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Abstract

It is well-known in numerical cognition that higher numbers are represented with less absolute 

fidelity than lower numbers, often formalized as a logarithmic mapping. Previous derivations of 

this psychological law have worked by assuming that relative change in physical magnitude is the 

key psychologically-relevant measure (Fechner, 1860 ; Sun, Wang, Goyal, & Varshney, 2012 ; 
Portugal & Svaiter, 2011). Ideally, however, this property of psychological scales would be derived 

from more general, independent principles. This paper shows that a logarithmic number line is the 

one which minimizes the error between input and representation, relative to the probability that 

subjects would need to represent each number. This need probability is measured here through 

natural language and matches the form of need probabilities found in other literatures. The 

derivation does not presuppose anything like Weber's law and makes minimal assumptions about 

both the nature of internal representations and the form of the mapping. More generally, the results 

prove in a general setting that the optimal psychological scale will change with the square root of 

the probability of each input. For stimuli that follow a power-law need distribution this approach 

recovers either a logarithmic or power-law psychophysical mapping (Stevens, 1957, 1961, 1975).

A fundamental challenge faced by cognitive agents in the world is that of mapping 

observable stimuli to internal representations. In human and animal cognition such mappings 

are mathematically regular, following a systematic relationship between stimulus and 

representation. This mapping is perhaps most studied in the case of the approximate number 

system (Dehaene, 1997), which is used to form non-exact representations of discrete 

quantities. Notably, this system of numerical representation is found across ontogeny (Xu & 

Spelke, 2000 ; Lipton & Spelke, 2003 ; Xu, Spelke, & Goddard, 2004 ; Xu & Arriaga, 

2007 ; Feigenson, Dehaene, & Spelke, 2004 ; Halberda & Feigenson, 2008 ; Carey, 2009 ; 
Cantlon, Safford, & Brannon, 2010), age (Halberda, Ly, Wilmer, Naiman, & Germine, 

2012), culture (Pica, Lemer, Izard, & Dehaene, 2004 ; Dehaene, Izard, Spelke, & Pica, 

2008 ; Frank, Everett, Fedorenko, & Gibson, 2008), and species (Brannon & Terrace, 2000 ; 
Emmerton, 2001 ; Cantlon & Brannon, 2007).

The approximate number system has been characterized two ways in prior literature. One 

formalization assumes that number gets mapped to a linear psychological scale, but the 

fidelity of representation decreases with increasing numerosity (Gibbon, 1977 ; Meck & 

Church, 1983 ; Whalen, Gallistel, & Gelman, 1999 ; Gallistel & Gelman, 1992). If, for 

instance, the standard deviation of a represented value n is proportional to n, this model can 

explain the ratio effect in which the confusability of x and y depends on x/y. An alternative 
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to a linear mapping with variable noise is a logarithmic mapping with constant noise 

(Dehaene, 2003 ; Dehaene & Changeux, 1993). In this model, a number n is mapped to a 

representation ψ(n) given by ψ(n) ∝ log(n). Properties such as the psychological 

confusability of numbers are determined by distance in the logarithmically-transformed 

psychological space. Because log x – log y = log(x/y), this framework can also explain the 

ratio effect. Some work has argued for the neural reality of the logarithmic mapping by 

showing neural tuning curves that scale logarithmically (Nieder, Freedman, & Miller, 2002 ; 
Nieder & Miller, 2004 ; Nieder & Merten, 2007 ; Nieder & Dehaene, 2009), although other 

behavioral phenomena appear less well described by either model (Verguts, Fias, & Stevens, 

2005) (see Prather (2014) for deviations from both models).1

The present paper aims to investigate why cognitive systems may represent higher numbers 

with decreasing fidelity in the way that they do. To answer this question, we will derive a 

general form of an optimal representation of a continuous quantity in a bounded 

psychological space. To make this derivation tractable, we assume that the noise is constant 

and then show that the optimal mapping will change with the square root of the input 

probability. This derives a logarithmic psychophysical function for a plausible input 

distribution for natural number. The general approach of optimizing a representation 

function relative to constraints may be generalizable to also deriving the linear mapping with 

scalar variability2 or representations in other psychophysical domains.

In principle, the cognitive system supporting number could likely implement a large number 

of mappings (though see Luce, 1959). It is easy to imagine other possibilities, such as where 

the input stimuli are mapped to representational space according to other functions such as 

exponentials, power-laws, or polynomials. Several of these examples are shown in Figure 1a, 

where numbers 1, 2, . . . , 100 are mapped into a bounded psychological space, arbitrarily 

denoted [0, 1]. Here, the distance between numerosities in psychological space (difference 

along the y-axis) is meant to quantify measures such as confusability or generalization 

among particular representations (in the sense of Shepard, 1987). Thus, representations 

which are given high fidelity are further away from their neighbors; close numbers such as 

the higher numbers are more likely to be confused because they are nearby in psychological 

space. This figure illustrates the key challenge faced by a cognitive system: the 

psychological space for any organism is bounded—we do not have infinite representational 

capacities—so our cognitive system must trade-off fidelity among representations. One 

cannot increase fidelity for one stimulus without paying the cost of effectively decreasing it 

for another.

The logarithmic mapping in this setup makes higher numbers closer in psychological space 

(e.g. | log 98 – log 99| < | log 4 – log 5|), reserving higher fidelity for lower numbers. Other 

1Other work has criticized logarithmic scaling by arguing that it predicts nonlinear addition and subtraction (Stevens, 1960 ; 
Livingstone et al., 2014), since ψ(x) + ψ(y) = log x + log y ≠ x + y. This critique erroneously assumes that addition in numerical space 
of x + y must correspond to addition in the psychological space (e.g. ψ(x) + ψ(y)). In actuality, numerical addition can be correctly 
implemented in psychological space using other functions (e.g. f such that f(ψ(x), ψ(y)) = ψ(x + y)) and such functions have long been 
worked out in computer science (e.g. Swartzlander & Alexopoulos, 1975).
2A satisfying analysis might try to derive the two-dimensional function g(x, v), giving the probability that a psychological 
representation of x would be at value v, where the conditional distribution of v given x is a Gaussian centered at x, with a width 
proportional to x.
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mappings would not have this property—for instance, the mapping ψ(x) = tan 1/x which 

reserves almost all fidelity for the very lowest cardinalities (e.g. 20 and 21 are about as 

confusable as 98 and 99), or the exponential curve in Figure 1a which actually reserves 

fidelity for higher cardinality (e.g. 98 and 99 are less confusable than 4 and 5).

The below derivation explains why the mapping for numerosity appears to be at least close 

to logarithmic, building on prior derivations as well as work arguing for information 

processing explanations in perception more generally (e.g. Wainwright, 1999). The 

derivation presented here shows that a logarithmic mapping is an optimal psychological 

scaling for how people use numbers. The derivation is similar in spirit to Smith et Levy 

(2008), who derive the logarithmic relationship between reading time and probability in 

language comprehension. The present derivation shows that the logarithmic mapping is 

optimal relative to the probabilities with which different numerosities must be represented, 

the need probabilities. This approach differs from that undertaken previous by, for instance, 
Luce (1959), who created a set of psychophysical axioms—such as how the representation 

should behave under rescaling of the input—and studied the laws permitted by such a 

system. Building on recent work by Portugal et Svaiter (2011) and Sun et al. (2012), we 

formalize an optimization problem over a broad class of possible psychological functions, 

and show that solution of this optimization yields the logarithmic mapping in the case of 

number. In deriving the optimal representation for number, we show how power-law 

mappings may also be derived, for distributions similar in parametric form to the number 

need distribution. Thus, much as other accounts have attempted to unify or collapse 

logarithmic and power-law psychophysical functions (MacKay, 1963 ; Ekman, 1964 ; 
Wagenaar, 1975 ; Wasserman, Felsten, & Easland, 1979 ; Krueger, 1989 ; Sun et al., 2012), 

the present work demonstrates that both are optimal under different situations, starting from 

the same base assumptions. This work therefore provides an alternative to previous 

derivations of powers laws based on aggregation (Chater & Brown, 1999). We begin with an 

overview of previous derivations of the logarithmic mapping.

Previous derivations of the logarithmic mapping

In psychology, the most well-known derivation of the logarithmic mapping is due to Fechner 

(1860). Fechner started by assuming the validity of Weber's law, which holds that the just 

noticeable difference in a physical stimulus is proportional to the magnitude of the stimulus. 

Fechner then showed how this property of just noticeable differences gives rise to a 

logarithmic mapping, although his mathematics has been criticized (Luce & Edwards, 1958 ; 
Luce, 1962); more recent formalizations of Fechner's approach have used conceptually 

similar methods to the functional analysis we present here (Aczél, Falmagne, & Luce, 2000). 

As argued by Masin, Zudini, et Antonelli (2009), Fechner's approach of presupposing 

Weber's law has led to the persistent misperception that Weber's law is “the foundation 

rather than the implication” of the logarithmic mapping. Indeed, it makes much more sense 

to treat Weber's law as a description of behavior and to seek independent principles for 

explaining the psychological system that gives rise to this behavior.

In this spirit, Masin et al. (2009) review two alternative derivations which do not rely on 

Weber's law. One by Bernoulli (1738) predates Fechner by over a century and operates in the 
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setting of subjective value; another, by Thurstone (1931) makes assumptions very similar to 

Bernoulli but is framed in terms of intuitive economic quantities like “motivation” and 

“satisfaction.” While these examples importantly illustrate that a logarithmic mapping can 

be derived from principles other than Weber's law, they—without full justification—stipulate 

equations that lead directly to the desired outcome. Bernoulli, for instance, assumes that an 

incremental change in subjective space should depend inverse-proportionally on the total 

objective value; any other relationship would not have yielded a logarithmic mapping.

However, there is a more important disconnect between modern psychology and the 

derivations of Fechner, Thurstone, and Bernoulli. Their work predated an extremely valuable 

methodological innovation: rational analysis (e.g. Anderson & Milson, 1989 ; Anderson, 

1990 ; Anderson & Schooler, 1991 ; Chater & Oaksford, 1999 ; Geisler, 2003). From the 

perspective of rational analysis, the question of why there is a logarithmic mapping can only 

be answered by considering the context and use of the approximate number system. Any 

derivation that does not take these factors into account is likely to be missing an important 

aspect of why our cognitive systems are the way they are. As it turns out, a logarithmic 

mapping is well-adapted specifically to the observed need probabilities of how often each 

cardinality must be represented or processed. A strong prediction of this type of rational 

approach is that the mapping to psychological space would be constructed differently (either 

throughout development or through evolutionary time) if we typically had to represent a 

different distribution of numerosities.

Recent work by Portugal et Svaiter (2011) and Sun et al. (2012) has moved studies towards 

an idealized rational analysis. Both studies assume that in representing a cardinality, the 

neural system maps an input number n to a quantized form n̂, and that the “right” thing to do 

is minimize the value of the relative error of the quantization (Sun & Goyal, 2011), given by 

 (for history and related results, see Gray & Neuhoff, 1998 ; Cambanis & 

Gerr, 1983). This is not the same as assuming Weber's law, but rather assumes an objective 

function (over representations) that is based in relative error. Portugal et Svaiter (2011) show 

that a logarithmic mapping is the one that optimizes the worst-case relative quantization 

error. Sun et al. (2012) show that under a particular power law need distribution, the 

logarithmic mapping is the one which minimizes the expected relative quantization error.

Formulating the optimization problem in terms of relative error is very close—

mathematically and conceptually—to assuming Weber's law from the start, since it takes for 

granted that what matters in psychological space are relative changes. Such an assumption is 

also how Stevens (1975) justified the power law psychophysical function. He wrote that a 

power law resulted from a cognitive system that—apparently—cares about relative changes 

in magnitude rather than absolute changes. Of course, such explanations are post-hoc. At 

best, they show that if an organism cares about relative changes, it will go with either a 

power law or logarithmic mapping. But why should an organism care about relative changes 

in the first place? One of our goals is to show from independent principles why relative 

changes might matter to a well-adapted psychological system.

We also aim to move beyond several other of the less desirable assumptions that Portugal et 

Svaiter (2011) and Sun et al. (2012) required. Their work is primarily formulated in terms of 
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quantized representations (though see Sun et al., 2012, Appendix A), meaning that they 

assume that the appropriate neural representation is a discrete element or code. However, 

individual neurons are gradiently sensitive to numerosity (Nieder et al., 2002), meaning that 

a more biologically plausible analysis might consider the representational space to be 

continuous. Additionally, though Sun et al. (2012) show that logarithmic and power-law 

psychophysical functions can both be achieved by the same framework with slightly 

different parameters on the need distribution, they do not establish that the empirically-

observed need distribution is the same one that leads to the logarithmic mapping. Indeed, the 

present results indicate that the most plausible input distribution does not lead to a 

logarithmic mapping under Sun et al.'s analysis.

Our goal is to address all of these limitations with a novel analysis. Most basically, we do 

not assume from the start that relative changes are what matter to the psychological system. 

Instead, we begin only from the assumption that cognitive systems must map numerosities 

from an external stimulus space to an internal representation space. We assume that the form 

of the mapping is optimized to avoid confusing the most frequently used representations. 

This setup allows us to derive a general law relating need probabilities to a mapping into 

psychological space: the rate of change of the mapping should be proportional to the square 

root of the need probability. The analysis shows that this derives exactly the logarithmic 

mapping for the need distribution of number, and more generally, a power law mapping 

(Stevens, 1957, 1961, 1975) for other stimuli which follow a power-law need distribution.

Optimal mappings into subjective space

We use ψ to denote the function mapping observable stimuli to internal representations. 

Thus, an input n will be mapped to a representation ψ(n). For simplicity, we will assume that 

both the internal and external domains are continuous spaces. This can be justified by 

imagining that the representational system handles enough numbers that they well-

approximate a continuous function—unless, of course, the system for approximate discrete 

numbers is identical with the system for continuous magnitude/extent.

The analysis requires some very basic properties of ψ (c.f. Luce, 1959): (i) the range of ψ 

must be bounded, (ii) ψ is monotonically increasing and (iii) ψ is twice-continuously 

differentiable. Boundedness comes from the assumption that psychological space has a 

limited representational capacity. For this, we assume that ψ(n) ∈ [0, 1] with ψ(1) = 0 and 

ψ(M) = 1, where M is the largest cardinality that people can represent. Monotonicity means 

that the mapping from external cardinality to internal number is “transparent,” not requiring 

sophisticated computations, since a larger external magnitude always maps to a larger 

internal one. It also guarantees that the mapping will be invertible, so we can always tell 

what real-world numerosity a representation stands for. Finally, (iii) is a technical condition 

meaning that ψ is well behaved enough to have a well-defined rate of change (first 

derivative) and second derivative. This rules out, for instance, step functions with sharp 

corners. There are many functions that meet these criteria—including, for instance, all in 

Figure 1a—and our analysis aims to find the “best” ψ out of the infinitely many possible 

alternatives.
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Figure 2 illustrates the setup. It cannot be the case that continuous representations are stored 

with perfect fidelity since that would require infinite information processing. Instead, we 

assume that any represented value ψ(n) may be corrupted by representational noise from an 

arbitrary3 distribution , independent of the value of ψ(n). It is reasonable to suppose that 

 is, for instance, a Gaussian distribution as is observed in number and typical of noise, 

although our derivation does not require this. In our setup (Figure 2), an input cardinality n 
is mapped to a representation ψ(n) ∈ [0, 1]. This value may be corrupted by noise to yield 

ψ(n) + ε, where . We assume the noise  is constant over psychological space (ie. 

isotropic) in order see what properties arise without building in biasing factors into the 

structure of psychological space itself. A similarly uniform internal space is also an implicit 

assumption of psychological space models like that of (Shepard, 1987).

A rational goal for the system will then be to minimize the absolute difference between what 

a corrupted value represents (which is ψ−1(ψ(n) + ε)) and what we intended to represent 

(which is n). This expected difference is then,

(1)

Here, there is one expectation over n meaning that we should try to minimize the error for 

typical usage, thus more accurately representing the most frequently used numbers. There is 

also an expectation over ε, meaning that we try to minimize error, averaging over the 

uncertainty we have about how much the representations may be corrupted (as quantified by 

ε). Informally, by finding ψ to minimize (1), we are choosing a mapping into 

representational space such that when the represented values are altered by noise, the 

absolute amount in physical space that the change corresponds to is minimized.4

The difficulty with (1) is that it is stated in terms of ψ and its inverse, ψ−1, making analytic 

analysis hard. We can, however, make a linear approximation to ψ near n (see Figure 2), and 

use the linear approximation to compute the inverse ψ′ near ψ(n). This approximation is 

valid so long as the noise ε is small, relative to 1/ψ′(n). In a linear approximation we use the 

differentiability (iii) of ψ and write

(2)

Then, the inverse function ψ−1 is

(3)

Using this approximation, we can rewrite (1) as,

3We require three technical requirements on : it must have a bounded absolute error, so that if , , it must be 
independent of location in psychological space, and the typical error must be relative to 1/ψ′(n).
4The following derivation therefore uses the norm | · |p for p = 1, but analogous derivations will work for others, giving rise to a 
different exponent at the end, including the squared error p = 2.
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(4)

where we have used the fact (ii) that ψ is monotonically increasing, so ψ′ is positive. Writing 

out the expectation over n explicitly, this becomes,

(5)

To summarize the derivation so far, we are seeking a function ψ mapping observed numbers 

into an internal representational space. Under a simple approximation that holds for 

relatively low internal noise, any potential ψ can be “scored” according to (5) to determine 

the amount by which noise corrupts the representation relative to the need distribution on 

numbers p(n) and the internal noise ε.

To actually optimize (5), we first express the bound (i) in terms of ψ′ rather than ψ. If ψ(M) 

= 1, then

(6)

Now we have stated an objective function (5) and a constraint (6) in terms of the rate of 

change of ψ, which is ψ′. It turns out that optimization of (5) subject to (6) over functions ψ 

is possible through the calculus of variations (see Fox, 2010 ; Gelfand & Fomin, 2000). This 

area of functional analysis can find minima or maxima over a space of functions exactly as 

standard calculus (or analysis) finds minima and maxima over variables (for similar 

applications of functional analysis to psychophysics, see Aczél et al., 2000). In our case, we 

write a functional —roughly, a function of functions5—that encodes our objective and 

constraints,

(7)

Equivalently,

(8)

where

(9)

This equation has added the constraint multiplied by the variable λ (providing the functional 

analysis analog the λ in the method of Lagrange Multipliers). Roughly, the λ allows us to 

5Other examples of functionals include, for instance, the functional for differential entropy, which takes a distribution and returns a 
number. Shannon (1948) for instance provides a simple functional analysis proof using similar techniques that normal distributions 
maximize entropy relative to a fixed mean and variance.
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combine objective function and constraints into a single equation whose partial derivatives 

can be used to compute the function ψ that maximizes  (for more on the theory behind 

this techinique, see Gelfand & Fomin, 2000).

The Euler-Lagrange equation solves the optimization in (8) over functions ψ, providing the 

optimal ψ by solving

(10)

where  is the partial derivative of  with respect to its second argument, u, and  is the 

partial derivative of  with respect to its third argument, v. That is, (10) states that we 

compute two partial derivatives of and evaluate them at the appropriate values (n, ψ(n), and 

ψ′(n)), yielding a differential equation that must be solved to find the optimal ψ. In (10), 

 since u does not appear in , and

(11)

so by (10) we seek a solution of

(12)

Integrating both sides yields

(13)

for some constant C, meaning that

(14)

Here, λ is chosen to satisfy the bound in (6), so the constants are essentially irrelevant. More 

simply, then, we can write the optimal ψ as satisfying,

(15)

This result indicates that the optimal mapping in terms of minimizing error relative to the 

need probabilities makes the internal scale change proportional to the square root of the need 

probability p(n).

Logarithmic and power-law mappings are optimal for power-law needs

The previous section showed that the optimal mapping into psychological space is 

proportional to the square root of the need distribution p(n). In most cases, such as those 

reviewed by Stevens (1975), the need distribution p(n) is not so clear: how often people need 
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to encode the particular heaviness or velocity of a stimulus? Sun et al. (2012) examine the 

case of loudness and that the need distribution appears roughly log-normal or power-law 

distributed in intensity, or normally-distributed in decibels6. In the case of number, however, 

there is one plausible way to measure the need probability: we can look at how often typical 

speakers of a language encode specific cardinalities as measured by number word 

frequencies. This provides a measure for how often cognitive processing mechanisms 

exactly encode each number.

Figure 3 shows the distribution of number words in the Google Books N-gram dataset (Lin 

et al., 2012) on a log-log plot for three relatively unrelated languages, Italian, English, and 

Russian. First, the overall data trend is linear on this log-log-plot, indicating that number 

words follow something close to a power law distribution7 (Newman, 2005):

(16)

for some α. This type of power law distribution is famously observed more generally in 

word frequencies (Zipf, 1936, 1949), although the cause of these frequencies is still 

unknown (Piantadosi, 2014).

There is one important point about the particular power law observed: the exponent—

corresponding to the linear slope in the log-log plot—is very close to α = 2. The actual 

exponent found by a fit depends strongly on the details of fitting (see Newman, 2005)—in 

particular, how apparent outliers like “one” in Italian, and the decades are treated. Rather 

than obsess over the details of fitting, we have simply shown a power-law distribution with α 

= 2 in red, showing that the trend of the data across languages and historical time, as well as 

for decades and non-decades, closely approximates this particular exponent α = 2. Both this 

general pattern in number word distribution and the exponent α ≈ 2 according with other 

analyses of language (Dehaene & Mehler, 1992 ; Jansen & Pollmann, 2001 ; Dorogovtsev, 

Mendes, & Oliveira, 2006). For instance, in a detailed cross-linguistic number word 

comparison, Dehaene et Mehler (1992) show that this type of distribution generally holds, 

although there are interesting complications for numbers like unlucky 13 in some languages, 

or decades. The power law exponent that they report is α = 1.9. This empirical fact about 

number usage could be called the inverse square law for number frequency.

The detailed patterns exhibited by these plausible number word need probabilities are also 

interesting. For instance the “decades” (“ten”, “twenty”, “thirty”, etc.) have substantially 

higher probability than non-decades of similar magnitude, likely due to approximate usage 

(Dehaene & Mehler, 1992 ; Jansen & Pollmann, 2001). Additionally, in English words over 

20 (log 20 ≈ 3) are somewhat less probable than might be expected by the frequency of the 

teens, although it is not clear whether this is somehow a corpus/text artifact of these words 

typically being written with a hyphen. Interestingly, even within these types of deviations, 

the decades, non-decades, and English words over 20 all follow a power law with exponent 

roughly 2, as evidenced by their slope similar to the red line's slope.

6Log-normal distributions are notoriously hard to distinguish from power laws (Malevergne, Pisarenko, & Sornette, 2011) and result 
from similar generative processes (see Mitzenmacher, 2004)
7A power law is linear on a log-log plot: the log-log linearity implies that log p(n) = C – α · log n for some C, α, so p(n) ∝ n−α.
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Importantly, if the need probabilities p(n) reflect “real” needs—not, for instance, some 

artifact of modern culture—they should be observed throughout historical time. The gray 

points show data for books published before 1850, demonstrating an effectively identical 

distribution. Indeed, the Spearman correlation of individual number word frequencies across 

the two time points is 0.96 in Italian (p << 0.001), 0.98 in English (p << 0.001), and 0.88 in 

Russian (p << 0.001), indicate a strong tendency for consistent usage or need.

The significance of the exponent α = 2 is that it predicts precisely the logarithmic mapping 

when the optimal ψ is found by solving equation (15). In general, when p(n) is a power law, 

the optimal mapping from (15) becomes

(17)

So, when α = 2,

(18)

Integrating ψ′ yields

(19)

a logarithmic mapping. Note that since we scale and shift the function so that it lies in 

psychological space [0, 1], the constant C can be ignored. This explains why the mapping 

for number is at least approximately logarithmic.8 Alternatively, when α ≠ 2, (17) becomes

(20)

yielding the power law psychophysical functions argued for by (Stevens, 1957, 1961, 1975).

What we have shown, then, is that the power-law and logarithmic mapping both fall out of 

the same analysis, resulting from different exponents on the need distribution. This reveals a 

deep connection between these two psychophysical laws: both are optimal under different 

exponents of the same form of distribution (as also argued by Sun et al., 2012). Indeed, 

because of the similarity between log-normal distributions and power-law distributions, we 

should expect functions very much like power-law mappings for a log-normal p(n). 

Previously, this need distribution has been used to explain properties of number in other 

cognitive paradigms (Verguts et al., 2005).

Critically, the present analysis rests on the assumption that natural language word 

frequencies provide an accurate “need” distribution for how often each number must be 

represented.9 To fully explain number, p(n) must be a power law across evolutionary time 

and likely developmental time. Note that use of this power law is only justified if the power 

8It is useful to compare this finding with Sun et al. (2012), who argue that the best representation will scale with n−(α–1)/3–1. So in 
their analysis they require an exponent of α = 1 to recover the logarithmic function. This exponent does not match with the above data 
suggesting that for number, α ≈ 2.
9Note that Sun et al. (2012) find similar results in their derivation, although the exponent they require for logarithmic mapping is α = 1 
rather than the above empirically observed α ≈ 2.
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law in language reflects a need distribution, and is not itself a consequence of a logarithmic 

mapping. In principle, this question could be investigated in other species that engage in 

numerical processing without language. However, there are independent reasons beyond 

these corpus results why need probabilities are likely to be power law distributed. Anderson 

et Schooler (1991) find power laws need distributions across several domains in human 

memory; power laws are also very generally found in complex systems, resulting from a 

wide variety of statistical processes (see Mitzenmacher, 2004). In general, though, further 

work will be required to test the need distribution in common environments and determine 

whether this need distribution under (15) adequately models representational mappings.

This analysis did not require any strong assumptions about the error distribution  in 

psychological space. This is important because one might expect that the noise is generated 

according to other optimizing principles which may vary by domain. Indeed, our approach is 

consistent both with the approximately Gaussian noise observed for number (Nieder et al., 

2002 ; Nieder & Miller, 2004 ; Nieder & Merten, 2007 ; Nieder & Dehaene, 2009), and even 

other kinds of confusability/generalization gradients such as exponentials also found 

throughout cognition (Shepard, 1987 ; Chater & Vitányi, 2003).

Curiously, one interpretation of these findings is that if the mapping is optimized as we 

suggest, it is very unlikely that the mapping is truly logarithmic: α is almost surely not 

exactly equal to 2, so the optimal mapping is almost certain to be a power law. However, 

these possibilities are not different in any interesting sense: Figure 1b shows the logarithmic 

mapping and power law mappings, appropriately bounded as in (i), for α near 2. What these 

illustrate is that the optimization we describe is “continuous” in that small changes to α do 

not lead to large changes in ψ, even though the written form of the function changes. In this 

sense, it is not a productive question to study whether the law is truly logarithmic or truly a 

power law, because the two are just part of the same continuum of functions. This may also 

be true in other perceptual domains.

Conclusion

It is worth summarizing the results in general terms. We imagine that an input n is mapped 

to a psychological representation ψ(n), which may then be corrupted by noise, to give a 

corrupted representation ψ(n) + ε. In physical space, the amount by which this noise ε 

“matters” can be quantified by 1/ψ′(n), one over the rate of change (ψ′) of ψ at n. Our 

analysis sought to minimize the average effect of this noise, subject to bounded 

representational resources. When this optimization is performed over a wide range of 

functions ψ, we find that ψ should change according to the square root of the need 

probability p(n) in order to minimize the effect of errors. This is a general fact about the 

optimal psychological mapping.

A plausible need distribution for number robustly follows a power-law need distribution, 

with a particular exponent α = 2 such that making ψ change according to the square root of 

p(n) yields a logarithmic mapping. Other domains that follow a power law need distributions 

with α ≠ 2 will give rise to power-law mappings. In the case of number, these results explain 

why relative changes in magnitude (e.g. Weber's law) are what matter psychologically: a 
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psychological system has bounded representational resources and, subject to this constraint, 

the system with minimal absolute error uses a logarithmic mapping. Thus, unlike derivations 

where the logarithm comes from assuming relative changes are the relevant ones (Fechner, 

1860 ; Sun et al., 2012 ; Portugal & Svaiter, 2011) or those explaining the law from lower-

level architectural considerations (Stoianov & Zorzi, 2012), the present results derive this 

fact from a rational analysis of effective information processing. The logarithm arises in our 

approach because of the particular need distribution actually observed for number; a 

different distribution would have resulted in a different optimized mapping and the general 

form of this optimization is provided in (15).

As such, this approach is in principle applicable to other psychophysical domains such as 

brightness, loudness, and weight (Stevens, 1957). The challenge is that in these domains the 

need distribution is not as easily quantified. For acoustic loudness, Sun et al. (2012) show 

that their derivation recovers a plausible, near-logarithmic psychophysical function from a 

log-normal need distribution, and numerically solving (15) for log-normal distributions 

yields similar relationships for the analysis10. This indicates that this approach of optimizing 

functional mappings in the way we describe may plausibly explain psychophysics of other 

modalities, once future work determines plausible need distributions across these domains. 

In general, then, the results illustrate how core systems of representation (Feigenson et al., 

2004 ; Carey, 2009) may be highly-tuned to environmental pressures and functional 

optimization over the course of evolutionary or developmental time.

Acknowledgments

I'd like to thank Dan Roy for providing crucial comments and advice on this work. Ted Gibson, Josh Tenenbaum, 
and Liz Spelke also provided important feedback on this and earlier versions of this paper. Three reviewers 
provided extremely helpful comments on this paper. Research reported in this publication was supported by the 
Eunice Kennedy Shriver National Institute Of Child Health & Human Development of the National Institutes of 
Health under Award Number F32HD070544. The content is solely the responsibility of the authors and does not 
necessarily represent the official views of the National Institutes of Health.

Références

Aczél J, Falmagne J, Luce R. Functional equations in the behavioral sciences. Math. Japonica. 2000; 
52(3):469–512.

Anderson, J. The adaptive character of thought. Lawrence Erlbaum; 1990. 

Anderson J, Milson R. Human memory: An adaptive perspective. Psychological Review. 1989; 96(4):
703.

Anderson J, Schooler L. Reflections of the environment in memory. Psychological Science. 1991; 2(6):
396.

Bernoulli D. Specimen theoriae novae de mensura sortis (Vol. 5). 1738

Brannon E, Terrace H. Representation of the numerosities 1–9 by rhesus macaques. Journal of 
Experimental Psychology: Animal Behavior Processes. 2000; 26(1):31. [PubMed: 10650542] 

Cambanis S, Gerr NL. A simple class of asymptotically optimal quantizers. Information Theory, IEEE 
Transactions on. 1983; 29(5):664–676.

10As standard symbolic math programs cannot perform the required integration for log-normal distributions, it is likely that the 
optimal mapping for log-normal distributions has no closed form. The non-existence of a closed-form solution may be possible to 
prove with, for instance, Liouville's theorem, but no proof is attempted here.

Piantadosi Page 12

Psychon Bull Rev. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cantlon J, Brannon E. Basic math in monkeys and college students. PLOS Biology. 2007; 5(12):e328. 
[PubMed: 18092890] 

Cantlon J, Safford K, Brannon E. Spontaneous analog number representations in 3-year-old children. 
Developmental science. 2010; 13(2):289–297. [PubMed: 20136925] 

Carey, S. The Origin of Concepts. Oxford University Press; Oxford: 2009. 

Chater N, Brown GD. Scale-invariance as a unifying psychological principle. Cognition. 1999; 
69(3):B17–B24. [PubMed: 10193053] 

Chater N, Oaksford M. Ten years of the rational analysis of cognition. Trends in Cognitive Sciences. 
1999; 3(2):57–65. [PubMed: 10234228] 

Chater N, Vitányi P. The generalized universal law of generalization. Journal of Mathematical 
Psychology. 2003; 47(3):346–369.

Dehaene, S. The number sense: How the mind creates mathematics. Oxford University Press; USA: 
1997. 

Dehaene S. The neural basis of the Weber–Fechner law: A logarithmic mental number line. Trends in 
Cognitive Sciences. 2003; 7(4):145–147. [PubMed: 12691758] 

Dehaene S, Changeux J. Development of elementary numerical abilities: A neuronal model. Journal of 
Cognitive Neuroscience. 1993; 5(4):390–407. [PubMed: 23964915] 

Dehaene S, Izard V, Spelke E, Pica P. Log or linear? Distinct intuitions of the number scale in Western 
and Amazonian indigene cultures. Science. 2008; 320(5880):1217–1220. [PubMed: 18511690] 

Dehaene S, Mehler J. Cross-linguistic regularities in the frequency of number words. Cognition. 1992; 
43(1):1–29. [PubMed: 1591901] 

Dorogovtsev SN, Mendes JFF, Oliveira JG. Frequency of occurrence of numbers in the world wide 
web. Physica A: Statistical Mechanics and its Applications. 2006; 360(2):548–556.

Ekman G. Is the power law a special case of Fechner's law? Perceptual and Motor Skills. 1964; 19(3):
730–730. [PubMed: 14238203] 

Emmerton J. Birds' judgments of number and quantity. Avian visual cognition. 2001

Fechner, G. Elemente der psychophysik. Leipzig; Breitkopf & Härtel: 1860. 

Feigenson L, Dehaene S, Spelke E. Core systems of number. Trends in Cognitive Sciences. 2004; 8(7):
307–314. [PubMed: 15242690] 

Fox, C. An introduction to the calculus of variations. Dover Publications; 2010. 

Frank M, Everett D, Fedorenko E, Gibson E. Number as a cognitive technology: Evidence from Pirahã 
language and cognition. Cognition. 2008; 108(3):819–824. [PubMed: 18547557] 

Gallistel C, Gelman R. Preverbal and verbal counting and computation. Cognition. 1992; 44:43–74. 
[PubMed: 1511586] 

Geisler W. Ideal observer analysis. The visual neurosciences. 2003:825–837.

Gelfand, I.; Fomin, S. Calculus of variations. Dover publications; 2000. 

Gibbon J. Scalar expectancy theory and weber's law in animal timing. Psychological Review. 1977; 
84(3):279.

Gray RM, Neuhoff DL. Quantization. Information Theory, IEEE Transactions on. 1998; 44(6):2325–
2383.

Halberda J, Feigenson L. Developmental change in the acuity of the “number sense”: The approximate 
number system in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology. 2008; 44(5):
1457. [PubMed: 18793076] 

Halberda J, Ly R, Wilmer J, Naiman D, Germine L. Number sense across the lifespan as revealed by a 
massive internet-based sample. Proceedings of the National Academy of Sciences. 2012; 109(28):
11116–11120.

Jansen CJ, Pollmann MM. On round numbers: Pragmatic aspects of numerical expressions. Journal of 
Quantitative Linguistics. 2001; 8(3):187–201.

Krueger L. Reconciling Fechner and Stevens: Toward a unified psychophysical law. Behavioral and 
Brain Sciences. 1989; 12(02):251–267.

Lin Y, Michel J, Aiden E, Orwant J, Brockman W, Petrov S. Syntactic Annotations for the Google 
Books Ngram Corpus. 2012

Piantadosi Page 13

Psychon Bull Rev. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lipton J, Spelke E. Origins of number sense large-number discrimination in human infants. 
Psychological Science. 2003; 14(5):396–401. [PubMed: 12930467] 

Livingstone MS, Pettine WW, Srihasam K, Moore B, Morocz IA, Lee D. Symbol addition by monkeys 
provides evidence for normalized quantity coding. Proceedings of the National Academy of 
Sciences. 2014; 111(18):6822–6827.

Luce D. On the possible psychophysical laws. Psychological Review; Psychological Review. 1959; 
66(2):81.

Luce D. Comments on Rozeboom's criticism of “On the Possible Psychophysical Laws.”. 1962

Luce D, Edwards W. The derivation of subjective scales from just noticeable differences. 
Psychological review. 1958; 65(4):222–237. [PubMed: 13579090] 

MacKay D. Psychophysics of perceived intensity: A theoretical basis for fechner's and stevens' laws. 
Science. 1963

Malevergne Y, Pisarenko V, Sornette D. Testing the Pareto against the lognormal distributions with the 
uniformly most powerful unbiased test applied to the distribution of cities. Physical Review E. 
2011; 83(3):036111.

Masin S, Zudini V, Antonelli M. Early alternative derivations of Fechner's law. Journal of the History 
of the Behavioral Sciences. 2009; 45(1):56–65. [PubMed: 19137615] 

Meck WH, Church RM. A mode control model of counting and timing processes. Journal of 
Experimental Psychology: Animal Behavior Processes. 1983; 9(3):320. [PubMed: 6886634] 

Mitzenmacher M. A brief history of generative models for power law and lognormal distributions. 
Internet mathematics. 2004; 1(2):226–251.

Newman M. Power laws, Pareto distributions and Zipf's law. Contemporary physics. 2005; 46(5):323–
351.

Nieder A, Dehaene S. Representation of number in the brain. Annual Review of Neuroscience. 2009; 
32:185–208.

Nieder A, Freedman D, Miller E. Representation of the quantity of visual items in the primate 
prefrontal cortex. Science. 2002; 297(5587):1708–1711. [PubMed: 12215649] 

Nieder A, Merten K. A labeled-line code for small and large numerosities in the monkey prefrontal 
cortex. The Journal of neuroscience. 2007; 27(22):5986–5993. [PubMed: 17537970] 

Nieder A, Miller E. Analog numerical representations in rhesus monkeys: Evidence for parallel 
processing. Journal of Cognitive Neuroscience. 2004; 16(5):889–901. [PubMed: 15200715] 

Piantadosi ST. Zipf's word frequency law in natural language: A critical review and future directions. 
Psychonomic Bulletin & Review. 2014; 21:1112–1130. Disponible sur http://
colala.bcs.rochester.edu/papers/piantadosi2014zipfs.pdf. [PubMed: 24664880] 

Pica P, Lemer C, Izard V, Dehaene S. Exact and approximate arithmetic in an Amazonian indigene 
group. Science. 2004; 306(5695):499. [PubMed: 15486303] 

Portugal R, Svaiter B. Weber-Fechner Law and the Optimality of the Logarithmic Scale. Minds and 
Machines. 2011; 21(1):73–81.

Prather RW. Numerical discrimination is mediated by neural coding variation. Cognition. 2014; 
133(3):601–610. [PubMed: 25238315] 

Shannon, C. The Mathematical Theory of Communication. University of Illinois Press; Urbana, IL: 
1948. 

Shepard R. Toward a universal law of generalization for psychological science. Science. 1987; 
237(4820):1317–1323. [PubMed: 3629243] 

Smith N, Levy R. Optimal processing times in reading: a formal model and empirical investigation. 
Proceedings of the 30th annual conference of the cognitive science society. 2008:595–600.

Stevens S. On the psychophysical law. Psychological review. 1957; 64(3):153. [PubMed: 13441853] 

Stevens S. The psychophysics of sensory function. American Scientist. 1960:226–253.

Stevens S. To honor Fechner and repeal his law. Science; Science. 1961

Stevens, S. Psychophysics: Introduction to its perceptual, neural, and social prospects. Transaction 
Publishers; 1975. 

Stoianov I, Zorzi M. Emergence of a'visual number sense in hierarchical generative models. Nature 
neuroscience. 2012; 15(2):194–196. [PubMed: 22231428] 

Piantadosi Page 14

Psychon Bull Rev. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://colala.bcs.rochester.edu/papers/piantadosi2014zipfs.pdf
http://colala.bcs.rochester.edu/papers/piantadosi2014zipfs.pdf


Sun J, Goyal V. Scalar quantization for relative error. Data compression conference (dcc). 2011; 
2011:293–302.

Sun J, Wang G, Goyal V, Varshney L. A framework for Bayesian optimality of psychophysical laws. 
Journal of Mathematical Psychology. 2012

Swartzlander EE, Alexopoulos AG. The sign/logarithm number system. IEEE Transactions on 
Computers. 1975; 24(12):1238–1242.

Thurstone L. The indifference function. The Journal of Social Psychology. 1931; 2(2):139–167.

Verguts T, Fias W, Stevens M. A model of exact small-number representation. Psychonomic Bulletin & 
Review. 2005; 12(1):66–80. [PubMed: 15945201] 

Wagenaar W. Stevens vs Fechner: A plea for dismissal of the case. Acta Psychologica. 1975; 39(3):
225–235.

Wainwright MJ. Visual adaptation as optimal information transmission. Vision research. 1999; 39(23):
3960–3974. [PubMed: 10748928] 

Wasserman G, Felsten G, Easland G. The psychophysical function: Harmonizing Fechner and Stevens. 
Science. 1979

Whalen J, Gallistel C, Gelman R. Nonverbal counting in humans: The psychophysics of number 
representation. Psychological Science. 1999; 10(2):130–137.

Xu F, Arriaga R. Number discrimination in 10-month-old infants. British Journal of Developmental 
Psychology. 2007; 25(1):103–108.

Xu F, Spelke E. Large number discrimination in 6-month-old infants. Cognition. 2000; 74(1):B1–B11. 
[PubMed: 10594312] 

Xu F, Spelke E, Goddard S. Number sense in human infants. Developmental science. 2004; 8(1):88–
101. [PubMed: 15647069] 

Zipf, G. The Psychobiology of Language. Routledge; London: 1936. 

Zipf, G. Human Behavior and the Principle of Least Effort. Addison-Wesley; New York: 1949. 

Piantadosi Page 15

Psychon Bull Rev. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
(a) Several logically possible representation systems for approximate number with with ψ(1) 

= 0 and ψ(100) = 1. Each mapping takes an input cardinality (n) to a representation (ψ(n)). 

The real puzzle is not which of these five example curves is chosen, but which out of the 

infinite number of possible mappings is chosen. (b) Logarithmic and power-law mappings: 

the red lines represent power laws with α = 1.7, 1.85, 2.15, 2.3. Power-law mappings (reds) 

closely approximate a logarithmic mapping (blue) for α ≈ 2.
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Figure 2. 
The general setup of our analysis: an input n is mapped to a representation ψ(n), which may 

then be corrupted by noise ε. We seek to minimize the amount by which this noise “matters” 

on the original input scale, given by ψ−1(ψ(n) + ε) – n. We compute ψ−1(n) using a linear 

approximation (see text).
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Figure 3. 
The distribution of number word frequencies across Italian, English, and Russian according 

to the Google Books N-gram dataset (Li et al. 2012). This reveals a strong power-law 

distribution across time, language, and for both decades (“ten”, “twenty”, etc.) and non-

decades. On these plots, the linear trend of the data corresponds to the exponent in the power 

law distribution. The red line shows a power-law distribution with α = 2.
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