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Abstract

Human behavioral response timing is highly variable from trial to trial. While it is generally 

understood that behavioral variability must be due to trial-by-trial variations in brain function, it is 

still largely unknown which physiological mechanisms govern the timing of neural activity as it 

travels through networks of neuronal populations, and how variations in the timing of neural 

activity relate to variations in the timing of behavior. In our study, we submitted recordings from 

the cortical surface to novel analytic techniques to chart the trajectory of neuronal population 

activity across the human cortex in single trials, and found joint modulation of the timing of this 

activity and of consequent behavior by neuronal oscillations in the alpha band (8–12 Hz). 

Specifically, we established that the onset of population activity tends to occur during the trough 

of oscillatory activity, and that deviations from this preferred relationship are related to changes in 

the timing of population activity and the speed of the resulting behavioral response. These results 

indicate that neuronal activity incurs variable delays as it propagates across neuronal populations, 

and that the duration of each delay is a function of the instantaneous phase of oscillatory activity. 

We conclude that the results presented in this paper are strongly supportive of a general model for 

variability in the effective speed of information transmission in the human brain and for variability 

in the timing of human behavior.
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1. Introduction

For many behaviors, neuronal populations must communicate across large areas of the 

cortex. For example, in a visual reaction-time task, the brain must send neural signals 

through a spatio-temporal trajectory that connects populations in visual cortex to populations 

in motor cortex. Hence, some trial-by-trial variations in this trajectory must lead to variance 

in observed reaction times. Since brain anatomy is practically unchanged on the time scale 

of seconds, these variations must be due to trial-by-trial differences in function. Neuronal 

field potential oscillations are prevalent throughout the brain, exhibit rapid dynamics, and 

are thought to play a role in the long-range coordination of neuronal population activity 

(Buzsáki and Draguhn, 2004). Their phase has been shown to modulate the amplitude of 

neuronal population-level activity (Canolty et al., 2006; Voytek et al., 2010; Miller et al., 

2012; van der Meij et al., 2012; Voytek et al., 2013) and structure the timing of neuronal 

firing in visual and motor areas of the brain (Fries et al. (2001b,a) and Haegens et al. (2011); 
Reimer and Hatsopoulos (2010), respectively), and oscillatory activity is thought to be 

involved in the gating of neural signal transmission (Hanslmayr et al., 2013; Jensen and 

Mazaheri, 2010; Klimesch et al., 2007; Fries, 2005; Engel et al., 2001; Schalk, 2015). 

Furthermore, oscillatory phase in primary motor and visual areas has been shown to alter the 

timing of behavior (Hanslmayr et al., 2013; Haegens et al., 2011; van Dijk et al., 2008; 
Dustman and Beck, 1965; Lansing et al., 1959; Bates, 1951). However, it was unknown 

whether the phase of oscillations modulates the speed of signal propagation across widely 

distributed populations of neurons that connect a stimulus to a behavior.

To answer this question, we submitted recordings from the cortical surface 

(electrocorticography (ECoG)) to novel analytic techniques to chart the trajectory of task-

related neuronal population activity across the human cortex in single trials. Given this 

information, we then examined whether the timing of that population activity, and also the 

timing of consequent behavior, was modulated by the phase of low-frequency oscillations. 

Our results demonstrate that this was indeed the case for oscillations in the alpha band in all 

subjects and across all task-related cortical regions. These results support a proposal for a 

general mechanism that is responsible for producing timing variability in behavior.

2. Methods

2.1. Subjects

Four human subjects (two women: subjects A and B, and two men: subjects C and D) at 

Albany Medical College (Albany, NY) took part in this study. The subjects were patients 

with intractable epilepsy who underwent temporary placement of subdural electrode arrays 

to localize seizure foci prior to surgical resection. The subjects’ clinical profiles are 

summarized in Table 1. They gave informed consent for the study, which was approved by 
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the Institutional Review Board of Albany Medical College and the Human Research 

Protections Office of the U.S. Army Medical Research and Materiel Command.

Each subject had several subdural electrode grids/strips (Ad-Tech Medical, Racine, WI) 

implanted over one hemisphere of the brain. The electrodes were made of platinum-iridium, 

had a diameter of 3 mm (2.3 mm exposed) and were spaced at a center-to-center inter-

electrode distance of 10 mm. The subjects had a total of 97–109 electrodes implanted. The 

grids were implanted for about one week and covered large areas of frontal, parietal and 

temporal brain regions, with portions of occipital cortex covered as well (Fig. 1). Subjects 

A–C had grids implanted over the left hemisphere. Subject D had grids implanted over the 

right hemisphere. Following placement of the subdural grids, each subject had postoperative 

anterior-posterior and lateral radiographs, as well as computed tomography (CT) scans to 

verify grid location.

We constructed three-dimensional cortical models of individual subjects using pre-operative 

structural magnetic resonance imaging (MRI). MRI images were then co-registered with 

postoperative CT images using Curry software (Compumedics, Charlotte, NC) and 

transformed into the Talairach coordinate system (Talairach and Tournoux, 1988). Finally, 

we projected electrode locations onto subject-specific models or onto the three-dimensional 

cortical template provided by the Montreal Neurological Institute (MNI brain model; http://

www.bic.mni.mcgill.ca1) using our NeuralAct toolbox (Kubanek and Schalk, 2014) and 

MATLAB 2012b (Mathworks, Natick, MA).

2.2. Data collection

We recorded ECoG signals from the four subjects at the bedside using the general-purpose 

BCI2000 software (Schalk et al., 2004; Schalk and Mellinger, 2010), which interfaced with 

eight 16-channel g.USBamp biosignal acquisition devices (g.tec, Graz, Austria). A splitter 

box routed signals simultaneously to the clinical monitoring system and to the BCI2000/

g.USBamp system, which allowed for continuous clinical monitoring. Thus, at no time was 

clinical care or clinical data collection affected by our research. The signals were amplified, 

digitized at 1200 Hz, and stored by BCI2000. Electrode contacts distant from epileptic foci 

and areas of interest were used for reference and ground. The recordings were visually 

inspected offline; channels that did not contain clear ECoG signals (e.g., ground/reference 

channels, channels with broken connections, presence of environmental artifacts, or 

interictal activity) were removed from subsequent analyses. This left 67–96 remaining 

channels that were submitted to further analyses. In addition to recording brain activity, we 

also recorded the subjects’ behavior using a push button and an eye tracker (Tobii T60, Tobii 

Technologies). Data collection from the biosignal acquisition devices and behavioral 

variables, as well as stimulus presentation and control of the experimental paradigm was 

accomplished simultaneously using BCI2000.

1http://www.bic.mni.mcgill.ca
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2.3. Task

The behavioral paradigm used in this study was a modified Posner cueing task (Posner, 

1980; Posner and Petersen, 1990). This task was originally designed to study visual-spatial 

attention and encompassed multiple stages and different experimental conditions. The 

description below describes only those stages of the task that are relevant to the present 

study. Please see Supplementary Text for additional details and (Gunduz et al., 2011, 2012) 

for a full description.

In the present study, we were interested in the brain processes that connect the perception of 

a visual stimulus to an intended behavioral response (a button press). Accordingly, we 

focused solely on the 1500 ms periods prior to and following the onset of a visual stimulus 

(“baseline” and “task” periods, respectively). Subjects maintained gaze fixation on a central 

fixation cross throughout the entire experimental run. All trials began with the presentation 

of a visual cue. After a random interval (between 3.5 and 4.5 seconds), a visual stimulus 

prompted the subject to respond with a button press as quickly as possible. All subjects used 

the hand contralateral to the grid implant to execute the button press. Recordings consisted 

of 7–13 blocks of 10 to 30 trials each (total of 134–214 trials for the different subjects).

2.4. Data Preprocessing

Our primary interest was in determining the location and time of task-related population-

level activity. Thus, we extracted the amplitude envelopes of ECoG broadband activity, 

which has been shown to correspond closely to the average firing rate of populations of 

neurons underneath the electrode (Manning et al., 2009; Whittingstall and Logothetis, 2009; 
Ray and Maunsell, 2011; Miller et al., 2009; Miller, 2010). To do this, we bandpass-filtered 

signals in the broadband gamma band (70 to 170 Hz; 3rd-order Butterworth filter; zero 

phase lag, MATLAB filtfilt function) after re-referencing signals to a common average 

reference (CAR; Schalk et al. (2007); Miller et al. (2012)), and extracted the amplitude 

envelope of the bandpassed signals using the Hilbert transform. We also bandpass-filtered 

the ECoG signals to extract oscillatory activity in the delta (1–3 Hz), theta (4–8 Hz), alpha 

(8–12 Hz), beta1 (12–18 Hz), and beta2 (18–30 Hz) bands. We then low-pass filtered and 

downsampled all signals to 400 Hz with the MATLAB resample function. Finally, we 

normalized signals at each channel to the baseline period by subtracting the average baseline 

amplitude derived from all trials and dividing by the baseline amplitude’s standard 

deviation.

To generate time-frequency plots, we de-trended the raw ECoG signals using a high pass 

filter at 0.1 Hz and re-referenced to a common average. We then convolved the results with 

complex Morlet wavelets (5-cycle wavelets with 2-second kernel widths) to extract 

frequency components in the 2–80 Hz range (2 Hz steps) and their amplitude envelopes. 

Trials were aligned to the onset of the stimulus, normalized relative to the baseline period as 

described above, and averaged across trials to give one time-frequency plot for each 

electrode location.
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2.5. Electrode selection

We determined which electrode locations responded during the task period using the signal-

to-noise (SNR) method described in Schalk et al. (2007). Specifically, we determined, at 

each electrode the total variance in the broadband gamma amplitude envelope during the 

task period across all trials. For the same data, we also determined the average variance 

within each of thirty 50 ms bins. To obtain SNR ratios, we then divided the total variance 

from all time series in all trials by the average of the thirty variances from the thirty 50-ms 

bins. Hence, SNR values very close to 1 are indicative of a location whose ECoG broadband 

activity was not modulated by the task, whereas larger SNR values are indicative of 

modulation by the task. To determine the statistical significance of the SNR values, we 

applied a randomization test. In this test, we scrambled the signal by randomly shuffling all 

samples in the time course of the broadband signal 10,000 times and obtained 10,000 

corresponding SNR values. We then calculated a p-value for the true SNR value using the 

cumulative distribution function. Channels that did not respond to the task (i.e., had p-values 

>0.001) were excluded from further analyses. This procedure resulted in 42, 50, 33, and 23 

locations for subjects A–D, respectively.

2.6. Onset detection and electrode selection pruning

To determine the time of activity onset at each of the task-related locations and in each trial, 

we identified the first time point in the task period whose broadband amplitude exceeded a 

channel-specific amplitude threshold. We determined each channel’s threshold by applying 

different amplitude thresholds (2–6 z-scores, 0.1 z-score increments) and then selecting the 

amplitude threshold that maximized the difference in the number of detections found in the 

task period and the number of detections found in the baseline period. We excluded from 

further analysis any channels that did not exhibit a statistically significant difference 

(“spread”) in the number of detections between the task period and the baseline period. To 

do this, we randomly shuffled the labels (“task” and “baseline”) associated with each 

detection in a location 1000 times to create surrogate distributions of the difference in the 

number of hits detected in task vs. baseline, modeled the resulting distributions using a 

Gaussian distribution, and rejected channels whose true spread was not statistically different 

from the surrogate distribution (p > 0.01). This second stage of the electrode localization 

procedure resulted in 21, 25, 26, and 13 locations for subjects A–D, respectively, that were 

distributed across wide areas of occipital, temporal, frontal, and parietal cortices (large 

colored dots in Figure 1). In contrast, a control analysis that submitted data from catch trials 

(in which the visual stimulus never occurred) to the same analysis procedure did not identify 

any task-related locations in any of the four subjects.

Finally, for each of these task-related locations and in each trial, we identified the precise 

temporal onset of population activity by determining whether or not and when broadband 

activity exceeded the channel-specific pre-stimulus baseline (i.e., exceeded the channel-

specific threshold determined in the optimization procedure described above). This 

procedure allowed us to determine with unprecedented spatial and temporal precision 

exactly where and when neuronal population activity occurred in each trial (i.e., the 

spatiotemporal trajectory of neural activity).
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3. Results and Discussion

3.1. The trajectory of neuronal activity across the cortex can be identified in single trials

The procedures described above identified the spatial and temporal location of the onset of 

population-level activity in single trials. Additional analyses clearly established that this 

procedure identified physiologically meaningful, task-related events rather than artifacts (see 

Supplementary Text). Figure 2 and Figure 3 give examples of broadband gamma activity in 

different locations, its relationship to modulatory low-frequency activity, and detected onset 

times. Specifically, to illustrate examples of broadband gamma activity, Figure 2 gives 

exemplary time courses of that activity at five different locations in occipital, temporal, 

parietal, and frontal locations. The timing of the onset of activity is clearly different in 

different locations, and indicates a temporal progression from occipital, to temporal, to 

frontal and finally parietal cortices. Figure 3 shows that, across the different lobes, the 

timing of the onset of population-level activity appears to be progressively related to the 

behavior.

We were surprised at the brevity of the average broadband activation (Figure 4). It is 

possible that this result could be explained by the trivial finding that we simply detected 

external physiologic/non-physiologic artifacts. Our control analyses, which are described in 

full detail in the Supplementary Text, clearly demonstrate that this is not the case. Thus we 

conclude that the average responses derived by taking inter-trial timing variance into account 

(and report and show in Figs. 2 and 4), are on average much shorter than those typically 

reported in the literature, which do not account for that inter-trial variance. This discrepancy 

is conveniently explained by the large inter-trial latency variations at each location (mean 

standard deviation of onset latency across all locations: 324ms +/− 74ms on average). In 

sum, together with the control analyses described in in the Supplementary Text, the results 

presented here demonstrate that it is possible to accurately identify the locations and onset of 

population-level activity in single trials and that this activity may be much briefer than 

previously reported.

3.2. Alpha oscillations modulate the onset times of neuronal population activity

We then proceeded to further validating the physiological relevance of the onset times identi-

fied by our procedure by establishing their relationship at individual locations with the phase 

of oscillatory activity.

An increasing number of reports have described a relationship between the phase of low-

frequency oscillations and the amplitude of neuronal population activity (phase-amplitude 

coupling (“PAC”)) (Canolty et al., 2006; Voytek et al., 2010; Miller et al., 2012; van der 

Meij et al., 2012; Voytek et al., 2013; Haegens et al., 2011; Reimer and Hatsopoulos, 2010). 

In tasks with visual input similar to ours, oscillatory modulation by activity in the alpha band 

has been shown to be particularly salient (Voytek et al., 2010; Ward, 2003). We also found 

task-related modulation in and around the alpha band to be a common feature across task-

related locations (Figure 3). Furthermore, our quantitative analyses confirmed the 

expectation that the onset of population activity occurred preferentially in the trough of 

alpha oscillations (binomial test for difference in number of onsets between alpha trough and 
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alpha peak; p =5.0x10−9). More precisely, broadband activity onsets occurred with a circular 

mean of 160.5 degrees (p ≪0.01, Rayleigh test for non-uniformity of circular data; (Figure 

2,4)).1

More importantly, our analyses established that onset times preferentially occurred during 

the falling slope of the trough (binomial test, p = 6x10−12; Figure 4). This effect was visible 

in each of the four subjects (Suppl. Fig. S5) and was present for each of three subsets of 

locations representing early-, middle-, and late-responding components of the identified 

task-related networks (terciles grouped by mean onset latency; 1st tercile p = 0.002, 2nd 

tercile p = 5x10−6, and 3rd ter-cile p = 0.016 for trough vs. peak; 1st tercile p = 0.001, 2nd 

tercile p = 2x10−7, and 3rd tercile p = 0.0007 for falling vs. rising slope of trough).

3.3. Modulation by oscillatory activity explains latency variations in neuronal 
communication and behavior

Supported by this refined relationship between oscillatory phase and the onset of population-

level activity, we arrived at the central conceptual contribution of this paper. This 

contribution is described in the following paragraphs and describes how oscillatory phase 

can explain latency variations in neuronal communication and resulting behavior.

In this context, it is important to recognize that information about visual stimuli is 

propagated across populations of neurons through series of population-level spike volleys 

(Thorpe, 1990; Meister and Berry, 1999; Van Rullen et al., 1998; Thorpe et al., 1996, 2001; 
Gautrais and Thorpe, 1998; Reimer and Hatsopoulos, 2010; Takahashi et al., 2015). 

Repeatedly sending such volleys may ensure that information will be processed by 

downstream regions. This should prove particularly important if receiving populations are 

unpredictably and intermittently inhibited by oscillatory activity (Klimesch et al., 2007). 

Furthermore, it is becoming increasingly clear that communication between populations 

depends on cortical excitability at the receiving population (Fries, 2005; Jensen and 

Mazaheri, 2010; Schalk, 2015) and that cortical excitability is modulated by low-frequency 

oscillations (Haegens et al., 2011; Schalk, 2015).

Given these circumstances, we can differentiate two distinct cases of neuronal 

communication (Figure 5). In the first case, shown in Figure 5a, the phase relationship of 

oscillatory activity at the sending and receiving neuronal population is such that the first of a 

series of spike volleys will immediately excite neuronal populations at the receiving 

location. Thus, the total time between the beginning of neuronal excitation at the sending 

and receiving site (ttotal) equals the time it takes to transmit a spike volley from the sending 

to the receiving site (ttransit). In contrast, in the second case, shown in Figure 5b, the phase 

relationship of oscillatory activity at the sending and receiving sites is such that not the first 

but only a subsequent volley in a series of spike volleys will result in cortical excitation. 

Given this model, excitation of neuronal populations at the receiving location may incur a 

variable lag (tlag) of up to several tens of milliseconds (i.e., the duration of approximately 

half an oscillatory cycle) after the arrival of the initial spike volley. Under the assumption 

that the neural trajectory that connects the sensory stimulus to its behavioral consequence 

1Statistical tests were performed across all task-related locations from all four subjects.
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contains successive communication between several populations, these variable lags at 

individual locations will accumulate and thus contribute to the observed behavioral response 

latency.

Depending on the task, variations in behavioral response latency can be quite substantial, up 

to several hundred milliseconds (Teichner and Krebs, 1972; Fox et al., 2007; Jensen, 1992). 

The hypothesized mechanism outlined above suggests that the relatively long periods of 

local population inhibition induced by oscillatory activity may readily account for such large 

variations. Furthermore, important alternative explanations appear to be rather unlikely. 

First, variations in behavioral response latency resulting from variance in synaptic 

transmission times should be much smaller than those observed since synaptic transmission 

timing variance has been estimated to be extremely small (≪ 1 ms; Sabatini and Regehr 

(1996)), and only relatively few synaptic connections separate visual input from motor 

output (Thorpe et al., 1996; Delorme and Thorpe, 2001; Reimer and Hatsopoulos, 2010; 
Takahashi et al., 2015; Miller and Vogt, 1984). Second, our results suggest that the neural 

trajectory traverses the same locations in both fast and slow trials: we determined for each 

location whether the number of detected onsets was different for the 33% of the trials with 

the fastest vs. the slowest reaction times, respectively. The results showed that of the 13–26 

locations across the different subjects, none had a different number of detected onsets in the 

fastest compared to the slowest trials (binomial test, p> 0.05, FDR-corrected for multiple 

comparisons). Moreover, additional analyses showed that, when we randomly selected two 

33% subsets of the trials and performed the same statistics, we were still unable to identify a 

single electrode whose number of onsets differed across the two subsets. In a 

complementary analysis, when we summed the number of detections in fast versus slow 

trials across the task-related network within subjects, we found no difference in the number 

of activity onsets in the slowest 50% versus the fastest 50% of all trials (paired t-tests, p = 

0.69, 0.54, 0.31, and 0.63 for Subjects A-D, respectively; Suppl. Fig. S6). Taken together, 

these results suggest that variance in reaction times was not due to the recruitment of 

different cortical networks in fast versus slow trials. Finally, we found no difference in 

broadband power for the fastest 50% versus the slowest 50% of trials in the 50 ms period 

after activity onset when summed across detections in the task-related network within each 

subject (Wilcoxon Rank Sum test, p > 0.05 after Bonferroni correction for multiple 

comparisons; Suppl. Fig. S7). In sum, these findings practically exclude the possibility that 

the observed large variations in timing can be accounted for by either synaptic properties, 

signal transmission through different neuronal populations, or effects of general arousal.

3.4. The phase of alpha (8–12 Hz) oscillations modulates latency variations in neuronal 
communication and behavior

The model and resulting hypothesis outlined above prompt two predictions. The 

experimental testing of these predictions forms the main experimental contribution of this 

article.

The first prediction is that, in faster trials, the first in a series of spike volleys should tend to 

arrive at a particular receiving location at any time during the trough of oscillatory activity at 

that site, since they will immediately result in excitation of neuronal populations. 
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Conversely, in slower trials, initial spike volleys should tend to arrive during the peak of that 

oscillatory activity, and thus only result in excitation of neuronal populations when the 

subsequent volley arrives during the oscillatory trough. Hence, onsets of population-level 

activity should be increasingly biased toward the falling slope of the trough for slow trials 

compared to fast trials. This effect should be strongest when oscillatory power is high, i.e., 

when the phase of oscillatory activity has the strongest influence on cortical excitability 

(Schalk, 2015). Indeed, this was true for trials with high oscillatory power2 in the alpha 

frequency band (p =0.027, Fisher’s exact test, fastest/slowest 50% of trials), but not for other 

oscillatory frequency bands (delta (1–3 Hz; p = 0.18), theta (4–8 Hz; p = 0.11), beta1 (12–18 

Hz; p = 0.74), or beta2 (18–30 Hz; p = 0.35); Supplementary Table S1) or for trials with low 

oscillatory power (Supplementary Table S2).

The second prediction is that temporal variance should accumulate across subsequent nodes 

in the network, i.e., variance in onset times should increase as a function of mean onset 

latency. This phenomenon is widely recognized, yet not often formally addressed in the 

literature (but see DiCarlo and Maunsell (2005) and Banerjee et al. (2010)). Our results are 

consistent with this second prediction as well (r2 = 0.40, p =1.9x10−10, (Figure 6)). These 

two results strongly support the hypothesis that human reaction time is modulated by the 

phase relationships of oscillatory activity across communicating locations.

An important point to consider here is that we found evidence for the effect of phase only for 

oscillations in the alpha band and not for other frequency bands. It is possible that this points 

to a specific role of alpha in cortical communication. It is also possible that oscillations in 

the alpha band happen to be more frequent in our task than oscillations in other frequency 

bands, and thus, our ability to detect an influence of phase on performance in the alpha 

frequency band simply was greater than for other frequency bands. In this scenario, 

oscillations in other frequency bands may have similar effects on neuronal communication 

and its resultant behavior.

3.5. Summary

In this study, we charted the trajectory of neuronal population activity that implements a sen-

sorimotor function across large areas of the brain and in single trials. This novel technical 

ability enabled us to determine how low-frequency oscillations govern the timing of the 

entire trajectory and the timing of consequent behavior. We found that the phase of neuronal 

oscillations in the alpha (8–12 Hz) band, but not in other frequency bands, modulated the 

timing of both. Across all locations, the onset of neuronal population activity occurred 

preferentially in the trough of alpha oscillations, and deviations from this preferred 

relationship were related to changes in the timing of the behavioral response. Specifically, 

for slower response times, the onset of population activity tended to occur more often during 

the falling phase of the trough compared to the faster response times. Together with the 

finding that variance in onset times increased as a function of a location’s mean onset 

latency, these results suggest that reaction time variability results from suboptimal phase 

synchronization of oscillations across distant populations of neurons.

2We tested all onset detection times whose corresponding low-frequency power was higher than the median power in that frequency 
band across all detections at that location
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3.6. Relationship of our results to current theories of oscillatory function

Current theories of information transmission in the brain, such as the “communication-

through-coherence” (CTC) hypothesis (Fries, 2005) and the “gating-by-inhibition” (GBI) 

hypothesis (Jensen and Mazaheri, 2010) suggest that the brain may facilitate or inhibit 

neuronal communication by modulating low frequency oscillatory activity (Fries, 2005; 
Buzsáki and Draguhn, 2004; Jensen and Mazaheri, 2010). CTC suggests that the brain plays 

an active role in aligning the phases of the oscillations governing a sending and a receiving 

population to facilitate communication. Thus, matched/mismatched phase relationships are 

proposed to reflect populations’ ability/impaired ability to communicate, respectively. GBI 

suggests that disruptive, rhythmic volleys of action potentials at low frequencies (assessed 

by measuring oscillatory power) inhibit the function of a population of neurons. Thus, low/

high alpha power reflects a neuronal population’s ability/impaired ability to communicate 

with other populations, respectively.

The results presented here support elements of both views, and are consistent with a recently 

introduced general model of cortical communication, the “function-through-biased 

oscillations” (FBO) hypothesis (Schalk, 2015). Like CTC, FBO suggests that oscillatory 

phase modulates communication. Like GBI, FBO suggests that oscillatory power modulates 

cortical communication as well3. Furthermore, FBO outlines why the modulatory effect of 

phase observed in our study occurred preferentially for oscillations with high power. 

Specifically, when oscillatory power is low, neuronal populations are generally excitable, 

and oscillatory phase has little impact on excitability. In contrast, when oscillatory power is 

high, neuronal populations can only process and exchange information during permissive 

phases of the oscillation. This provides an interesting bridge between the CTC and GBI, 

allowing roles for both phase and power — and for interactions between the two — in 

modulating signal propagation across populations of neurons.

3.7. Future work

Our results strongly support the hypothesis that oscillatory phase modulates the speed of 

information transmission in the brain and of resulting behavior. More formally, it suggests 

that the delay incurred in communication between neuronal populations is a function of 

oscillatory phase. Testing this hypothesis directly requires knowledge of which of the 

identified task-related neuronal populations are directly functionally connected.

Our results suggest that existing methods to establish such functional connectivity are not 

ideally suited to perform this determination. First, as shown in Figs. 2 and 4, broadband 

gamma activity is highly non-stationary, but stationarity is an important assumption of many 

methods to estimate functional connectivity such as Granger causality (Granger, 1969). 

Second, the results shown in Fig. 6 suggest that different neuronal populations have variable 

timing relative to each other. However, most traditional techniques, including Granger 

causality, assume that brain signals at different locations have a constant timing relationship 

3FBO also explains why oscillatory phase and power, which are mathematically independent measurements, are each related to 
cortical excitability.
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(Friston, 2009). Thus, future work is needed to develop techniques that can identify which 

neuronal populations are functionally connected despite these physiological realities.

4. Conclusion

In summary, our study established the neural trajectory of task-related population-level 

activity during a simple sensorimotor task in individual trials, and revealed an important role 

for the phase of alpha oscillations in modulating the timing of that trajectory and of resulting 

behavior. The work presented in this paper may provide the basis for a general model of 

variability in the effective speed of information transmission in the human brain and for 

variability in the timing of human behavior. Our results appear to point to an interesting 

bridge between theories of oscillatory function by tying together the effects of oscillatory 

phase and power in modulating cortical signal propagation, as recently proposed and 

formalized in (Schalk, 2015). More detailed investigations on these and related topics will 

require novel methods of assessing functional connectivity.
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Highlights

• The trajectory of neuronal population activity across the human cortex can be 

identified in single trials

• The phase of high power alpha oscillations modulates latency variations in 

neuronal communication and behavior

• This link between the timing of cortical activity and the timing of consequent 

behavior occurs only when oscillatory activity has high power

• These findings are consistent with a new theory of dynamic brain function, the 

“Function-through-Biased Oscillations” (FBO) hypothesis.
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Figure 1. Electrode coverage and task-related locations in all four subjects
Location of electrodes from all subjects, projected onto the common MNI template brain. 

Small black dots show implanted electrode locations. Large colored dots show task-related 

locations, color coded by subject (dark blue = Subject A; cyan = Subject B; gold = Subject 

C; dark green = Subject D). For visualization purposes in this figure only, we projected 

Subject D’s right-hemisphere electrodes onto the left hemisphere of the template brain.
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Figure 2. Exemplary spatiotemporal trajectory of task-related neuronal population activity in 
one single trial
A) Task-related cortical locations from Subject A (left), and the time course of neuronal 

population activity in exemplary locations (right). Increases in activity at each location are 

brief. B) Population-level activity occurs during the trough of alpha oscillations (8–12 Hz).
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Figure 3. Exemplary time-frequency plots and single-trial broadband gamma plots
A. Single-trial activity plots for Subject A. Activity in the broadband gamma range (colors) 

is shown from 0–1500 ms after the onset of the visual stimulus (x-axes). Individual trials (y-

axes) are sorted by behavioral response time. Each plot represents data from one electrode 

location, and is projected onto the corresponding channels’ coordinates on the MNI template 

brain. Task-related electrode locations identified by our analyses are framed in thick black 

borders. The top panel in B shows time-frequency plots (averaged across all trials) 

illustrating that amplitudes at different low frequencies are modulated by the task including 

the alpha (8–12 Hz) band. The bottom panel gives single-trial broadband activity, blurred 

with a Gaussian kernel for visualization purposes. Single-trial activity onset times are shown 

as black circles (i.e., each plot is the same as in A, but with onset times shown on top of 

broadband activity).
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Figure 4. 
The onset time of neuronal population activity tends to occur during the falling phase of the 

trough of alpha oscillations. A. Traces show normalized time courses of the amplitude of 

neuronal population activity (blue) and the amplitude of activity in the alpha band (orange), 

averaged across all trials, all task-related locations and across all subjects, and time-locked 

to the onset of population activity in each corresponding trial (traces show mean ±standard 

error). B. Polar histogram of alpha phases at the time of detected activity onset from all 

trials, all locations and all subjects. The distribution has a circular mean of 160.5 degrees, 

and passed a Rayleigh test for non-uniformity in circular data (p ≪0.01). The counts in the 

histogram plot range from 400 onsets (origin) to 600 onsets (outer circle).
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Figure 5. 
Alpha oscillations may modulate the timing of communication between neuronal 

populations. As alpha amplitude (orange lines) decreases past a threshold voltage (dotted 

gray lines), neuronal populations may process and transmit information (i.e., permissive 

window, green boxes). When one population attempts to signal another, the time it takes for 

a series of spike volleys (black dotted arrows) to result in excitation of population activity 

(blue boxes) depends on the phase of the receiving population’s oscillatory activity. In A, the 

first spike volley immediately excites the receiving population. In B, most spike volleys do 

not arrive during a permissive window, delaying excitation.
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Figure 6. 
Variance in neural activity onset times increases as a function of mean onset time. Each dot 

corresponds to an electrode location. Data are from all four subjects. The dotted line shows 

the linear trend derived using least squares regression. Pearson’s coefficient of 

determination, r2, is shown in red inlaid text.
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