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ABSTRACT Genetic recombination is a very important evolutionary mechanism that mixes parental
haplotypes and produces new raw material for organismal evolution. As a result, information on
recombination rates is critical for biological research. In this paper, we introduce a new extremely fast
open-source software package (FastEPRR) that uses machine learning to estimate recombination rate r

(=4Ner) from intraspecific DNA polymorphism data. When r. 10 and the number of sampled diploid
individuals is large enough ($ 50), the variance of rFastEPRR remains slightly smaller than that of rLDhat.
The new estimate rcomb (calculated by averaging rFastEPRR and rLDhat) has the smallest variance of all cases.
When estimating rFastEPRR, the finite-site model was employed to analyze cases with a high rate of recurrent
mutations, and an additional method is proposed to consider the effect of variable recombination rates
within windows. Simulations encompassing a wide range of parameters demonstrate that different evolu-
tionary factors, such as demography and selection, may not increase the false positive rate of recombination
hotspots. Overall, accuracy of FastEPRR is similar to the well-known method, LDhat, but requires far less
computation time. Genetic maps for each human population (YRI, CEU, and CHB) extracted from the 1000
Genomes OMNI data set were obtained in less than 3 d using just a single CPU core. The Pearson Pairwise
correlation coefficient between the rFastEPRR and rLDhat maps is very high, ranging between 0.929 and 0.987
at a 5-Mb scale. Considering that sample sizes for these kinds of data are increasing dramatically with
advances in next-generation sequencing technologies, FastEPRR (freely available at http://www.picb.ac.cn/
evolgen/) is expected to become a widely used tool for establishing genetic maps and studying recombi-
nation hotspots in the population genomic era.
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Genetic recombination exchanges genetic material, produces new hap-
lotypes during meiosis, and plays a critical role in organismal evolution
(Coop and Przeworski 2007). In living organisms, this process is highly
regulated, and, because its rate varies along the genome,much attention

has been paid to identifying recombination hotspots (Baudat et al.
2010). Increased knowledge about recombination will be useful for
studies of linkage disequilibrium (LD) (Auton et al. 2013; Hill and
Robertson 1968; Ohta and Kimura 1971), admixture (Price et al.
2009; Pugach et al. 2011), natural selection (Hernandez et al. 2011;
Sattath et al. 2011), and associated work on genetic diseases (Weiss
and Clark 2002).

Recombination rates can be estimated by experimentally counting
the number of such events during meiosis (Hudson and Kaplan 1985;
Myers and Griffiths 2003). However, the application of this approach is
limited because of the extremely low frequency of recombination. This
issue can be overcome on the one hand by sequencing a large number
of parent-offspring pairs (Kong et al. 2010) using a large amount of
sperm from a single male (Lu et al. 2012). On the other, the number of
recombination events that occurred in the past can be inferred via
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coalescent theory and population genetics; in this approach, population
recombination rate is denoted as r ¼ 4Ner, where Ne is the effective
population size, and r the recombination rate per generation. Over the
last two decades, a number of methods that use likelihood models to
estimate recombination rates from intraspecific DNA polymorphism
data have been proposed. Of these, full-likelihood methods, including
importance sampling (Griffiths and Marjoram 1996; Fearnhead and
Donnelly 2001), Markov Chain Monte Carlo (MCMC) (Kuhner et al.
2000), and Bayesian MCMC (Nielsen 2000; Wang and Rannala 2008,
2009) have proved the most accurate for estimating r. However,

because full-likelihood approaches are very computationally expensive,
even with moderately-sized data sets, a composite-likelihood method
based on two-locus sampling probabilities was also proposed to esti-
mate r (Hudson 2001). Under the infinite-site model, this method
calculates the probabilities of all pairs of segregating sites, and then
multiplies all these pairwise probabilities to calculate a composite likeli-
hood. Fearnhead and Donnelly (2002) then proposed that the region of
interest should be divided into subregions, with the likelihood of each
subregion combined as a composite likelihood. Others have argued
that, because the infinite-site model is often violated, two-locus

Figure 1 Comparison of rFastEPRR, rgam, rLDhat, and rcomb. We compared rFastEPRR (A), (E), and (I) with rgam (B), (F), and (J), rLDhat (C), (G), and (K), and
rcomb (D), (H), and (L), with the sample sizes of n ¼ 50 (A)–(D), 100 (E)–(H) and 200 (I)–(L). The number of segregating sites S ¼ 45 (when n ¼ 50), 52
(when n ¼ 100), and 59 (when n ¼ 200). The mean and the SD of r̂ were estimated using 104 simulated data conditional on r and S, unless noted
otherwise.
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sampling probabilities can instead be obtained using Monte Carlo sim-
ulations in a finite-site mutation model (McVean et al. 2002). This
improved approach is implemented in the LDhat software package
(http://ldhat.sourceforge.net/) with, most recently, a varying recombi-
nation rate model applied to calculate a composite likelihood (Auton
and McVean 2007). Li and Stephens (2003) have also developed “prod-
uct of approximate conditionals” (PAC) method, which calculates an
approximation for conditional likelihood. In sum, although these com-
posite-likelihood methods are relatively simpler computationally than
full-likelihood approaches, calculations are still time-consuming.

In our recent work, building on the infinite-site model, we proposed
a r-estimator using boosting, a machine learning method (Lin et al. 2013).
In this context, boosting is used to select the best regressionmodel between
recombination rate and a number of summary statistics. Estimates for r
using our new method are as precise as others, but it is biased in some
circumstances. Thus it may limit the application of the machine learning
method. In this paper, we extend themachine learningmethod and present
a very fast software package (FastEPRR) to estimate population recombi-
nation rate using intraspecific DNA polymorphism data. First, because it
has been suggested that it is important to consider the finite-site model
when estimating the recombination rate (McVean et al. 2002), our imple-
mentations take into account violations of the infinite-site model (i.e., mul-
tiple hits). Second, we introduce a linear correction and demonstrate that
estimates using FastEPRR are unbiased. Third, we propose a method (Sup-
plementalMaterial, Figure S1) to take into account the effects of variable
recombination rates within windows. Finally, as a test case, we analyze
the 1000 Genomes phased OMNI data set (Altshuler et al. 2012) to
calculate local recombination rates for three major human popula-
tions with African (YRI), European (CEU), and East Asian (CHB)
ancestry. The Pearson correlation coefficient between estimates made
using either FastEPRR or LDhat is very high, and ranges between
0.929 and 0.987 at a 5-Mb scale. Notably, to estimate the genome-
wide recombination rates for one population, FastEPRR only needs
less than 3 d based on a single CPU core of a computer. Indeed, when
a computer cluster was used, the analysis was completed in just a few
hours; therefore, use of FastEPRR dramatically reduces the time re-
quired to estimate genome-wide recombination rates, and is just as
precise as the well-known method, LDhat.

MATERIALS AND METHODS

Summary statistics
Demography and selection affect the mutation frequency spectrum
(Figure S2), especially the frequency of singletons (Fu and Li 1993).
However, we would not suggest simulating data conditional to the
mutation frequency spectrum since the importance sampling is rela-
tively time consuming. Instead, we use the compact folded mutation
frequency spectrum, named by Li and Stephan (2005), to partially
quantify the effects of demography and selection. Indeed, this approach
might improve the accuracy of estimates under certain conditions.

Suppose that the number of chromosomes ðnÞ in a sample is $ 6,
and ji is the number of derived mutations that occur on i chromo-
somes; in this case, the compact foldedmutation frequency spectrum is

denoted fj91; j92; jx9g, where j91 ¼ j1 þ jn2 1, j
9
2 ¼ j2 þ jn2 2, and

j9x ¼
Xn2 3

i¼3

ji. Because the number of folded singletons (j91) will impart

little information about recombination, these can be excluded for analysis.
The folded singletons are the derived mutations that occur on one and
ðn2 1Þ chromosomes.

Let SS denote the four summary statistics; the mean value of S2k
(Hudson 1987) and r2 (Hudson 1985) for all SNP pairs, haplotype
heterozygosity, and the number of different haplotypes (H). We imple-
mented these four summary statistics in FastEPRR because they con-
tain considerable information about recombination (Wall 2000; Li and
Stephens 2003; Kong et al. 2008; Lin et al. 2013), and excluded the
folded singletons to calculate SS.

Regression and linear correction
To obtain the regression model of population recombination rate and
the summary statistics conditional on j92 and j9x , we first generated a
training set using r ¼0, 0.5, 1, 2, 5, 10, 20, 40, 70, 110, and 170. This
training set was simulated using our modified Hudson’s ms simulator
(Hudson 2002), conditional on j92, j

9
x and r (and the pattern of missing

data, if necessary), with 100 replicates. Then we used the gamboost
(Hothorn et al. 2015) to fit the training set and to establish the re-
gression model r ¼ f ðSSÞ. Given the observed four summary statistics
(SSobs), recombination rate was estimated to be r̂ ¼ f ðSSobsÞ.

We next performed a linear correction to obtain an unbiased esti-
mate by generating 100 simulated data sets given r̂ and estimated r̂s for
each. In this case, we use mean ðr̂sÞ as the mean value for estimated r̂s in
the simulated data sets, and a ¼ r̂=meanðr̂sÞ. Thus, estimated recombi-
nation rate is ar̂ following linear correction.

It isworthnoting thatgamboostcouldproducebiasedestimates if the
real r falls out of the range of the training r (Lin et al. 2013). More

n Table 1 Comparison of rFastEPRR, rLDhat and rcomb when u(¼ 4Nm) is fixed

Real r FastEPRR LDhat Combined Real r FastEPRR LDhat Combined

10 9.4 (5.2) 10.8 (4.3) 10.1 (3.9) 90 91.5 (23.0) 91.4 (24.1) 91.4 (19.9)
20 19.8 (6.9) 20.7 (7.5) 20.2 (6.0) 100 102.5 (25.0) 101.4 (26.3) 101.9 (21.7)
30 29.8 (8.7) 31 (10.1) 30.4 (7.9) 110 113.3 (26.6) 111.9 (28.0) 112.6 (23.0)
40 39.4 (10.7) 40.7 (12.5) 40.0 (9.9) 120 123.1 (27.1) 121.3 (29.8) 122.2 (24.1)
50 49.6 (12.8) 50.9 (15.1) 50.2 (11.8) 130 132.4 (27.8) 131.0 (31.0) 131.7 (24.9)
60 60.0 (15.3) 61.0 (17.3) 60.5 (13.8) 140 140.8 (28.0) 139.6 (31.9) 140.2 (25.2)
80 81.5 (20.8) 81.7 (22.0) 81.6 (18.2) 150 148.7 (28.3) 148.4 (31.7) 148.5 (25.4)

n ¼ 100 and u ¼ 10. SD of r̂ shown in brackets.

Figure 2 Comparison of rFastEPRR with (A), and without (B), multiple hits
when n ¼ 100. When 52mutations occur randomly on a 150 bp fragment
(A), the probability of multiple hits is 0.99, but when 52 mutations occur
randomly on a 10,000 bp fragment (B), this probability decreases to 0.12.
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accurately, the observed number of different haplotypes (Hobs) should
fall within the range of H in the training set. If we let Hthres be the 95th
percentile forH given r ¼ 170, ifHobs .Hthres, and extend the range of
the training r (i.e., r ¼ 0, 0.5, 1, 2, 5, 10, 20, 40, 70, 110, 170, 180, 190,
200, 220, 250, 300, and 350) a new regression model can be obtained
and the recombination rate re-estimated.

Variable recombination rates within windows
When estimating recombination rate for a given window, we assume
that this is constant.However, because thismay not be correct, the effect
of a variable recombination rate within a given window can be in-
vestigated by sliding others over it. For example, if we consider four
overlapping sliding windows (i.e., win1, win2, win3, and win4) each
with a step length half their size (Figure S1), we can denote r̂1, r̂2, r̂3
and r̂4 as the estimated recombination rate, respectively. If r1, r2, and
r3 are the real recombination rates of these windows, then we have
r1 ¼ x1 þ x2, r2 ¼ x2 þ x3, r3 ¼ x3 þ x4, where xi denotes the re-
combination rate for the i-th region. To estimate x1, x2, x3, and x4,
three constraint conditions can be introduced in order:

ð1Þ x1 $ 0; x2 $ 0; x3 $ 0; and x4 $ 0.
ð2Þ Minimize

f1 ¼ ðx1 þ x22r̂1Þ2 þ ðx2 þ x32r̂2Þ2 þ ðx3 þ x42r̂3Þ2.
ð3Þ Maximize f2 ¼ x1x2x3x4.

Of these, the first condition is easy to accept because recombination
rate should be positive, and since r̂i is the observed value, and xi the
predicted, the second condition (f1) denotes the total error in predic-
tion. Our objective is to minimize f1 using the least squares principle,
and because we also aim to maximize Shannon entropy in information
theory (Shannon 1948), we include the third condition. The detailed
solution is provided in File S1.

Note that, conditional on r̂1, r̂2, and r̂3, using this procedure x1, x2,
x3, and x4 can be estimated, and that conditional on r̂2, r̂3, and r̂4, x2,

x3, and x4 can be re-estimated. Thus, the estimated x̂i is the mean value
of all predicted values for xi.

Validating FastEPRR using simulated data
To validate the performance of FastEPRR, we compared it to our
earlier regression-based method (gam), as well as to the composite-
likelihood method (implemented in LDhat). Estimates from these three
methods are denoted rFastEPRR, rgam, and rLDhat, respectively. In order to
estimate rgam, we used a nonparametricmodel (i.e., a generalized additive
model) based on H for training (r ¼ 20, 60, 100, 140, and 180) fol-
lowing Lin et al. (2013).

To estimate rLDhat, we first used the complete program to calculate
the likelihoods of all two-locus haplotype configurations, with a pop-
ulationmutation rate u ¼ 0:01 and themaximum r ¼ 300. Second, we
used the pairwise program to estimate the recombination rate.

We studied cases with different sample sizes (i.e., n ¼50, 100, and
200), where n is the number of chromosomes but did not include larger
sample sizes because LDhat computing time increases dramatically in

Figure 3 Comparisons of rFastEPRR including miss-
ing data when n ¼ 100; S ¼ 52: The real r ¼ 10
(A), 50 (B), 100 (C), and 150 (D).

n Table 2 Comparing the performance of FastEPRR when
information on real haplotypes is available (rrealHap), and when
the inferred haplotypes are used (rphasedHap)

Real r rrealHap rphasedHap Real r rrealHap rphasedHap

10 9.6 (5.0) 9.7 (5.0) 90 91.7 (22.3) 90.1 (22.3)
20 19.6 (6.8) 19.5 (6.8) 100 102.7 (24.8) 101.0 (24.9)
30 29.7 (8.5) 29.6 (8.5) 110 112.3 (25.9) 110.7 (26.6)
40 39.5 (10.6) 39.1 (10.4) 120 123.2 (27.5) 121.6 (28.8)
50 49.8 (12.6) 49.2 (12.5) 130 132.5 (28.1) 131.2 (29.7)
60 60.0 (15.0) 59.0 (14.7) 140 141.0 (28.9) 140.4 (32.0)
80 81.3 (20.2) 79.9 (20.0) 150 149.6 (30.0) 150.1 (34.1)

n ¼ 100 and S ¼ 52. The total 104 simulated data sets are conditional on r and S
as used in Figure 1. SD of r̂ given in brackets.
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these cases. Results were not achieved even when we ran LDhat on a
state-of-the-art computer cluster withmore than 1000 computing nodes.

We simulated neutral data using the coalescent simulator Hudson’s
ms, while the data set considered with the hitchhiking model (i.e.,
positive selection) was simulated using msms (Ewing and Hermisson
2010). To assess the impact of missing data, we treated ms output as a
two-dimensional array (i.e., sampled chromosomes as rows and poly-
morphic sites as columns), and randomly selected v% cells andmarked
them as question marks (to denote missing data). In this part of the
study, we examined cases of v ¼ 1, 5, 20, and 30.

To investigate potential bias due to the phasing process, we ran-
domly paired simulated haplotypes to formgenotypes (i.e.,n haplotypes
ton=2 genotypes). These haplotypes were then reinferred using PHASE
v2.1.1 (Stephens et al. 2001; Stephens and Scheet 2005) based on their
genotypes and recombination rate estimated from inferred haplotypes.

Application of FastEPRR
To test the application of FastEPRR, we used it to analyze the 1000
Genomes phased OMNI data set (Altshuler et al. 2012). We selected
three major human populations for this analysis: 88 individuals from
Yoruba in Ibadan, Nigeria (YRI); 85 Utah resident individuals with
northern and western European ancestry (CEU); and 97 Han Chinese
individuals from Beijing, China (CHB). To estimate local recombina-
tion rates on the 22 autosomes, we first scanned each chromosome with
nonoverlapping 50 kb sliding windows. For this step, j92 and j9x, the
four summary statistics, and the start and end positions of the windows
were stored in order as files. Indels and polymorphic sites were ex-
cluded from the analysis if their quality score was less than 20, and
windows were excluded if they overlapped with known gaps in the
reference genome sequence, or if their number of segregating sites
(j92 þ j9x) was less than 10. Next, we obtained regression models for
each unique combination of j92 and j9x , and then applied these to

estimate recombination rates in windows that had the same combina-
tion of j92 and j9x for all autosomes. Finally, we merged the recombina-
tion rates for all windows to calculate a rate for each autosome, and
repeated the analysis for the YRI, CEU, and CHB data sets.

In order to convert estimated r into r, we first estimated Ne by
comparing the total length of the rFastEPRR map with overlapping sec-
tions of the 2010 deCODE family-based map (Kong et al. 2010). This
map provides per generation recombination rates at a 10-kb scale. To
obtain pairwise Pearson correlation coefficients for the rFastEPRR map,
the rLDhat map (Altshuler et al. 2012), and the 2010 deCODE map for
different populations, the three were compared to one another at 50-kb
and 5-Mb scales.

To consider the effects of variable recombination rates within
windows, we scanned each autosome with overlapping sliding win-
dows (i.e., window size, 50 kb and step length, 25 kb). Following the

Figure 4 Comparisons of rFastEPRR (A) and (C), and
rLDhat (B) and (D) under population bottleneck (A)
and (B) and population exponential growth (C) and
(D) conditions. n ¼ 100, S ¼ 52 and the time is
scaled so that one unit represents 4N0 generations.
For population bottleneck, we assume that duration
t1 ¼ 0:01, and that the time of bottleneck ended
t0 ¼ 0:001, and N0=N1 ¼ 100, where N0 is the effec-
tive population size before, and after, the bottle-
neck, and N1 is the effective population size during
the bottleneck. For population exponential growth,
expansion time t ¼ 0:1, and N0=N1 ¼ 5, where N0

and N1 are the current and ancestral effective pop-
ulation sizes, respectively.

Figure 5 Comparison of rFastEPRR (A) and rLDhat (B) under the hitchhik-
ing model. n ¼ 100, S ¼ 52, 2Ns ¼ 200, and the time after the ben-
eficial allele gets to fixation t ¼ 0:01 (in units of 4N generations),
where N is the effective population size, s the selection coefficient.
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method described above (Figure S1), we then obtained a genetic map at
the 25-kb scale, finer than that at the 50-kb scale.

Implementation
FastEPRR is an R package (open source) that can run across a range of
platforms once a standard environment has been installed. This soft-
ware can be downloaded from our institutional website (http://www.
picb.ac.cn/evolgen/softwares/) along with the related genetic maps.

Data availability
The authors state that all data necessary for confirming the conclusions
presented in the article are represented fully within the article.

RESULTS
It has been shown that rgam is biasedwhen sample size is small (Lin et al.
2013). We examined the accuracy of rFastEPRR by comparing it to rgam
and rLDhat with a fixed number of segregating sites. Results show that
rFastEPRR is an improvement on rgam, and remains unbiased in the cases
we examined (Figure 1), as a linear correction is implemented by Fas-
tEPRR.When sample size is small (n ¼ 50), rFastEPRR has the same level
of accuracy as rLDhat in mean, standard deviation, and the root mean
square error (RMSE), while rgam produces estimates with fairly small
SD but a certain bias (Figure 1, A–C). When sample size is larger
(n$ 100), the accuracy level of the three methods is almost the same
(Figure 1, E–G, and I–K). When it is very large (n ¼ 1000), FastEPRR
still performs well. Indeed, in these cases, the SD of rFastEPRR is smaller

than that seen in small sample size examples (Figure 1, A, E, and I, and
Figure S3). We further investigated this issue and observed that the
RMSE of rFastEPRR gradually decreases as sample size increases (Table
S1), which suggests that the accuracy of rFastEPRR is improved at larger
sample sizes.

We then examined the correlation between rFastEPRR and rLDhat in
our three simulated cases (Figure 1), and show that the Pearson corre-
lation coefficient is 0.717 (n ¼ 50), 0.804 (n ¼ 100), and 0.852
(n ¼ 200), respectively. The Pearson correlation coefficient is less than
1 because rFastEPRR and rLDhat are based on different recombination
signatures. Thus, to improve the accuracy of the estimated recombina-
tion rate, we propose a new estimate that combines rFastEPRR and rLDhat
together. In this estimate, we denote rcomb ¼ ðrFastEPRR þ rLDhatÞ=2;
because both rFastEPRR and rLDhat are unbiased, rcomb will be also un-
biased (Figure 1, D, H, and L). Indeed, in this case, the SD and RMSE of
rcomb are smallest (Table S2), indicating that rcomb is the most accurate
way to estimate recombination rate. Similarly, when u ð¼ 4NemÞ is
fixed, rFastEPRR has the same accuracy as rLDhat (n ¼ 100; u ¼ 10), and
the SD of rcomb is smallest (Table 1).

Because the rate ofmultiple hits is high inmany viruses and bacteria
(McVean et al. 2002), we examined the sensitivity of rFastEPRR to mul-
tiple hits under the finite-site model, and found that rFastEPRR remains
unbiased (Figure 2). In the same way that LDhat considers only sites
with two alleles, FastEPRR examines sites where two or more alleles are
segregated.

We also considered cases with missing data because it is often
expected in sets of genome-wide DNA polymorphisms, especially

Figure 6 Recombination rates of chromosome 7 for three human populations of African (YRI), European (CEU), and East Asian (CHB) ancestry at a
50-kb scale. The cartoon at the bottom is a visualization of the chromosome.
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whensequencingcoverage is low.AsFastEPRRreliesonmachine learning,
a training set can be generated that has the same pattern ofmissing data as
the input, and rFastEPRR can be estimated. When we did this, we found
that the SD of rFastEPRR increases slightly as the percentage of missing
data rises (Figure 3). Nevertheless, rFastEPRR still provides a precise and
unbiased estimate even when the percentage of missing data are very
high (30%).

Because FastEPRR requires haplotype information, phased intra-
specific DNA polymorphism data has to be used to estimate recombi-
nation rate. To study the effect of phasing uncertainty, we compared
rphasedHap (estimated from phased haplotypes) and rrealHap (estimated
from real haplotypes). We found that rphasedHap remained unbiased in
all the cases we examined (Table 2) and, as expected, the SD of
rphasedHap is slightly larger than that of rrealHap when the recombination
rate is large (r$ 100).

As neutral demographic scenarios (Johnston and Cutler 2012;
Kamm et al. 2015) and positive selection (Reed and Tishkoff 2006)
may cause the false recognition of recombination hotspots, we investi-
gated the performance of FastEPRR in such cases. For example, when a
population bottleneck occurs, both genetic variation and population
size are substantially reduced; thus, estimated r is reduced (Figure 4,
A and B, and Figure S4) compared to the current population recombi-
nation rate (4N0r, whereN0 is the current effective population size), and
the variance of rFastEPRR is generally smaller than rLDhat (Figure 4, A and
B). Similarly, estimated r is also reduced in exponential population
growth scenarios compared to a current population recombination rate
(Figure 4, C and D). Importantly, its variance remains similar with that

calculated under the standard neutral model (Figure 1E); therefore,
recombination hotspots revealed by FastEPRR might not be due to
the confounding effect of demography. Indeed, as FastEPRR is based
on coalescent simulations, it would be possible to infer 4N0r when
demography parameters are estimated (Gutenkunst et al. 2009; Li and
Stephan 2006; Li and Durbin 2011), but this is beyond the scope of
this study. Positive selection reduces the DNA polymorphism level
at linked neutral loci via the hitchhiking effect so a reduced r is
expected (Figure 5) when compared to a population recombination
rate estimated with the standard neutral model. Thus, positive selection
cannot explain the recombination hotspots revealed by FastEPRR.

Our analysis of the 1000 Genomes OMNI data set (Altshuler et al.
2012) to estimate genome-wide rFastEPRR (chr1-chr22) in three human
populations (i.e., African, YRI, European, CEU, and East Asian, CHB,
ancestry, see above) shows that the average �rFastEPRRð¼ 4Ne�rÞ permeg-
abase in each case is 939.66 (YRI), 474.31 (CEU), and 544.75 (CHB).
Using the 2010 deCODE family-based genetic map, average �r for each
population is thus 1.1703 cM/Mb (YRI), 1.1702 cM/Mb (CEU), and
1.1704 cM/Mb (CHB). Using estimates for Ne of 20,073 (YRI), 10,133
(CEU) and 11,636 (CHB), the population recombination rate rFastEPRR
can be converted as the recombination rate rFastEPRR. As an example, we
show recombination rates (rFastEPRR) for chromosome 7 at the 50-kb
scale for the YRI, CEU, and CHB populations (Figure 6), while re-
combination rates for the 22 autosomes are given in Figure S5. Re-
combination rates show a large degree of along-chromosome variation
in the YRI population (Figure 7A), an overall trend that persists in all
three populations (Figure 6). In the YRI population, the vast majority of

Figure 7 Recombination rate in the African
population (YRI). (A) Histograms of the recombi-
nation rate for the whole autosomal genome at
50-kb and 5-Mb scales, respectively. (B) Pro-
portion of recombination in different fractions
of the sequence. Each colored line represents
one chromosome, while the black line denotes
the whole autosomal genome. (C) Concentration
of recombination in a small proportion for the
four genetic maps.
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recombination events occur in a small fraction of the sequence, i.e., 70%
of recombination events occur in 30% of the sequence (Figure 7B). On
the other hand, recombination activity in the CEU and CHB popula-
tions is more concentrated (Figure S6), in agreement with previous
findings (Altshuler et al. 2010).

We compared the rFastEPRR map with the one from rLDhat based on
both the same data (Altshuler et al. 2012), and the 2010 deCODE
family-based map (Kong et al. 2010). Overall, the rFastEPRR map is
slightly more concentrated than the other two (Figure 7C and Figure
S6), which means that rFastEPRR is more conservative in detecting re-
combination hotspots. We also calculated pairwise Pearson correlation
coefficients for the three genetic maps of the three populations at 50-kb
and 5-Mb scales (Table 3 and Figure S7); comparing the rFastEPRR and
rLDhat maps, these coefficients range between 0.729 and 0.903 at the
50-kb scale, and between 0.929 and 0.987 at the 5-Mb scale. Thus, the
twomaps are highly correlated with one another, and also have a similar
correlation coefficient to the 2010 deCODE map. Indeed, the correla-
tion between estimates using FastEPRR and LDhat could be improved
further if we consider the effect of variable recombination rates within
windows using FastEPRR. Taking this into account, the Pearson cor-
relation coefficients of the rFastEPRR and rLDhat maps for the YRI, CEU,
and CHB populations at a 50-kb scale are 0.909, 0.813, and 0.770,
respectively.

We also established another genetic map using rcomb (by averaging
rFastEPRR and rLDhat) (Figure 7C and Figure S6) as this provides the
most accurate estimate for recombination rate. In this case, the Pearson
correlation coefficients between the rcomb map and the 2010 deCODE
map are 0.867 (YRI), 0.865 (CEU), and 0.869 (CHB) at a 5-Mb scale.

Complete genome-wide analysis of each population took less than
3 d on a single computer with a normal AMDOpteron(tm) 800 MHz
processor using a single core (Table S3). Computing time for the ge-
nome-wide analysis of the YRI, CEU, and CHB populations (using a
sliding window length of 50 kb) was 66.3, 45.7, and 49.0 hr, respec-
tively. Indeed, if a small computer cluster (i.e., 12 CPUswith four cores
per CPU) was used, each analysis could be completed within less than
4 hr, and this time could be further decreased if the number of nodes
were increased. FastEPRRwill thus prove a very useful piece of software
for the analysis of genome wide polymorphism data from large sam-
ples, for example the UK10K project (Walter et al. 2015) and other
projects.

DISCUSSION
In this study, we introduce FastEPRR, a very fast piece of software that
estimates population recombination rates from intraspecific DNA
polymorphism data. FastEPRR is a much improved extension of our
previously proposed regression-based method (Lin et al. 2013) that
can be supported by computer clusters and so is suitable for the analysis
of population genomic data even when sample sizes are very large.

Furthermore, the new software excludes the number of folded single-
tons (j91) because they have no effect on the number of different haplo-
types as recombination rates increase (Figure S8). Our evaluation of the
performance of FastEPRR with, and without, j91 (Figure S9), shows
almost the same results in terms of means and the SD of estimated
recombination rate. In agreement with previous work (Hudson and
Kaplan 1985), we show that j91 provides little information about
recombination.

We also demonstrate that FastEPRR is naturally robust to multiple
hits, one very important feature as it has been argued that these cannot
be underestimated when calculating recombination rate (McVean et al.
2002). Moreover, because FastEPRR is a coalescent-simulation-based
approach, it can handle the missing data often encountered in genomic
scale population data sets. Simulations show that the phasing process
does not affect recombination rate estimates when r# 100. Indeed,
when r. 100, estimates are still unbiased, but their variance increases
slightly as it may be difficult to infer haplotypes. As a result, a reason-
able window size should be used when estimating rFastEPRR.

Our simulations show that the FastEPRR software provides the same
degree of accuracy as well-known composite-likelihood methods but
requires very little computation time. Using a single CPU core, for
example, FastEPRR took less than 3 d to analyze the 1000 Genomes
OMNI data set (Altshuler et al. 2012), a task that would take LDhat
years. The Pearson correlation coefficient between the rFastEPRR and
rLDhat maps is between 0.929 and 0.987 at a 5-Mb scale.

We propose that rcomb has the smallest variance, when compared
with rFastEPRR and rLDhat. Because rcomb is the average of rFastEPRR and
rLDhat, computation time for rcomb will be determinedmainly by rLDhat.
Thus, rcomb can be used when sample sizes are small, and it is not
difficult to estimate rLDhat in such cases. However, we recommend
using rFastEPRR at larger sample sizes.

Sample sizes are expected to increase dramatically as sequencing
technologies advance and more and more organisms are investigated
(Cao et al. 2011; Altshuler et al. 2012; Walter et al. 2015). Whole
genomes, or exomes, of nearly 10,000 individuals are included in the
UK10K project (Walter et al. 2015), and the rapid construction of
genetic maps is increasingly important to biological research. Next,
we plan to apply the FastEPRR software to the UK10K data to establish
the genetic map of the 10,000 individuals, a computational analysis we
expect to take less than 2 wk.When complete, we will provide this map
free on our website (http://www.picb.ac.cn/evolgen/softwares/) to facil-
itate other studies and to promote FastEPRR as a useful, fast, and
effective tool for creating genetic maps and studying recombination
hotspots in the genomic era.
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n Table 3 Pairwise Pearson correlation coefficients among three genetic maps for three human populations

FastEPRR.YRI FastEPRR.CEU FastEPRR.CHB LDhat.YRI LDhat.CEU LDhat.CHB deCODE
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FastEPRR.CHB 0.793 0.845 1 0.939 0.929 0.939 0.840
LDhat.YRI 0.903 0.774 0.751 1 0.974 0.974 0.870
LDhat.CEU 0.791 0.803 0.729 0.826 1 0.974 0.866
LDhat.CHB 0.794 0.762 0.754 0.830 0.852 1 0.876
deCODE 0.626 0.601 0.554 0.641 0.679 0.655 1

Pairwise Pearson correlation coefficients among three genetic maps for three populations (YRI, CEU, and CHB) at a 50-kb scale are shown in the lower left triangle,
while those at a 5-Mb scale are in the upper right triangle. FastEPRR.YRI, FastEPRR.CEU and FastEPRR.CHB denote the rFastEPRR maps for the three populations,
LDhat.YRI, LDhat.CEU, and LDhat.CHB denote the rLDhat maps, and deCODE denotes the 2010 deCODE family-based map.
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