regulate NF-jB activation independently through distinct

mechanisms.

How might RIPK3 regulate RelB-p50 nuclear translo-

cation? Curiously, a recent report shows that RIPK1,

RIPK3 and MLKL translocate to the nucleus during
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necroptosis [34]. Nuclear RIPK3 has been detected in

damaged neurons after ischemia–reperfusion-induced

injury, a process believed to involve necroptosis [35]. This

raises the tantalizing possibility that nuclear RIPK3 may

control cell death. Several early studies showed that RIPK3

contains both nuclear localization and nuclear export signal

sequences and could shuttle between the cytosol and the

nucleus [36, 37]. Hence, RIPK3 may directly chaperone

RelB-p50 dimer into the nucleus in response to TLR4

stimulation. Alternatively, RIPK3 may indirectly control

RelB-p50 nuclear translocation through its molecular

chaperone Hsp90, which binds to and regulates RIPK3-

dependent necroptosis [38, 39]. In this regard, Hsp90 has

been shown to regulate NF-jB nuclear translocation by

stabilizing the upstream activators IKKs and IRAK-1 [40].

Hsp90 inhibitors are promising anti-cancer agents [41]. It

will be interesting to determine whether Hsp90 inhibitors

exert their anti-tumor effects by suppressing RIPK3-de-

pendent necroptosis and NF-jB-dependent inflammatory

gene expression.

Context is important: the mechanism of RIPK3-
mediated inflammasome activation

Much of the work on necroptosis-independent signaling by

RIPK3 has focused on its role in NLRP3 inflammasome

activation. The inflammasome is a macro-molecular com-

plex composed of the adaptor protein ASC, the IL-1b
converting enzyme (ICE) caspase 1, and a sensor molecular

such as NLRP3. Inflammasome activation results in cas-

pase 1-mediated cleavage of pro-IL-1b and pro-IL-18,

secretion of the mature cytokines, and a non-apoptotic form

of cell death called pyroptosis [42, 43]. In contrast to LPS-

primed BMDMs, which require a second inflammasome

signal to secrete mature IL-1b, LPS alone is sufficient to

induce IL-1b secretion in BMDCs [44]. This LPS-induced

IL-1b secretion was completely abolished in Ripk3-/-

BMDCs [21, 44]. Since pro-IL-1b protein expression was

normal in LPS-primed Ripk3-/- BMDCs, RIPK3 regulates

processing, but not de novo synthesis of IL-1b. RIPK3
promotes pro-IL-1b cleavage through the NLRP3 inflam-

masome as well as the ripoptosome, a macro-molecular

apoptosis and necroptosis-inducing complex consisting of

RIPK1, RIPK3, FADD and caspase 8 [45–47]. Importantly,

kinase activities of RIPK1 and RIPK3 are dispensable and

cell death was not detected under these conditions

(Fig. 1a). Hence, in contrast to ripoptosome assembly

during cell death, RIPK3 acts as a positive activator for

caspase 8 during pro-IL-1b processing.

As in the case of necroptosis, RIPK3 and ripoptosome-

mediated pro-IL-1b processing is tightly controlled by

FADD, caspase 8 and the E3 ligase IAPs, cIAP1, cIAP2

and X-linked IAP (XIAP). Genetic inactivation or phar-

macological depletion of the IAPs, especially XIAP,

greatly enhanced IL-1b secretion in LPS-primed BMDMs

[48, 49]. As in the case of LPS-induced BMDCs, an intact

RIPK3, but not its kinase activity, is essential for IL-1b
release under this condition (Fig. 1b). RIPK3 and the

ripoptosome stimulate pro-IL-1b processing by turning on

the NLRP3 inflammasome [50]. When caspase 8 activity is

inhibited by caspase inhibitors, the ripoptosome recruits an

additional component, the necroptosis effector MLKL, to

promote IL-1b secretion (Fig. 1b). Strikingly, RIPK3

kinase activity is required for optimal IL-1b secretion when

caspase 8 activity is compromised [50]. These results

highlight the highly intertwined nature of the machineries

that mediate necroptosis and NLRP3 inflammasome acti-

vation. However, Asc-/- and Casp1-/- macrophages are

equally sensitive to LPS and zVAD-fmk-induced necrop-

tosis as wild-type macrophages (unpublished observation).

Thus, the ripoptosome and NLRP3 inflammasome are not

interchangeable in function.

In addition to determining the mechanism of ripopto-

some-induced NLRP3 inflammasome activation, caspase 8

also has a scaffolding function in inflammasome activation.

In Ripk3-/-Fadd-/- and Ripk3-/-casp8-/- BMDMs, ASC

oligomerization, caspase 1 activation, and IL-1b secretion

in response to the synthetic double-strand RNA poly(I:C), a

TLR3 ligand, and ATP were abrogated [51]. This response

was also abrogated in Ripk1-/-, but not Ripk3-/- BMDMs.

Hence, RIPK1, FADD and caspase 8 can drive NLRP3

inflammasome activation without RIPK3 (Fig. 1c). Several

reports have indicated a role for RIPK3 in NLRP3

inflammasome activation in response to RNA virus infec-

tion [51, 52]. However, we have not been able to detect

RIPK3-dependent IL-1b secretion in response to vesicular

stomatitis virus infection (unpublished observation).

Therefore, in BMDMs with intact caspase 8, RIPK3

appears to have minimal role in RNA-induced IL-1b
release. When caspase 8 activity is inhibited by pharma-

cologic inhibitors, RIPK3 becomes an essential component

for TLR3-induced NLRP3 inflammasome assembly

(Fig. 1c). In addition to RIPK3, RIPK1 and MLKL are also

required for this assembly. Although caspase 8 protease

activity is dispensable for this activity, TLR3-induced

NLRP3 inflammasome assembly was completely abolished

in caspase 8-deficient cells. Hence, caspase 8 scaffold

function is crucial for RIPK1–RIPK3–MLKL-mediated

NLRP3 inflammasome activation (Fig. 1c).

In contrast to TLR3, TLR4-induced caspase 1 activation

and IL-1b secretion were highly elevated in LPS-primed

Fadd-/- or caspase 8-/- BMDCs [53, 54]. This is espe-

cially surprising given that FADD and caspase 8 have been

implicated in transcriptional priming of pro-IL-1b and

NLRP3 in Fadd-/-Ripk3-/- and Casp8-/-Ripk3-/-
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Fig. 1 The different modes of RIPK3-mediated NLRP3 inflamma-

some activation. a In BMDCs, RIPK3 promotes activation of caspase

1 (C1) in response to LPS alone, possibly through ROS production. In

addition to caspase 1, RIPK3 promotes caspase 8 activation through

the ripoptosome, which directly cleaves pro-IL-1b. b Depletion of

IAP proteins induces IL-1b secretion through robust activation of

caspase 1 and caspase 8 in LPS-primed BMDMs and BMDCs. In

contrast to necroptosis, the kinase activities of RIPK1 and RIPK3 are

dispensable for pro-IL-1b processing through caspase 1 and caspase

8. However, when caspase 8 (C8) activity is blocked, the RIPK3

kinase activity and MLKL becomes essential to stimulate the NLRP3

inflammasome activation. c In BMDMs, poly(I:C) treatment stimu-

lates TLR3 and TRIF, leading to FADD, RIPK1 and caspase 8 (C8)-

dependent NLRP3 inflammasome activation. RIPK3 is not required

for this response. However, when caspase 8 activity is blocked,

RIPK3 kinase activity and MLKL phosphorylation become essential

for NLRP3 inflammasome activation. In addition, RIPK3-dependent

NLRP3 inflammasome activation requires caspase 8 scaffold func-

tion, since TLR3 can no longer stimulate NLRP3 inflammasome

when caspase 8 is missing. d LPS-primed caspase 8 or FADD-

deficient BMDCs produce increased levels of IL-1b through enhanced

caspase 1 activation. This response requires RIPK1 and RIPK3 kinase

activities and MLKL. MLKL activation through the RIPK3 kinase

activity may directly activate the NLRP3 inflammasome. Alterna-

tively, MLKL might enhance necroptosis, leading to DAMPs release

or K? efflux [102] and subsequent NLRP3 inflammasome activation.

P in a circle indicates that the kinase activity of RIPK1 or RIPK3 is

required
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BMDMs [31, 55]. Increased IL-1b secretion by Fadd-/-

and casp8-/- BMDCs requires RIPK1 kinase activity,

RIPK3 and MLKL [53]. Thus, RIPK1–RIPK3–MLKL-

driven inflammasome activation and IL-1b secretion can

occur in the absence of FADD and caspase 8 in BMDCs

(Fig. 1d). Taken together, these studies reveal the complex

interplay between RIPK1/RIPK3 and FADD/caspase 8. In

the context of necroptosis, caspase 8 acts as a natural

inhibitor of RIPK1 and RIPK3 through its proteolytic

activity. On the other hand, RIPK3 drives caspase 8 acti-

vation through assembly and activation of the ripoptosome

in response to TLR3 and TLR4 stimulation [56]. The

molecular basis that dictates cell type- and context-de-

pendent ripoptosome and inflammasome activation is

unknown at present, but is likely to be related to different

expression and wiring of ripoptosome components in

BMDMs versus BMDCs.

How does RIPK3 turn on the NLRP3
inflammasome?

Although the role of RIPK3 in NLRP3 inflammasome

activation is well established, the underlying mechanism is

undefined at present. Direct physical interaction between

the ripoptosome and inflammasome components has not

been reported, suggesting that RIPK3 regulates inflamma-

some activation in an indirect manner. Interestingly,

reactive oxygen species (ROS) scavengers such as N-acetyl

cysteine inhibit caspase 1, but not caspase 8 activation [33,

49]. Since mitochondrial ROS has been implicated in

NLRP3 inflammasome activation [57], RIPK3 may indi-

rectly promote NLRP3 inflammasome activation through

stimulating mitochondrial ROS production.

As we have already discussed in previous sections, in

the presence of intact FADD and caspase 8, RIPK1 and

RIPK3 kinase activities are dispensable for ripoptosome-

mediated pro-IL-1b processing. For example, BMDCs that

express kinase-inactive RIPK1 or RIPK3 produced normal

levels of IL-1b in response to LPS [21]. This is distinct

from necroptosis, which critically depends on the kinase

function of RIPK3. By contrast, an intact RHIM is required

for RIPK3-dependent necroptosis, ripoptosome formation

and NLRP3 inflammasome activation. The RHIM, or RIP

homotypic interaction motif [58], is found in a select group

of cell death/innate immune signal adaptors including

TRIF, RIPK1, RIPK3, DAI, herpesvirus-encoded necrop-

tosis inhibitors, and certain Drosophila immune deficiency

(IMD) pathway adaptors [59–64]. During necroptosis, the

RHIM mediates conformational change that leads to

amyloid-like filament formation. This process is crucial for

nucleating the ripoptosome complex [65]. Mutations in the

tetra-peptide core of the RIPK3 RHIM domain abolished

amyloid formation and TNF-induced necroptosis [29]. An

intact RHIM is also required for LPS-induced ripoptosome

activation and IL-1b secretion by BMDCs (unpublished

observation), although it is not clear if amyloid conversion

is also involved.

RIPK1 as an inhibitor of RIPK3

Although RIPK1 is widely known to act in synergy with

RIPK3 to promote apoptosis, necroptosis and NLRP3

inflammasome activation, recent evidence indicates that

RIPK1 can surprisingly inhibit RIPK3 activity in cer-

tain situations. Deletion of Ripk1 in intestinal epithelium or

skin epidermal tissues led to spontaneous cell death and

inflammation [6, 7]. Inactivation of Ripk3 in the skin epi-

dermis rescued the Ripk1 deficiency-induced inflammation,

while dual inactivation of RIPK3 and FADD restored

normal intestinal integrity in Ripk1-deficient mice [6, 7].

These results indicate that RIPK1 enforces barrier integrity

by limiting RIPK3 activity. Germline Ripk1-/- mice suffer

from post-natal mortality due to multi-organ cell injury and

inflammation [4]. In contrast to the germline Ripk1-/-

mice, knock-in mice expressing kinase-inactive RIPK1 are

viable and do not exhibit increased cell death and inflam-

mation [11–13]. Hence, while RIPK1 kinase activity is

responsible for apoptosis and necroptosis, it is dispensable

for its RIPK3 inhibitory effect. RIPK1-independent but

RIPK3-dependent necroptosis has been observed in tissue

culture experiments [66–68], although the precise mecha-

nism by which RIPK1 inhibits RIPK3 activation is

unknown at present.

Does necroptosis-independent signaling matter
in tissue inflammation?

As discussed in other reviews in this issue, the current

dogma predicates that RIPK3 drives tissue inflammation

mainly through necroptosis-associated release of DAMPs,

which subsequently trigger an inflammatory cytokine

storm. Evidence that supports this model mainly comes

from mouse studies in which multiple IAPs, FADD or

caspase 8 are inactivated [69–72]. In these models, germ-

line inactivation of RIPK3 was often sufficient to rescue

the inflammatory conditions. With the realization that

RIPK3 can promote inflammation through scaffold-de-

pendent and kinase-independent mechanisms, it is high

time for researchers to re-evaluate the relative contribution

of these mechanisms to physiological inflammation [73].

One of the first examples of physiological/pathological

necroptosis is found in vaccinia virus infection. Poxviruses

such as vaccinia virus encode caspase inhibitors that can
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skew the response from apoptosis to necroptosis (reviewed

in [74]). Like other poxviruses, vaccinia virus causes tissue

necrosis and inflammation that are eventually resolved in

wild-type mice. Surprisingly, tissue necrosis and inflam-

mation was significantly reduced in infected Ripk3-/-

mice. This led to highly elevated levels of viral load and

eventual death of Ripk3-/- mice [29]. In contrast to vac-

cinia virus, a growing number of studies show that herpes

viruses actively suppress RIPK3-dependent necroptosis

through the viral inhibitor of RIP kinase activation (vIRA)

[59, 60, 75, 76]. The equine herpesvirus encoded inhibitor

E8 and Kaposi sarcoma virus encoded K13, which are viral

inhibitors of caspase 1 and caspase 8, also inhibited TNF-

induced necroptosis [77]. Hence, herpesviruses have

developed multiple strategies to counteract the anti-viral

effects of necroptosis. Interestingly, the human poxvirus

cell death inhibitor MC159 also potently inhibited TNF-

induced necroptosis [77, 78]. Therefore, sensitization to

necroptosis may not be a common feature for all

poxviruses.

Inhibition of necroptosis is not restricted to virus

infections. In tissue culture experiments, necroptosis

induction requires inhibition of the cIAPs and FADD/cas-

pase 8. In addition, the TNF receptor signal adaptors

TRAF2, TAK1, IKKs and NEMO have also been shown to

restrict necroptosis [79–83]. The multiple inhibitory

mechanisms argue that physiological necroptosis requires

the ‘‘perfect storm’’ in which all these regulatory check-

points are compromised. This is certainly a high bar to

reach under normal circumstances. Genetic studies tell us

that these cellular necroptosis inhibitors are critical for

organismal survival. In fact, deficiency of these molecules

in specific tissues is often sufficient to cause deleterious

inflammation. These observations argue that physiological

necroptosis is a rare occurrence.

An examination of the role of RIPK1 and RIPK3 in

lymphocytes also suggests that necroptosis may not always

result in inflammation. Mice lacking FADD or caspase 8

and RIPK3 developed systemic autoimmune lymphopro-

liferation that resembles human lupus and mice with Fas or

Fas ligand (FasL) mutations [22, 84–87]. Hence, caspase-

dependent apoptosis and RIP kinase-mediated necroptosis

cooperate to regulate lymphocyte homeostasis. By elimi-

nating activated, cytokine-producing lymphocytes, one can

consider RIPK1/RIPK3-dependent necroptosis as an anti-

inflammatory response [88]. As such, we propose an

alternative model in which the main mechanism by which

RIPK3 promotes inflammation is through NF-jB-depen-
dent cytokine gene transcription and ripoptosome/

inflammasome-mediated pro-IL-1b processing. When key

components of this pathway are disrupted, such as that

found in certain virus infections and mice lacking FADD,

caspase 8 or cIAPs, necroptosis is activated as a last resort

to tamp down the collateral damage from a hyperactive

inflammatory response. The concept that RIPK1 and

RIPK3 have ‘‘day jobs’’ other than necroptosis is not new

among cell death signal adaptors. Members of the Bcl-2

family, for instance, have been shown to regulate diverse

cellular functions such as glucose and mitochondrial

metabolism [89], regulation of calcium signaling [90] and

autophagy [91].

Concluding remarks

To distinguish the contribution of necroptosis-dependent

and independent signaling by RIPK1 and RIPK3 in

inflammation, we need better knowledge on how these

kinases are activated under different conditions. Phospho-

rylation sites on RIPK1 and RIPK3 that are important for

necroptosis have been identified [8, 92–94]. In addition,

phospho-MLKL and phospho-RIPK3 antibodies have been

developed [94–97]. These reagents will be useful tools in

distinguishing the mode of RIPK3 activation during

necroptosis-independent signaling. In addition to benefiting

basic science, a holistic understanding of the biology and

mechanism of RIP kinase activation is important for

potential therapeutic targeting of these molecules in

inflammatory diseases. In this regard, RIPK1 and RIPK3

inhibitors have been developed [56, 95, 98–101]. Devel-

oping inhibitors that can target additional inflammatory

pathways beyond necroptosis may magnify therapeutic

potential of RIP kinase-targeted therapies.
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