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Abstract

Quantitative T1 maps estimate T1 relaxation times and can be used to assess diffusetissue 

abnormalities within normal-appearing tissue. T1 maps are popular for studying the progression 

and treatment of multiple sclerosis (MS). However, their inclusion in standard imaging protocols 

remains limited due to the additional scanning time and expert calibration required and 

susceptibility to bias and noise. Here, we propose a newmethod of estimating T1 maps using four 

conventional MR images, which are intensity-normalized using cerebellar gray matter as a 

reference tissue and related to T1 using a smooth regression model. Using cross-validation, we 

generate statistical T1 maps for 61 subjects with MS. The statistical maps are less noisy than the 

acquired maps and show similar reproducibility. Tests of group differences in normal-appearing 

white matter across MS subtypes give similar results using both methods.
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1 Introduction

Quantitative magnetic resonance imaging (MRI) techniques are used to estimate features of 

human body tissue for the study of progression and treatment of diseases. For example, T1 

maps estimate T1 relaxation times (T1), which can be used as an indicator of inflammation 

and in nervous system tissue, demyelination, axonal loss and gliosis (Larsson et al., 1989; 
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Vrenken et al., 2006). Increased relaxation times across normal-appearing white matter of 

the brain have been associated with a number of neurological diseases and disorders, 

including multiple sclerosis (MS), schizophrenia, alcoholism, optic neuritis, and near-

terminal AIDS (Tofts and Du Boulay, 1990).

In MS, elevated T1 relaxation times have been consistently observed in normal-appearing 

white matter (NAWM), relative to that of healthy control subjects (Bonnier et al., 2014; 
Castriota-Scanderbeg et al., 2004; Griffin et al., 2002; Parry et al., 2002; Vaithianathar et al., 

2002; Vrenken et al., 2006). There is also evidence for elevated T1 in MS patients in deep 

gray matter, particularly in the thalamus (Griffin et al., 2002; Parry et al., 2002; Vrenken et 

al., 2006), and in cortical gray matter (CGM) (Vrenken et al., 2006). Longitudinal studies 

have shown that the variance of T1 in NAWM and CGM increases over time for MS patients 

(Davies et al., 2007; Manfredonia et al., 2007; Papadopoulos et al., 2010; Parry et al., 2003) 

and that average T1 in NAWM may also increase (Manfredonia et al., 2007). Furthermore, 

T1 is a clinically meaningful measure that contributes to a more complete picture of MS 

disease burden. In particular, the mean and variance of T1 in NAWM have been found to be 

predictive of current and future disability (Manfredonia et al., 2007; Parry et al., 2002), and 

elevated T1 in deep gray matter has been associated with fatigue (Neema et al., 2007; Niepel 

et al., 2006). Compared with lesion-based assessments of MS disease burden, which can be 

detected on standard clinical MR images, T1 maps appear to provide complementary, not 

redundant, information (Griffin et al., 2002; Papadopoulos et al., 2010).

However, multiple factors have limited the widespread availability of T1 maps. First, T1 

maps are still not included in most standard clinical or research protocols, due in part to the 

additional scanning time required for their acquisition. This is particularly true in the clinical 

setting, where limited resources and patient considerations typically restrict acquisition to 

conventional MR images. Second, many longitudinal studies of MS and other neurological 

diseases include years or even decades of imaging history, during only a fraction of which 

T1 maps may have been acquired, thus limiting our understanding of the longitudinal 

evolution of T1 in these diseases. Finally, T1 mapping requires very careful scanner 

calibration, and many technical and environmental factors can introduce bias and noise, 

limiting reproducibility across acquisition methods, centers, scanners and visits.

In this paper, we introduce a novel method of computing T1 maps based on conventional 

MR images. Traditional T1 maps estimate T1 analytically, using multiple (often two) T1-

weighted images acquired with different flip angles or inversion times to interpolate the T1 

relaxation curve (Blüml et al., 1993; Christensen et al., 1974; Crawley and Henkelman, 

1988; Deoni, 2007; Henderson et al., 1999; Look and Locker, 1970; Messroghli et al., 2004). 

This curve is a non-linear function of T1, a constant at a given physical location, and can be 

back-solved to estimate T1. By contrast, our method estimates T1 statistically using a voxel-

wise regression model based on conventional MR images that are already included in many 

standard protocols. Using our method, a T1 map can be estimated and added to a clinical or 

research study at any point following acquisition of the conventional MR images. A novel 

intensity normalization technique that utilizes the cerebellar gray matter as a reference tissue 

is key to the success of our method, Quantitative MR Estimation Employing Normalization 

(QuEEN). Henceforth, we refer to the traditional, analytically estimated T1 maps as “T1 
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maps” and to the QuEEN-estimated T1 maps as “QuEEN maps”. The QuEEN model is fully 

automated and computationally efficient.

2 Methods

In this section, we detail the QuEEN method of T1 estimation. QuEEN is comprised of two 

primary steps: intensity normalization of predictor MR images, followed by training of a 

flexible regression model relating the intensity-normalized predictor images to T1. We use 

four predictor MR images that are routinely acquired in clinical and research protocols: T1-

weighted (T1w), T2-weighted (T2w), proton density-weighted (PDw), and T2-weighted fluid 

attenuated inversion recovery (FLAIR) images. These predictors were chosen due to their 

relatively wide availability and contribution to model performance. However, we also 

consider several alternative models based on subsets of these four predictors.

Prior to intensity normalization and model training, a standard MRI preprocessing pipeline 

is performed, including rigid registration (alignment) of images within each subject, removal 

of extracerebral voxels, and segmentation of brain tissue types. We validate the proposed 

methods by demonstrating that QuEEN maps are comparable to T1 maps in terms of 

reproducibility and utility. Specifically, we illustrate that QuEEN maps can detect group 

differences in acute and diffuse white matter pathologies between subjects with different MS 

subtypes as well as, and possibly better than, T1 maps, and we show that QuEEN and T1 

maps have similar measurement error rates.

2.1 QuEEN Model

2.1.1 Intensity Normalization—The MR images used as predictors in the QuEEN model 

are unitless, and therefore their intensities only have relative meaning within a scan. 

Intensity normalization of conventional MR images is often performed to introduce units 

and make intensities more comparable across images. By normalizing with respect to a 

reference region, intensities are converted to a measure of deviation from that reference, thus 

introducing meaningful units. For example, the z-score normalization method (Shinohara et 

al., 2011, 2014) estimates the center and variance of the distribution of intensities within a 

reference region, then normalizes the intensity of each voxel in the image by subtracting the 

center and dividing by the standard deviation; the resulting normalized intensities are 

therefore in units of standard deviations away from the center. For healthy subjects, NAWM 

is a useful reference region since it is well-imaged and easy to segment (Shinohara et al., 

2014).

However, in many diseased populations, tissue damage occurs in NAWM that cannot be 

visually detected on contrast-based images; T1 maps, which are sensitive to damage in 

normal-appearing tissue, are therefore often used to assess this damage. In order for QuEEN 

maps to possess this same property, a reference region that is minimally affected by disease

—or that has low sensitivity on MRI to disease-related changes—should be chosen, so that 

the normalized intensities within NAWM reflect any tissue damage. Therefore, a good 

choice of reference region for the predictor images is vital. Candidate regions include 

cerebellar white and gray matter, cortical gray matter, deep gray matter, and cerebrospinal 

fluid (CSF). While CSF has the advantage of being generally unaffected by disease and has 
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been used for normalization previously (Bakshi et al., 2002; Brass et al., 2006; Neema et al., 

2009; Pujol et al., 1992; Tjoa et al., 2005; Van Waesberghe et al., 1998), we have found MR 

intensities within CSF to be very noisy. Therefore, normalization with CSF as a reference 

region tends to introduce variance into the normalized intensities and result in highly 

variable estimation of T1 in the QuEEN model. Therefore, we do not recommend the use of 

CSF as a reference region in intensity normalization. Furthermore, in addition to NAWM, 

several other regions have been shown to be diffusely affected by MS, including cerebellar 

white matter (CBWM) (Bonnier et al., 2014; Casanova et al., 2003; Deppe et al., 2015), 

cortical gray matter (Kutzelnigg et al., 2005; Pirko et al., 2007; Vrenken et al., 2006) and 

deep gray matter (Griffin et al., 2002; Parry et al., 2002; Pirko et al., 2007; Vrenken et al., 

2006).

Cerebellar gray matter (CBGM), on the other hand, has not been found to be diffusely 

affected by MS, and a recent investigation of T1, T2, , and magnetization transfer ratio 

(MTR) in early-stage RRMS looked for but found no changes to CBGM (Bonnier et al., 

2014). Furthermore, the cerebellum has been utilized previously as a reference region for 

intensity normalization of positron emission tomography (PET) in the contexts of MS 

(Ratchford et al., 2012) and Alzheimer’s disease (Kropholler et al., 2007), though to the best 

of our knowledge it has not been used for intensity normalization of MRI. We use cerebellar 

gray matter only, rather than the entire cerebellum, for two reasons: first, as mentioned 

above, CBWM may display diffuse disease-related changes in MS on MRI; second, the 

distribution of intensities in the cerebellum is a mixture of two distributions corresponding to 

gray and white matter respectively, and hence the center of the full distribution is sensitive to 

the relative volume of gray and white matter, which may differ across subjects.

We therefore propose a hybrid intensity normalization method using CBGM and NAWM. 

We propose using CBGM to estimate the center (e.g. median) in order to reflect disease-

related changes in other tissue classes, including NAWM. Since we are primarily interested 

in detecting differences within and across subjects in the center of the distribution, we 

propose using NAWM to estimate the variance. NAWM is well-imaged and easy to segment, 

and thus this approach provides more stable variance estimation and more stable estimates 

of T1. While changes to the variance of T1 in NAWM have been documented, we have found 

this approach to improve accuracy of the QuEEN model, as it trades some bias for a greater 

reduction in variance. We now formally define the proposed intensity normalization 

procedure.

Let Mi(v) denote the raw intensity of voxel v for subject i in image M ∈ {FLAIR, PDw, 
T1w, T2w}. Using the z-score method, we normalize image Mi:

where  is the median intensity within CBGM and  is the standard deviation 

of intensities within NAWM. We define the CBGM and NAWM regions using eroded 

versions of tissue class masks from an automated segmentation procedure, as described in 
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Section 2.3.3. Though partial volume effects are common when segmenting cerebellar white 

and gray matter, erosion serves to mitigate these effects. Furthermore, the use of the median 

as the measure of center provides robustness against moderate segmentation errors, partial 

volume effects, and local abnormalities, such as lesions. Figure 1 shows the NAWM and 

CBGM regions for one randomly selected subject.

Figure 2 shows the relationships between T1 and each predictor image before and after 

normalization. A histogram of the intensities across voxels from all subjects is also shown at 

the bottom of each plot. Each line is a smooth coefficient curve from a univariate 

generalized additive regression model (GAM) and estimates the relationship between T1 and 

each predictor within a single subject and scanning session. The GAM model and its 

estimation are explained in more detail in Section 2.1.2. Intensity normalization aims to 

make these curves more similar across subjects and sessions, which will in turn lead to better 

out-of-sample prediction accuracy of T1 for a cross-sectional regression model trained on 

multiple subjects. Figure 2b illustrates how the proposed intensity normalization method 

serves to standardize these curves across subjects and sessions, especially within the range 

of values visible on the histograms.

2.1.2 Statistical Model—Following intensity normalization, a regression framework is 

used to estimate T1 from the normalized predictor images. Specifically, we train the 

following generalized additive regression model (a smoothing spline model) for T1 at voxel 

v in tissue class c for subject i:

where , and the functions , j = 1, 2, 3, 4, are smooth population-level 

coefficient curves that map the normalized predictor image intensities in class c to deviations 

from the average T1, represented by the intercept . The curves shown in Figure 2 are 

simply estimated coefficient curves plus intercept for a set of single-subject, univariate 

GAMs. For any subject with a T1w, T2w, PDw and FLAIR image, T1 at a given voxel within 

tissue class c can be estimated by applying the fitted regression curves , j = 1, 2, 3, 4, to 

the corresponding normalized predictor image intensities at that voxel, and summing them 

with the intercept term .

We fit this model in the R statistical environment (version 3.0.2; R Core Team 2013) using 

the GAM function from the MGCV package (version 1.7-28; Wood 2006, 2011). This 

function represents the smooth curves as penalized regression splines. Generalized cross 

validation is used to estimate the degree of smoothness for each predictor, and the smoothing 

parameter estimation criterion is optimized using the Newton method (Gu and Wahba, 

1991).

Several comments on this modeling framework are in order. First, a separate model is trained 

within each tissue class, because the relationship between the predictor image intensities and 

T1 varies across classes. Second, the model assumes that the spatial dependence structure is 

explained entirely by the predictors, so that the residuals are spatially independent. Violation 
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of this assumption will result in underestimation of the standard errors of the coefficient 

estimates, but will not likely have a strong effect on the coefficient estimates themselves 

(Liang and Zeger, 1986); as we rely on cross-validation error to quantify predictive 

performance, underestimation of the coefficient standard errors does not affect our results. 

Third, this is a cross-sectional, population-level model that treats all voxels from a group of 

subjects as independent observations. We chose a population-level model because we are 

primarily interested in assessing the marginal relationship between T1 and the predictor 

images across subjects. This model is designed to produce the best estimate of T1 for a 

subject for whom no T1 map has been acquired; if subject-level information is available, a 

mixed-effects model may be more appropriate.

We also consider several more parsimonious model specifications. The full model relies on a 

9-class tissue segmentation (see Section 2.3.3), which, while automated, is somewhat slow 

and may require tuning. As an alternative to the full tissue class segmentation, we can easily 

obtain a coarse segmentation consisting of white matter, gray matter and lesions using 

OASIS (Sweeney et al., 2013) to identify lesions and FSL FAST (Zhang et al., 2001) to 

identify normal-appearing white and gray matter. To assess the change in accuracy with this 

coarser segmentation, we create a set of pooled tissue class models by fitting a separate 

model for gray matter (CBGM, CGM, caudate, thalamus and putamen), non-lesion white 

matter (CBWM, NAWM and brainstem) and lesions, respectively. Furthermore, the full 

model requires the acquisition of four predictor images, some of which may not be acquired 

under every protocol; while T1w images are routinely acquired, this is not always the case 

for T2w/PDw (which are usually acquired simultaneously) and FLAIR images. To assess the 

importance of T2w/PDw and/or FLAIR in the QuEEN model, we fit three separate 

submodels that include as predictors T1w only, T1w with T2w and PDw, and T1w with 

FLAIR.

2.2 Method Validation

We assess the performance of the QuEEN model using several criteria related to 

reproducibility and utility. To assess the reproducibility of QuEEN maps, we compute 

estimation error and prediction error. We define the estimation error of a QuEEN map at 

each voxel as the difference between the intensities on the QuEEN map and T1 map from the 

same session. We note that the regression framework used to generate QuEEN maps may 

serve to reduce the noise typically found on T1 maps due to the “shrinkage effect” of 

regression, in which observations are pulled towards the mean, an effect that has previously 

been shown to improve reproducibility of functional MRI measures (Mejia et al., 2015; Shou 

et al., 2014).

While estimation error is useful, it is difficult to determine what constitutes a good or bad 

estimation error without knowing the measurement error of T1 maps. Therefore, we also 

define prediction error as the difference at each voxel between a T1 or QuEEN map and a 

second T1 map acquired at a later date. We compute the prediction error of the T1 and 

QuEEN maps of those subjects in our dataset for whom a second T1 map is available. Note 

that while prediction error may be affected by real biological changes, such as disease 
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progression, those changes will affect the prediction errors of T1 and QuEEN maps 

similarly, and hence they can be compared fairly.

For each error rate, we compute the cross-validated root median squared error (CV-rMSE) of 

each QuEEN map by tissue class. It is important to note that, due to measurement error 

inherent in T1 maps and the possibility for such errors to be spatially recurrent across 

multiple scans, the prediction error of T1 maps may be somewhat underestimated.

To assess the utility of QuEEN maps, we use both QuEEN maps and T1 maps to detect acute 

and diffuse changes in white matter, a common use of T1 maps. Specifically, we perform 

Wilcoxon tests of group differences in median T1 within NAWM and lesions between 

different MS subtypes. Previous work suggests that secondary-progressive MS (SPMS) 

subjects show elevated T1 in NAWM relative to relapsing-remitting MS (RRMS) and 

primary-progressive MS (PPMS) patients, and that RRMS patients show elevated T1 in 

NAWM relative to PPMS patients (Vrenken et al., 2006). Therefore, for each of these pairs 

we conduct a one-sided test for differences in median NAWM T1. Much extant literature 

also finds that patients with MS show elevated T1 relative to healthy volunteers (HVs) 

(Griffin et al., 2002; Miller et al., 1989; Parry et al., 2002, 2003; Vaithianathar et al., 2002; 
Vrenken et al., 2006). We therefore also conduct a one-sided test for differences in median 

NAWM T1 for MS patients overall and each MS subtype versus HVs. However, as our HV 

group is very small, we present these results as preliminary findings in Appendix Figure B.2. 

Finally, we also perform a two-sided test for differences in median lesion T1 between each 

pair of MS subtypes.

2.3 Materials

2.3.1 Study Population—Our dataset consists of MRI studies collected from 75 subjects. 

In order to ensure image quality for model training and validation, we performed careful 

quality control and excluded four studies due to subject motion, two due to registration 

problems, five due to tissue class segmentation errors, and two due to bias in the T1 map. 

The 62 remaining studies include 29 PPMS patients, 15 RRMS patients,16 SPMS patients, 

and 2 HVs. Additional summary statistics are shown in Table 1. For model training, we 

formed a high-quality dataset containing 45 studies by excluding any studies where even 

minor segmentation errors or subject motion were present. For model validation we 

generated QuEEN maps for all 62 studies, as described in Section 2.3.4.

To assess prediction error, a second MRI study was collected for 36 subjects. Of these, we 

excluded one study due to motion and two due to segmentation errors. The remaining 33 

studies include 20 PPMS patients, 12 SPMS patients, and one RRMS patient. The average 

length of time between the two studies is 169 days and ranges from 21 to 301 days.

2.3.2 Image Acquisition—Each MRI study includes the following images, all collected 

on a Siemens Skyra 3 Tesla (3T) scanner: a T1 map, acquired as two T1-FLASH (Fast Low 

Angle SHot) sequences at differing flip angles [TR=7.8ms, TE=3ms, FA=3/18] (Christensen 

et al., 1974; Gupta, 1977) with a B0+B1 field map for FA correction (Duan et al., 2013); a 

T1w-MPRAGE (Magnetization-Prepared RApid Gradient Echo) image [TR=3000ms, 

TE=3.03ms, TI=900ms, FA=9]; PDw and T2w images from a dual-echo turbo spin echo 
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(TSE) sequence [TR=3000ms, TE=11ms/101ms, FA=150, ETL=14]; and a 3D T2-weighted 

FLAIR image acquired using a T2-selective inversion pulse optimized for T2 of 120ms 

[TR=4800ms, TE=354ms, TI=1800ms, Variable FA]. All scans were acquired at 1.0mm 

isotropic resolution except the PDw/T2w TSE sequence, which was acquired at 0.93 × 0.93 

× 3.0mm resolution.

2.3.3 Image Preprocessing & Tissue Segmentation—For the T1 map of each 

subject, we perform B0-field correction to reduce magnetic field inhomogeneity and B1-field 

correction to account for the radio-frequency (RF) transmit bias field. B0 correction is 

required as it causes a shift in center frequency. B1 is calculated by using off-resonance RF 

pulse preparations symmetric to the water excitation frequency, as detailed in Sacolick et al. 

(2010). Further modification of this technique is required to obtain the B1 map from the 

entire brain in a reasonable scan time due to SAR (specific absorption rate) limitations at 3T; 

the B1 correction pulse sequence we use is detailed in Duan et al. (2013).

For each subject, we rigidly align the corrected T1 map and T1w, T2w, PDw and FLAIR 
images to the Montreal Neurological Institute (MNI) 152 1.0 mm nonlinear template, using 

a two-step registration technique where the second alignment is done after skull-stripping. 

We apply the N4 inhomogeneity correction algorithm (Tustison et al., 2010) to the T1w, 

T2w, PDw and FLAIR images, and we remove extracerebral voxels using the SPECTRE 

skull-stripping algorithm (Carass et al., 2011).

For each study, we use a tissue class segmentation from Topology Preserving Anatomy 

Driven Segmentation (TOADS) (Bazin and Pham, 2006) for HVs and Lesion-TOADS 

(Shiee et al., 2010) for patients with MS. Both algorithms identify eight tissue classes 

(cerebral white matter, cortical gray matter, cerebellar white matter, cerebellar gray matter, 

caudate, thalamus, putamen and brainstem) and CSF; Lesion-TOADS also identifies white 

matter lesions. Since TOADS and Lesion-TOADS employ topological constraints that can 

cause segmentation errors within the ventricles, which sometimes appear discontinuous on 

MRI, we correct the ventricular segmentation using the non-topologically constrained 

maximum membership classes.

To create a brain mask including only tissue, we exclude voxels identified as CSF on the 

tissue class segmentation. Furthermore, we exclude any voxels that appear hypointense in 

the FLAIR image by thresholding the image below the 80th percentile, which has been used 

to to help correct for CSF segmentation errors (Sweeney et al., 2013). In cases where the 

brain mask extended beyond the field of view of an image because of the angulation of one 

of the acquisitions, voxels outside of this field of view were excluded in all sequences. 

Finally, we exclude any voxels with physically implausible T1 for brain tissue (less than zero 

or greater than 5000 ms). The remaining voxels comprise the brain mask.

To create a conservative mask of each tissue class, we start with the tissue class 

segmentation described above and remove any voxels outside of the brain mask. To exclude 

voxels exhibiting partial volume effects along tissue class borders, we erode the mask of 

each tissue class using a 3×3×3 diamond-shaped kernel. Eroded voxels are excluded from 

model training and validation measures, but are included for whole-image prediction.
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While processing times vary significantly across subjects, the total processing time for each 

subject is approximately 1–1.5 hours on a single core of a 2.30GHz Intel(R) Xeon(R) CPU 

E7-4870 v2 processor. The major computational steps are coregistration (30–40 minutes), 

skull stripping (20–30 minutes), and tissue segmentation (20–40 minutes). T1 map 

calculation takes approximately 3 minutes, and all other steps are negligible in time. Many 

of the processing steps can be performed for multiple subjects in parallel. Quality control 

was performed by one expert neuroradiologist and two statisticians with experience in 

structural MRI, and takes approximately 2 minutes per scanning session in total.

2.3.4 QuEEN Map Generation—Within the high-quality dataset, we generate QuEEN 

maps through leave-one-subject-out cross-validation. That is, for each subject, the QuEEN 

statistical model is fit on all other subjects in the high-quality dataset, and the resulting 

model is used to generate the QuEEN map for that subject. For subjects not included in the 

high-quality dataset, QuEEN maps are generated using the QuEEN statistical model trained 

on all subjects in the high-quality dataset. The results reported below are based on the high-

quality dataset; results including the full dataset are shown in Appendix Figures C.3–C.5.

3 Results

Figure 3 shows the estimated GAM coefficient curves within each tissue class. The curves 

for T1w appear similar across tissue classes, while the curves for T2w, PDw and FLAIR vary 

markedly across classes. This may signify that T1w captures general characteristics of the T1 

map, while the other predictor images capture more subtle features within each tissue class.

Figure 4 shows, for one randomly selected subject, two axial slices of the T1 map (Figure 

4a), QuEEN map (Figure 4b), and the magnitude of the difference between them. The 

difference image is shown on the same scale as the images (Figure 4c) and again on a 

different scale to show greater detail (Figure 4d). The T1 and QuEEN maps appear very 

similar; however, the QuEEN map appears smoother and contains less noise on the border 

between brain tissue and cerebrospinal fluid (CSF). The subject displayed is an RRMS 

patient; example images from subjects with PPMS and SPMS and a HV are shown in 

Appendix Figure A.1.

Figure 51 shows boxplots over subjects of the QuEEN estimation error (shown in orange), 

QuEEN prediction error (shown in light blue), and T1 prediction error (shown in dark blue) 

within each tissue class, in terms of CV-rMSE. The reproducibility of QuEEN and T1 maps 

appear quite similar overall, with differences within certain tissue classes. In particular, the 

QuEEN maps appear to be more reproducible in deep gray matter (thalamus, caudate and 

putamen), CBWM and the brainstem, while the T1 maps tend to be more reproducible in 

CGM, CBGM, NAWM and lesions.

Figure 6 shows boxplots of the QuEEN estimation error for the fully stratified model and the 

pooled tissue class model. A moderate loss of accuracy is seen in the caudate, thalamus, 

putamen, brainstem and CBWM, while a small loss of accuracy can be seen in NAWM. A 

1In Figure 5, data points corresponding to lesion masks containing fewer than 500 voxels and caudate masks containing fewer than 
1000 voxels are excluded. Such masks usually represent significant overlap with CSF voxels.
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disproportionate loss of accuracy is not surprising when smaller classes are pooled with 

larger classes, since the coefficient estimates will be pulled towards the majority of the 

observations. Within NAWM, a paired t-test for the change in CV-rMSE for the pooled 

model versus the fully stratified model shows that the pooled model does result in a small 

but statistically significant loss of accuracy, with an increase in CV-rMSE of 3.02 ms (p = 

4.2 × 10−11, 95% CI [2.27, 3.78]) per subject. This illustrates that while accuracy is clearly 

lost in some tissue classes, if NAWM is of primary interest the pooled tissue class model 

based on a basic tissue class segmentation can be used to estimate T1 in NAWM almost as 

accurately.

Figure 7 shows boxplots of the QuEEN estimation error for the full model and for the three 

models with fewer predictors. When FLAIR is excluded, a minor reduction in accuracy is 

apparent in lesions and gray matter (cortical, deep and cerebellar), while when T2w and 

PDw are excluded we observe a small loss of accuracy in CBWM, NAWM and the 

brainstem. A series of paired t-tests for the change in CV-rMSE within NAWM show that 

each submodel results in a very small but statistically significant loss of accuracy, with an 

increase in rMSE of 1.20 ms (p = 0.009, 95% CI [0.31, 2.09]) per subject when FLAIR is 

excluded, 0.64 ms (p = 0.024, 95% CI [0.09, 1.20]) when T2w and PDw are excluded, and 

2.83 ms (p = 0.0002, 95% CI [1.40, 4.27] when all three are excluded. While accuracy can 

clearly be maximized by including all four predictors, the loss of accuracy if one or more of 

the secondary predictors is not available is small.

Figures 8 and 9 show the results of tests of group differences between disease types. Figure 

8 shows the median T1 in NAWM as estimated by T1 maps (Figure 8a) and QuEEN maps 

(Figure 8b). For each pair of groups, the p-value shown on the plot corresponds to a one-

sided Wilcoxon test that the group on the left has a greater median than the group on the 

right. As described in Section 2.2, these comparisons were chosen based on previous 

findings. Surprisingly, while none of the expected differences are significant based on T1 

maps, based on QuEEN maps SPMS patients show a significant or marginally significant 

increase compared to RRMS patients (p = 0.018) and PPMS patients (p = 0.082).

Figure 9 shows the median T1 in lesions as estimated by T1 maps (Figure 9a) and QuEEN 

maps (Figure 9b). For each pair of groups, the p-value shown on the plot corresponds to a 

two-sided Wilcoxon test for a difference in medians. We perform two-sided tests because we 

do not have strong a-priori beliefs about differences in lesion T1 between disease types. 

While none of the differences are significant based on T1 maps, using QuEEN maps PPMS 

patients show a marginally significant difference with both RRMS patients (p = 0.082) and 

SPMS patients (p = 0.092). In both cases, the estimate of the median is higher for PPMS 

patients. This finding is supported by earlier work that identified indicators of increased 

gliosis and axonal loss in PPMS lesions relative to RRMS lesions (Suhy et al., 2000).

These results suggest that QuEEN maps can be used in place of T1 maps for group 

difference analyses. Regarding power, while these results are too preliminary to conclude 

definitively that QuEEN maps are more powerful for tests of group differences, median T1 in 

NAWM and lesions estimated using QuEEN maps appear to exhibit smaller within-group 
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variance—suggested by slightly narrower confidence bands and fewer outliers in each group

—which would tend to result in more powerful tests.

4 Discussion

In this paper, we have proposed QuEEN, a new method for estimating T1 relaxation times 

that only requires the acquisition of a T1w image and up to three other conventional MR 

images. We have demonstrated the reproducibility of QuEEN maps by showing that they 

have similar prediction error compared with T1 maps and, in fact, have improved 

reproducibility in deep gray matter. Given the emerging recognition of the importance in MS 

of the thalamus (Haider et al., 2014; Minagar et al., 2013; Zivadinov et al., 2013), this may 

represent an important advancement in the study of MS. Furthermore, we have demonstrated 

the utility of QuEEN maps for group comparisons, as tests of group differences of T1 in 

NAWM and lesions using QuEEN maps resulted in similar findings as those same tests 

performed using T1 maps.

While the majority of the information in the QuEEN model is derived from the T1w images 

(see Figure 3), the inclusion of T2w and FLAIR improves the accuracy of T1 estimation due 

to the statistical association between T2 and T1 in brain tissue. Our flexible modeling 

framework allows for the contribution of T2w and FLAIR intensities to be stronger in 

regions where there is a stronger association between T1 and T2. In this way, the model 

leverages all the available information in the multisequence predictor images in order to 

produce the best possible estimate of T1 at each location. While the biophysical 

interpretation of QuEEN maps is lacking in abstraction, QuEEN maps can be interpreted in 

terms of their estimation of T1.

The novel intensity normalization procedure we propose, which is key to the accuracy of the 

QuEEN model, uses cerebellar gray matter to estimate the “center” of the distribution of 

image intensities. We also evaluated several other tissue types for this purpose, including 

NAWM, CSF, and extra-cerebral soft tissue, and we found CBGM to demonstrate the best 

performance by far (results not shown). We believe this is due to the combination of its 

relatively high similarity across subjects (compared with NAWM) and relatively low noise 

(compared with CSF and extra-cerebral soft tissue). However, there are some potential 

issues to consider before employing this normalization approach. First, CBGM can exhibit 

some changes due to MS disease pathology (Howell et al., 2014). From an imaging point of 

view, these changes may be small and localized in MS, but for patients with other 

neurological diseases in which CBGM may be affected to a larger degree, the choice of 

reference region should be revisited before generating QuEEN maps. Second, the cerebellum 

is close to the receive coil array, and is hence more susceptible to bias-field inhomogeneities. 

Finally, segmentation of gray and white cerebellar tissue is required. However, this 

segmentation is not required to be perfect, as the methods we propose are designed to be 

robust to partial volume effects and minor segmentation errors.

QuEEN uses a full 9-class tissue segmentation. The methods currently available for 

segmentation in diseased populations require tuning and are prone to errors, even when 

applied by an expert technician. In fact, several of the subjects in our dataset were excluded 
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due to problems with the tissue class segmentation, illustrating the need for better 

segmentation methods for diseased populations. To account for small errors and partial 

volume effects, we use eroded tissue class masks for intensity normalization and model 

training. Alternatively, we have demonstrated that a coarser segmentation (gray matter, non-

lesion white matter and lesions) can replace the full segmentation with minor loss of model 

accuracy within large tissue classes, such as NAWM. However, it is still necessary to 

estimate the “center” of the distribution of intensities within CBGM for the purposes of 

intensity normalization. In the absence of a full tissue class segmentation, histogram 

“stripe”-based methods such as that described in Shinohara et al. (2014) can be adapted to 

estimate the median intensity within CBGM and standard deviation within NAWM.

Our results demonstrate that QuEEN map reproducibility varies across tissue classes. In 

particular, we observe lower reproducibility in lesions. The decreased performance of the 

QuEEN model in lesions may be due in part to the heterogeneity of the lesion class, as 

different types of lesions exhibit distinct pathological conditions and associations between 

T1 and T2. Segmentation or labelling of multiple lesion classes would allow for separate 

model fits within each class, customized to the class-specific relationship between T1 and 

each predictor image. In the context of a single lesion class, an extension to the modeling 

framework that may improve model fit within lesions is bivariate (surface) smoothing of the 

coefficients. Bivariate smoothers, as opposed to the univariate smoothers utilized in this 

paper, are more computationally demanding but allow for a more flexible model fit, which 

may be able to better adapt to the heterogeneity within the lesion class.

The QuEEN model can be applied using coefficient estimates based on external data or can 

be retrained to produce a center-specific model. The choice depends both on the research 

objectives and characteristics of the predictor images. If the objective is to use QuEEN maps 

to supplement existing T1 maps that have been previously acquired, then a center-specific 

model may be needed to maximize comparability of the QuEEN maps and acquired T1 

maps. However, if comparability with acquired T1 maps is not a concern and similar 

predictor images are available, our model estimates can be used to generate QuEEN maps at 

different centers. Furthermore, if the objective is to compare T1 across multiple centers, 

QuEEN maps generated from a single training model may actually be more reproducible 

across centers than acquired T1 maps, which may be subject to center-to-center biases. In 

that case, training a center-specific model would be detrimental, as it would translate any 

center-to-center biases to the QuEEN maps.

One additional consideration is the availability and acquisition protocols of the predictor 

images. If the four predictor images used in our modeling framework are not all available, 

highly accurate QuEEN maps can still be produced as long as a sufficiently high-contrast 

and high-resolution T1w image is available. In particular, as acquisition type determines the 

contrast between different tissue types, the effect of different acquisition types of the 

predictor images, such a T1w-FSPGR (Fast SPoiled Gradient Echo) versus a T1w-

MPRAGE, would need to be explored carefully. In this study we have utilized a high-

resolution (1 mm isotropic) T1w-MPRAGE image; it remains to be explored whether 

QuEEN maps can be reliably constructed using lower-quality or lower-resolution T1w 
images, such as those collected in many clinical and some research settings, or those 
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available in historical studies. The T1w and other predictor images used should have 

sufficiently high resolution such that cerebellar gray matter can be segmented.

One limitation of the current study is that it is based upon data acquired at a single center on 

the same scanner and protocol and only includes a small number of healthy volunteers. 

Future multi-center studies of QuEEN including large numbers of patients and healthy 

volunteers are necessary to understand and validate the center-to-center reproducibility of 

QuEEN, and to assess the robustness of the model to differences in the image acquisition 

protocols of the predictor images.

An advantage of the QuEEN model is that it treats each individual voxel as a separate, 

independent observation and hence does not require spatial normalization across subjects. 

As diseased brains can be difficult to normalize to a template (Eloyan et al., 2014), avoiding 

this step is a strength of our approach. While the QuEEN regression residuals may in truth 

exhibit some spatial correlation, this does not affect the validity of our results, as we rely on 

cross-validation error rather than standard errors of model coefficients to evaluate model fit.

QuEEN is a flexible model framework that can be extended to other quantitative modalities. 

Future directions will explore the potential of the QuEEN model to estimate other image 

types, including T2*. QuEEN maps may also be useful for the study of diseases other than 

MS where T1 is an important biomarker, including Parkinson’s disease, cancers, and 

diseases of the heart, lungs, and abdomen. The intensity normalization procedure is key to 

the accuracy of the QuEEN model and should be adapted to each context by identifying a 

region that is minimally affected by the disease in question and is relatively well imaged. For 

example, in the presence of a high white matter lesion load, such as in small vessel disease, 

CADASIL, or Alzheimer’s disease, it may be difficult to reliably segment NAWM. In these 

cases, it may be necessary to identify a different tissue class, such as CBGM, to estimate the 

variance for intensity normalization. Future research should focus on assessing accuracy of 

QuEEN maps for different patient populations.

5 Conclusion

In this paper, we have proposed a new way to estimate T1 relaxation times retroactively that 

only requires the acquisition of four or fewer conventional MR images. The “QuEEN maps” 

produced using these methods were shown to have similar accuracy and reliability compared 

with traditional acquired T1 maps. Furthermore, QuEEN maps offer several advantages over 

traditional T1 maps. Of primary importance is convenience and retroactive availability: 

QuEEN maps can be computed without any additional scan time using four or fewer 

conventional images. Since these images have historically been included in most clinical and 

research protocols, our method has the potential to greatly increase the availability of T1 

maps for clinical and research use. Furthermore, QuEEN maps can be used in place of 

traditional T1 maps for tests of differences in T1 between MS subtypes in NAWM and 

lesions. Further research is needed to validate QuEEN across centers, scanners, protocols 

and populations.
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A Example images and difference images

Figure A.1. 
For three randomly selected subjects, one axial slice of the T1 map (a), the QuEEN map (b), 

and the absolute value of the difference between the two on a different scale (c) are shown. 

The first column shows a subject with SPMS, the middle column shows a subject with 

PPMS, and the third column shows a healthy volunteer.
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B Tests of group differences with healthy controls

Figure B.2. 
Exploratory tests of group differences in NAWM between MS groups and healthy volunteers 

using T1 maps (a) and QuEEN maps (b), using the high-quality dataset. Each point 

represents a single subject, and the confidence bars indicate Wilcoxon 95% (50% for the HV 

group) intervals for the median across subjects in each patient group. The p-value for each 

pair of groups corresponds to a one-sided Wilcoxon test that the patient group has a greater 

median than the HV group. Using T1 maps, only the SPMS group shows a marginally 

significant elevation in NAWM T1 relative to HVs (p = 0.061). However, using QuEEN 

maps, each patient group shows a significant or marginally significant elevation in NAWM 

T1 relative to HVs.

C Results on full validation set

Figure C.3. 
For each tissue class, boxplots of the QuEEN estimation error (shown in orange), QuEEN 

prediction error (shown in light blue), and T1 prediction error (shown in dark blue), using 

the full dataset. Each error rate is summarized as the CV-rMSE over all voxels in the eroded 
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mask of each tissue class for a single subject. The boxplots of QuEEN estimation error show 

the distribution over all subjects, while the boxplots of QuEEN and T1 prediction error show 

the distribution over those subjects who received a second scan. We see more outliers 

compared with Figure 3, but the relationship between the error rates in each tissue class 

remains relatively unchanged.

Figure C.4. 
Tests of group differences in median NAWM T1 using (a) T1 maps and (b) QuEEN maps, 

using the full dataset. Each point represents a single subject, and the confidence bars indicate 

Wilcoxon 95% intervals for the median across subjects in each patient group. The p-value 

for each pair of groups corresponds to a one-sided Wilcoxon test that the group on the left 

has a greater median than the group on the right. While no differences are significant based 

on T1 maps, based on QuEEN maps SPMS patients show a marginally significant increase in 

NAWM T1 relative to RRMS patients (p = 0.077).

Figure C.5. 
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Tests of group differences in median lesion T1 using (a) T1 maps and (b) QuEEN maps, 

using the full dataset. Each point represents a single subject, and the confidence bars indicate 

Wilcoxon 95% intervals for the median across subjects in each patient group. The p-value 

for each pair of groups corresponds to a two-sided Wilcoxon test for difference in medians. 

While no differences are significant based on T1 maps, two differences are significant or 

marginally significant based on QuEEN maps: PPMS > RRMS (p = 0.039) and PPMS > 
SPMS (p = 0.084).
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Highlights

• We introduce a statistical model for estimation of T1 based on conventional 

MRI.

• The proposed methods avoid traditional T1 map acquisition techniques.

• Statistical T1 maps are less noisy than acquired maps and similar in reliability.

• Group differences in T1 are similar, but statistical T1 maps may be more 

powerful.

• The proposed method has the potential to greatly increase T1 map availability.
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Figure 1. 
NAWM and CBGM regions identified through minor erosion of automated tissue 

segmentation masks for one randomly selected subject. For each region, the slice containing 

the most voxels in the region of interest is displayed.

Mejia et al. Page 23

Neuroimage. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
T1 versus non-normalized (a) and normalized (b) intensities of predictor images within 

NAWM. Each line is a smooth coefficient curve from a univariate GAM and estimates the 

relationship between T1 and each predictor within a single subject and scanning session. The 

histogram of intensities across voxels from all subjects is also shown for each predictor 

image. Before intensity normalization, the relationships between T1 and each predictor 

image varies greatly across subjects; after intensity normalization, the curves appear much 

more similar across subjects, especially within the range of values visible on the histograms. 

Furthermore, the relationships between T1 and each predictor image are clearly nonlinear, 

motivating the use of a GAM regression approach.
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Figure 3. 
Estimated coefficient curves for the generalized additive regression model within each tissue 

class. The estimated intercept is included in the T1w curves to illustrate global differences 

between tissue classes. For a given tissue class and predictor image, the value of the 

coefficient function evaluated at a particular (normalized) image intensity is the amount (in 

ms) that a voxel in that class with that intensity contributes to the predicted T1 value.
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Figure 4. 
For one randomly selected example subject with RRMS, two axial slices of the T1 map (a), 

QuEEN map (b), and the absolute value of the difference between the two on the same scale 

as the images (c) and rescaled to show greater detail (d) are shown.
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Figure 5. 
For each tissue class, boxplots of the QuEEN estimation error (shown in orange), QuEEN 

prediction error (shown in light blue), and T1 prediction error (shown in dark blue). Each 

error rate is summarized as the CV-rMSE over all voxels in the eroded mask of each tissue 

class for a single subject. The boxplots of QuEEN estimation error show the distribution 

over all subjects in the high-quality dataset, while the boxplots of QuEEN and T1 prediction 

errors show the distribution over those subjects in the high-quality dataset who received a 

second scan. The reproducibility of QuEEN and T1 maps appear quite similar overall, with 

differences within certain tissue classes.
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Figure 6. 
For each tissue class, boxplots of the QuEEN estimation error for the fully stratified model 

(9 tissue classes) and pooled model (3 tissue classes), using the high-quality dataset. Each 

error rate is summarized as the CV-rMSE over all voxels in the eroded mask of each tissue 

class for a single subject.
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Figure 7. 
For each tissue class, boxplots of the QuEEN estimation error for the full model and three 

submodels, using the high-quality dataset. Each error rate is summarized as the CV-rMSE 

over all voxels in the eroded mask of each tissue class for a single subject.
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Figure 8. 
Tests of group differences in median NAWM T1 based on (a) T1 maps and (b) QuEEN maps, 

using the high-quality dataset. Each point represents a single subject, and the confidence 

bars indicate Wilcoxon 95% intervals for the median across subjects in each patient group. 

The p-value for each pair of groups corresponds to a one-sided Wilcoxon test that the group 

on the left has a greater median than the group on the right. For example, the test of SPMS > 
RRMS has p = 0.378 using T1 maps and p = 0.018 using QuEEN maps.
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Figure 9. 
Tests of group differences in median lesion T1 based on (a) T1 maps and (b) QuEEN maps, 

using the high-quality dataset. Each point represents a single subject, and the confidence 

bars indicate Wilcoxon 95% intervals for the median across subjects in each patient group. 

The p-value for each pair of groups corresponds to a two-sided Wilcoxon test for difference 

in medians. While no differences are significant based on T1 maps, two differences are 

marginally significant based on QuEEN maps: PPMS ≠ RRMS (p = 0.039) and PPMS ≠ 

SPMS (p = 0.084).
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Table 1

Summary statistics for healthy volunteers (HVs), primary-progressive MS (PPMS) patients, relapsing-

remitting MS (RRMS) patients, and secondary-progressive MS (SPMS) patients.

HV PPMS RRMS SPMS

n 2 29 15 16

% Female 50% 55% 87% 44%

Mean Age (sd) 24 (0.6) 56 (7.4) 45 (13.8) 53 (7.5)

Mean Disease Duration (sd) NA 13.6 (9.4) 8.2 (6.8) 24.7 (9.1)

Median EDSS (range) NA 6.0 (2.0–7.5) 1.5 (1.0–6.0) 6.5 (1.5–7.0)
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