Figure 8.
Statistics of the vertex degrees in relational graphs. (A) The histogram of the vertex degrees k in the neighbor-controlled relational graph G(n0), computed for n0 = 2, 4, 7, 12 (Method II) and fitted to a power law distribution P(k) ~ k−γ. The graph demonstrates that G(n0) is a scale-free network. (B) The same distribution on the log-log scale and an independent linear fit of the powers γ. The confidence intervals of the two fits, ranging between ±0.15 and ±0.3, overlap for each case. (C) In the pairwise coactivity threshold (Method I), the histogram of the relational graph's vertex degrees is fit by negative binomial distribution, suggesting that G(θ) is similar to a random network.