Abstract
We evaluated the use of positive malaria rapid diagnostic tests (mRDTs) to determine genetic diversity of Plasmodium falciparum in Mali. Genetic diversity was assessed via multiple loci variable number of tandem repeats analysis (MLVA). We performed DNA extraction from 104 positive and 30 negative used mRDTs that had been stored at ambient temperature for up to 14 months. Extracted DNA was analyzed via quantitative polymerase chain reaction (qPCR), and MLVA genotyping was then assessed on positive qPCR samples. Eighty-three of the positive mRDTs (83/104, 79.8%) and none of the negative mRDTs were confirmed P. falciparum positive via qPCR. We achieved complete genotyping of 90.4% (75/83) of the qPCR-positive samples. Genotyping revealed high genetic diversity among P. falciparum populations in Mali and an absence of population clustering. We show that mRDTs are useful to monitor P. falciparum genetic diversity and thereby can provide essential data to guide malaria control programs.
Genetic diversity analysis of Plasmodium falciparum in humans and parasite population dynamics are useful to monitor malaria control and elimination strategies. Indeed, several multiple loci variable number of tandem repeats analysis (MLVA) studies using microsatellite markers have shown that P. falciparum population genetics correlated with malaria transmission intensity in Africa and provided epidemiologically relevant information.1–5 Assessing malaria parasite genetic diversity over time can also help to evaluate malaria control programs. For instance, a P. falciparum microsatellite-based survey in Djibouti has revealed a significant decline in genetic diversity between 1998 and 2009, which was compatible with pre-elimination goals.5
Plasmodium falciparum genetic diversity has been well described in humans throughout the world1–5; however, this type of study is difficult to manage in the field. Indeed, collection, transportation, and storage of large amounts of blood samples remain difficult in remote areas with a tropical climate. Sampling of dried blood spots on filter papers partially circumvents these technical difficulties, thereby enabling detection and genotyping of P. falciparum from archived specimens.1,4,5 Nevertheless, patient consent is required as long as specific blood sampling is required for the study.
Malaria rapid diagnostic tests (mRDTs) detect the presence of circulating P. falciparum-specific antigens, such as histidine-rich protein 2 (PfHRP2) and lactate dehydrogenase. They are highly recommended by the World Health Organization for systematic malaria diagnosis before artemisinin-based combination therapy of uncomplicated malaria cases.6 As mRDTs are already used for case management, they are widely available in malaria-endemic countries and therefore represent a potential source of P. falciparum DNA for large population studies. Furthermore, patient consent is not required for such investigations, as mRDTs are passively collected during patient care and would normally been discarded once interpreted. Previous studies have shown that used mRDT nitrocellulose strips harbor P. falciparum DNA,7–10 and thereby enable the detection of antimalarial drug-resistant genes via the single nucleotide polymorphism genotyping.8 This study aimed to assess whether used mRDTs stored at room temperature provide sufficient quality DNA to conduct MLVA genotyping of P. falciparum in Mali.
Between October 2013 and January 2015, we randomly selected a total of 134 used mRDTs (104 PfHRP2 positive and 30 PfHRP2 negative) from four sites in Mali (Figure 1 , Table 1). Blood samples were collected via finger prick (5–10 μL) and absorbed onto mRDTs (SD BIOLINE Malaria Ag P.f® and P.f/Pan®, Standard Diagnostics, Kyonggi, Republic of Korea) by Malaria Research and Training Center (MRTC) clinicians during the systematic testing of symptomatic febrile patients. Used mRDT samples were stored and transported at ambient temperature to the MRTC Central Laboratory in Bamako, Mali. The samples were then randomly selected and air transported to Marseilles, France, where P. falciparum DNA was extracted from January 2015 to August 2015.
Table 1.
Study sites | Djoliba | Kolle (K) Samako (S) | Bamako | Bougoula | Total |
---|---|---|---|---|---|
Sampling period | October 2013 to January 2014 | November 2014 (K) | December 2014 | January 2015 | |
December 2014 (K) | January 2015 | ||||
January 2015 (K) (S) | |||||
Endemicity*† | Hyperendemic | Hyperendemic | Hypoendemic | Hyperendemic | |
Patients sampled, no. | 34 | 27 | 28 | 15 | 104 |
Positive PCR for Plasmodium falciparum, n (%) | 29 (85.3) | 24 (88.9) | 20 (71.4) | 10 (66.7) | 83 (79.8) |
Complete genotype (N = 8 loci), n (%) | 28 (96.5) | 21 (87.5) | 18 (90.0) | 8 (80.0) | 75 (90.4) |
Genetic diversity (mean ± SD) | 0.76 ± 0.18 | 0.75 ± 0.16 | 0.78 ± 0.17 | 0.69 ± 0.36 | 0.75 ± 0.22 |
MLVA = multiple loci variable number of tandem repeats analysis; mRDTs = malaria Rapid Diagnostic Tests; qPCR = quantitative polymerase chain reaction; SD = standard deviation.
Data from various Malian official reports and studies reviewed in a published thesis in French. (Doumbo O, 1992. Epidémiologie du paludisme au Mali, étude de la chloroquinorésistance, essai de stratégie de contrôle basée sur l'utilisation de rideaux imprégnés de permethrine associée au traitement systématique des accès fébriles. Thèse de Doctorat. Sciences Biologiques, Montpellier II, France.)
Malaria endemicity levels based on P. falciparum prevalence among children aged 2–10 years (PfPR2–10), according to the World Health Organization classification: hypoendemic, 0–10%; hyperendemic, 50–75%.
The mRDT nitrocellulose strips (cut into five identical pieces) were incubated for 48 hours at ambient temperature in 800 μL of lysis buffer (bioMérieux, Marcy l'Etoile, France). The extracted DNA was eluted in 100 μL of elution buffer using a NucliSENS EasyMAG instrument (bioMérieux).11 Screening for P. falciparum was performed via quantitative polymerase chain reaction (qPCR) using a LightCycler 480 PCR system (Roche Diagnostics, Meylan, France) with specific primers targeting the 18S rRNA gene.12 Each experimental run included both a negative (no template) and a positive (P. falciparum 18S rRNA plasmid) control. Standard curves were generated with serial 10-fold dilutions of the plasmid to allow for species-specific quantification of parasite density (number of parasites/μL of blood). We assumed that each genome of P. falciparum has five copies of the 18S rRNA gene (as observed in the 3D7 genome).13 The qPCR-positive samples were genotyped using eight polymorphic microsatellite markers specific for P. falciparum (Poly α, TA109, TA1, TA81, TA42, ARA2, PfPK2, and Pfg377).1 Microsatellite amplification was performed applying a semi-nested PCR strategy using fluorescent end-labeled primers.1 PCR products were analyzed using an ABI 3130XL capillary sequencer (Applied Biosystems, Foster City, CA). To differentiate allele peaks from stutter peak artifacts, we scored multiple alleles per locus if minor peaks were > 33% of the height of the major peak, corresponding to the predominant allele.1 We also discarded peaks with a fluorescence intensity < 100 units. Genetic diversity metrics were assessed using Arlequin v3.5 (Excoffier & Lischer 2010) software based on complete genotypes. For a haploid organism, genetic diversity was defined as a measure of the probability to randomly draw a pair of different alleles from an allelic pool. Potential values ranged from 0 (no diversity, 100% similarity between alleles) to one (maximal diversity, 100% of the alleles are different). Because of the frequent occurrence of multiclonal infections, we only considered major peaks when determining genotypes for genetic diversity and haplotype analysis.1–5 To analyze the relationship between P. falciparum haplotypes, we computed a dendrogram using the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) method (BioNumerics v7.1 Software, Applied Maths, Ghent, Belgium).
Eighty-three of the positive mRDTs (83/104, 79.8%) and none of the negative mRDTs were confirmed P. falciparum-positive via qPCR (Table 1). Among the 83 qPCR-positive samples, 75 (90.4%) were successfully genotyped for all test loci (Table 1). The eight remaining samples displayed one (N = 3), two (N = 2), three (N = 1), and four (N = 2) negative loci of the eight loci tested (see Table 3 for complete microsatellite data). Mean PCR cycle threshold (Ct) values were 31.94 ± 3.15 for the 75 samples that were completely genotyped (estimated parasitemia ranging from 11 to 512,000 parasites/μL) versus 37.52 ± 1.92 for the eight incompletely genotyped samples (estimated parasitemia ranging from 0.01 to 3,620 parasites/μL) (Table 2).
Table 3.
Site | Sample | Poly α | TA109 | PfPK2 | ARA2 | Pfg377 | TA42 | TA81 | TA1 | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Kolle | T10 | 166 | 163 | 157 | 183 | 168 | 171 | 76 | 82 | 104 | 107 | 192 | 125 | 128 | 168 | 180 | |||||||||||||
Kolle | T11 | 157 | 171 | 180 | 67 | 104 | 207 | 143 | 180 | ||||||||||||||||||||
Kolle | T12 | 160 | 168 | 165 | 76 | 107 | 207 | 125 | 174 | ||||||||||||||||||||
Kolle | T13 | 157 | 136 | 180 | 180 | 64 | 104 | 192 | 137 | 180 | |||||||||||||||||||
Kolle | T15 | 157 | 192 | 168 | 73 | 104 | 192 | 131 | 180 | 168 | |||||||||||||||||||
Kolle | T16 | 157 | 183 | 165 | 70 | 104 | 192 | 131 | 171 | ||||||||||||||||||||
Kolle | T17 | 154 | 183 | 195 | 180 | 67 | 104 | 192 | 131 | 137 | 168 | 189 | |||||||||||||||||
Kolle | T18 | 169 | 183 | 171 | 165 | 183 | 64 | 70 | 104 | 183 | 131 | 183 | 180 | ||||||||||||||||
Kolle | T19 | 148 | 166 | 183 | 171 | 168 | 174 | 82 | 70 | 67 | 107 | 207 | 192 | 125 | 131 | 189 | 174 | 183 | |||||||||||
Kolle | T129 | 163 | 180 | 177 | 67 | 107 | 192 | 134 | 171 | ||||||||||||||||||||
Kolle | T130 | 163 | 180 | 168 | 107 | 192 | 125 | 165 | |||||||||||||||||||||
Kolle | T131 | 163 | 213 | 177 | 82 | 107 | 192 | 131 | 174 | ||||||||||||||||||||
Samako | T20 | 168 | 180 | 171 | 107 | 192 | 128 | ||||||||||||||||||||||
Samako | T21 | 163 | 168 | 183 | 174 | 168 | 70 | 67 | 107 | 192 | 131 | 125 | 180 | ||||||||||||||||
Samako | T22 | 163 | 157 | 180 | 174 | 82 | 107 | 207 | 128 | 174 | |||||||||||||||||||
Samako | T23 | 169 | 172 | 157 | 168 | 180 | 171 | 70 | 64 | 104 | 107 | 192 | 134 | 143 | 168 | 177 | 189 | ||||||||||||
Samako | T24 | 180 | 198 | 174 | 104 | 192 | 128 | 189 | 186 | ||||||||||||||||||||
Samako | T25 | 151 | 160 | 183 | 174 | 171 | 67 | 79 | 104 | 192 | 128 | 131 | 165 | 168 | |||||||||||||||
Samako | T26 | 157 | 168 | 174 | 171 | 64 | 79 | 107 | 192 | 128 | 125 | 183 | 180 | ||||||||||||||||
Samako | T28 | 154 | 157 | 186 | 201 | 177 | 174 | 73 | 104 | 192 | 137 | 168 | 171 | ||||||||||||||||
Samako | T124 | 157 | 142 | 166 | 175 | 168 | 183 | 180 | 198 | 168 | 171 | 70 | 64 | 67 | 82 | 107 | 192 | 207 | 125 | 131 | 165 | 171 | 189 | 198 | |||||
Samako | T125 | 109 | 168 | 182 | 168 | 174 | 180 | 82 | 73 | 104 | 113 | 192 | 131 | 137 | 171 | 189 | |||||||||||||
Samako | T126 | 157 | 168 | 177 | 70 | 107 | 192 | 131 | 180 | ||||||||||||||||||||
Samako | T127 | 157 | 172 | 189 | 180 | 168 | 165 | 195 | 73 | 64 | 107 | 207 | 192 | 183 | 125 | 183 | 165 | ||||||||||||
Djoliba | T29 | 178 | 180 | 177 | 73 | 107 | 192 | 131 | 177 | ||||||||||||||||||||
Djoliba | T30 | 169 | 168 | 174 | 79 | 104 | 207 | 131 | 165 | ||||||||||||||||||||
Djoliba | T31 | 154 | 186 | 189 | 73 | 107 | 192 | 128 | 174 | ||||||||||||||||||||
Djoliba | T32 | 169 | 154 | 171 | 186 | 168 | 76 | 107 | 192 | 137 | 125 | 180 | |||||||||||||||||
Djoliba | T33 | 160 | 157 | 168 | 180 | 171 | 165 | 76 | 104 | 107 | 192 | 134 | 128 | 177 | 165 | ||||||||||||||
Djoliba | T34 | 163 | 183 | 192 | 94 | 107 | 207 | 131 | 174 | ||||||||||||||||||||
Djoliba | T35 | 172 | 184 | 168 | 174 | 171 | 195 | 70 | 107 | 192 | 189 | 128 | 174 | ||||||||||||||||
Djoliba | T36 | 157 | 180 | 183 | 171 | 165 | 70 | 104 | 207 | 222 | 131 | 137 | 171 | 183 | |||||||||||||||
Djoliba | T37 | 163 | 204 | 171 | 85 | 107 | 207 | 122 | 174 | ||||||||||||||||||||
Djoliba | T38 | 163 | 184 | 195 | 183 | 171 | 174 | 177 | 73 | 107 | 192 | 128 | 171 | ||||||||||||||||
Djoliba | T39 | 115 | 160 | 159 | 168 | 171 | 70 | 104 | 192 | 125 | 170 | 174 | |||||||||||||||||
Djoliba | T40 | 154 | 166 | 153 | 171 | 76 | 73 | 113 | 207 | 131 | 171 | ||||||||||||||||||
Djoliba | T41 | 178 | 183 | 168 | 73 | 107 | 192 | 125 | 128 | 174 | |||||||||||||||||||
Djoliba | T42 | 154 | 207 | 171 | 168 | 94 | 64 | 73 | 107 | 192 | 131 | 183 | 171 | ||||||||||||||||
Djoliba | T43 | 169 | 160 | 180 | 180 | 165 | 79 | 107 | 207 | 125 | 171 | ||||||||||||||||||
Djoliba | T44 | 175 | 171 | 165 | 79 | 104 | 192 | 125 | 183 | ||||||||||||||||||||
Djoliba | T45 | 184 | 189 | 174 | 70 | 101 | 192 | 125 | 174 | ||||||||||||||||||||
Djoliba | T46 | 157 | 183 | 73 | 207 | 140 | 174 | ||||||||||||||||||||||
Djoliba | T47 | 148 | 180 | 171 | 73 | 110 | 192 | 125 | 168 | ||||||||||||||||||||
Djoliba | T48 | 160 | 171 | 165 | 171 | 79 | 70 | 101 | 107 | 195 | 143 | 134 | 174 | ||||||||||||||||
Djoliba | T50 | 157 | 160 | 163 | 183 | 171 | 186 | 204 | 168 | 171 | 174 | 76 | 67 | 70 | 104 | 101 | 107 | 192 | 131 | 128 | 134 | 165 | 174 | 168 | 177 | ||||
Djoliba | T51 | 166 | 171 | 174 | 70 | 107 | 192 | 140 | 165 | ||||||||||||||||||||
Djoliba | T52 | 157 | 183 | 168 | 183 | 177 | 171 | 76 | 67 | 107 | 192 | 125 | 168 | ||||||||||||||||
Djoliba | T54 | 154 | 180 | 198 | 162 | 76 | 104 | 192 | 207 | 128 | 171 | ||||||||||||||||||
Djoliba | T55 | 160 | 154 | 168 | 168 | 177 | 76 | 107 | 104 | 192 | 125 | 128 | 134 | 171 | 168 | ||||||||||||||
Djoliba | T56 | 169 | 162 | 186 | 177 | 70 | 107 | 192 | 207 | 128 | 189 | 177 | |||||||||||||||||
Djoliba | T57 | 157 | 168 | 171 | 73 | 107 | 192 | 116 | 128 | 165 | |||||||||||||||||||
Djoliba | T58 | 160 | 178 | 177 | 189 | 174 | 70 | 64 | 107 | 192 | 207 | 125 | 168 | 174 | |||||||||||||||
Djoliba | T59 | 142 | 183 | 189 | 168 | 76 | 67 | 107 | 192 | 125 | 177 | 183 | |||||||||||||||||
Bougoula | T133 | 160 | 183 | 186 | 76 | 107 | 192 | 116 | 171 | ||||||||||||||||||||
Bougoula | T134 | 157 | 201 | 128 | 125 | 132 | |||||||||||||||||||||||
Bougoula | T135 | 151 | 154 | 180 | 183 | 192 | 85 | 73 | 107 | 192 | 125 | 171 | |||||||||||||||||
Bougoula | T137 | 181 | 171 | 171 | 82 | 107 | 113 | 192 | 204 | 207 | 128 | 168 | |||||||||||||||||
Bougoula | T138 | 166 | 154 | 168 | 183 | 168 | 180 | 76 | 70 | 82 | 107 | 92 | 192 | 125 | 171 | ||||||||||||||
Bougoula | T139 | 157 | 166 | 177 | 168 | 168 | 76 | 70 | 107 | 192 | 128 | 165 | 174 | ||||||||||||||||
Bougoula | T140 | 151 | 171 | 168 | 180 | 171 | 70 | 107 | 192 | 207 | 134 | 131 | 177 | 180 | 174 | ||||||||||||||
Bougoula | T141 | 160 | 157 | 165 | 192 | 168 | 165 | 82 | 107 | 192 | 131 | 134 | 128 | 174 | |||||||||||||||
Bougoula | T144 | 151 | 189 | 174 | 70 | 104 | 192 | 122 | 183 | ||||||||||||||||||||
Bougoula | T146 | 168 | 186 | 64 | 107 | 192 | 128 | 134 | 171 | ||||||||||||||||||||
Bamako | T1 | 169 | 177 | 174 | 82 | 104 | 192 | 134 | 128 | 171 | |||||||||||||||||||
Bamako | T3 | 154 | 178 | 189 | 174 | 70 | 104 | 207 | 128 | 201 | |||||||||||||||||||
Bamako | T6 | 166 | 165 | 168 | 70 | 82 | 104 | 192 | 131 | 186 | |||||||||||||||||||
Bamako | T7 | 139 | 180 | 165 | 70 | 110 | 207 | 128 | 168 | ||||||||||||||||||||
Bamako | T9 | 154 | 189 | 168 | 67 | 98 | 192 | 134 | 128 | 174 | |||||||||||||||||||
Bamako | T155 | 180 | 171 | 76 | 107 | 192 | 140 | 171 | |||||||||||||||||||||
Bamako | T156 | 157 | 171 | 168 | 70 | 73 | 107 | 192 | 134 | 186 | |||||||||||||||||||
Bamako | T157 | 157 | 168 | 171 | 79 | 104 | 192 | 131 | 165 | ||||||||||||||||||||
Bamako | T159 | 169 | 168 | 174 | 76 | 107 | 207 | 131 | 180 | ||||||||||||||||||||
Bamako | T160 | 139 | 171 | 165 | 70 | 73 | 110 | 207 | 125 | 131 | 174 | 165 | |||||||||||||||||
Bamako | T162 | 172 | 183 | 186 | 171 | 162 | 64 | 73 | 101 | 107 | 192 | 125 | 134 | 177 | |||||||||||||||
Bamako | T163 | 172 | 183 | 171 | 76 | 104 | 192 | 128 | 177 | ||||||||||||||||||||
Bamako | T171 | 178 | 168 | 165 | 70 | 110 | 95 | 192 | 128 | 174 | |||||||||||||||||||
Bamako | T172 | 157 | 171 | 180 | 174 | 67 | 73 | 104 | 110 | 192 | 131 | 168 | 180 | ||||||||||||||||
Bamako | T174 | 166 | 183 | 171 | 70 | 107 | 192 | 128 | 186 | ||||||||||||||||||||
Bamako | T176 | 163 | 183 | 171 | 76 | 104 | 89 | 192 | 134 | 192 | |||||||||||||||||||
Bamako | T177 | 154 | 183 | 177 | 131 | ||||||||||||||||||||||||
Bamako | T178 | 154 | 157 | 168 | 177 | 73 | 107 | 92 | 192 | 125 | 180 | ||||||||||||||||||
Bamako | T179 | 160 | 180 | 168 | 79 | 107 | 92 | 192 | 128 | 177 | |||||||||||||||||||
Bamako | T180 | 157 | 169 | 148 | 180 | 168 | 183 | 177 | 171 | 180 | 73 | 76 | 85 | 107 | 192 | 125 | 171 | 174 |
The allele length (in base pairs) for each Plasmodium falciparum tested loci (Poly α, TA109, TA1, TA81, TA42, ARA2, PfPK2, and Pfg377) is provided. The empty cells of the table correspond to negative loci.
Table 2.
Complete genotypes (8 positive loci; N = 75) | Incomplete genotypes (< 8 positive loci; N = 8) | |
---|---|---|
PCR cycle threshold (mean ± SD) | 31.94 ± 3.15 | 37.52 ± 1.92 |
Estimated parasitemia* (parasites/μL blood) (mean ± SD) | 43,067 ± 82,558 | 749 ± 1,280 |
Range of estimated values of parasitemia* (parasites/μL blood) | 11–512,000 | 0.01–3,620 |
qPCR = quantitative polymerase chain reaction; SD = standard deviation.
Estimation of parasite density: ([copy number of the gene in 1 μL of DNA] × [100/25]). We assumed that each genome of Plasmodium falciparum has five copies of the 18S rRNA gene,13 that 5 μL of blood was spotted onto malaria rapid diagnostic tests, and that extracted DNA was eluted into 100 μL.
Genetic diversity was high (mean value of 0.75) and did not differ between the urban site of Bamako and the rural sites of Samako/Kolle (which were pooled together because of geographical proximity) and Djoliba (Table 1). The dendrogram based on the analysis of the 75 complete haplotypes (Figure 2 ) demonstrates that each haplotype was unique, which is consistent with the high level of isolate genetic diversity. The absence of major haplotype clustering between and within study sites indicates a lack of local clonal expansion of P. falciparum.
Our findings show that mRDTs are a very accessible, convenient, and efficient tool to detect and genotype P. falciparum from patient blood samples. As mRDTs are already widely used for malaria case management, such samples can be collected and stored in large-scale in malaria-endemic countries. Systematic collection of used mRDTs can be considered for genetic diversity studies without specific population sampling procedures or patient consent requirements. Malaria RDTs are also suitable for field conditions, as they can be transported and stored at ambient temperature, even for extended periods. Indeed, after a 14-month storage period at ambient temperature, DNA quality and quantity were sufficient to perform complete genotyping of 90.4% of the qPCR-positive samples. In addition, mRDTs can be transported in simple packages; this feature is critical as it is increasingly difficult to ship biological samples because of the expansion of international biological risk.
Of 104 mRDT-positive samples, 21 tested negative via qPCR. This discrepancy may be due to false-positive mRDT results associated with the persistence of PfHRP2 antigenemia following malaria treatment, as previously observed.10,14 Malaria RDT-positive samples that yielded negative qPCR results could also be interpreted as false-negative qPCR results because of the presence of PCR inhibitors or DNA extraction failure. Insufficient parasitic material may also yield a false-negative result, as the blood volume spotted onto mRDTs is low (5–10 μL) compared with the blood volume usually spotted on filter papers (50 μL). However, previous studies have reported the absence of PCR inhibitors in samples obtained from mRDTs.7,9 Furthermore, the estimated qPCR sensitivity from mRDT samples is much higher than that of mRDT antigen capture and field microscopy (both estimated to 100 parasites/μL).15 Indeed, the presence of a single parasite in a 5–10 μL blood sample spotted onto an mRDT should be sufficient to yield a positive qPCR result.9
Eight of 83 samples (9.6%) were not successfully genotyped for all test loci despite a positive qPCR result. This outcome may be due to low parasite density, as indicated by the higher Ct values (mean Ct of 37) compared with the successfully genotyped samples (mean Ct of 32). This result may also be due to unsuccessful primer recognition because of high polymorphism or local DNA alterations of the target sequence. Nevertheless, 90.4% of samples were completely genotyped for all eight test loci, which provided sufficient data to examine P. falciparum genetic diversity.
Our study demonstrates high genetic diversity among P. falciparum populations in Mali (mean genetic diversity = 0.75), which indicates a high intensity of malaria transmission in the country. These results are compatible with local malaria epidemiology, as Mali has yet to reach the malaria pre-elimination stage. Microsatellite studies performed in other malaria-endemic countries in Africa have also reported high genetic diversity of P. falciparum, ranging from 0.72 to 0.8.1–4
These techniques of DNA extraction and genotyping from used mRDTs have already been transferred to the MRTC in Mali and will serve to monitor genetic diversity of P. falciparum in the context of malaria control. This approach will also facilitate the monitoring of drug resistance via genotyping of resistance genes. Using mRDTs, future large-scale P. falciparum genetic studies would be relatively cost-effective and easy to carry out, as they circumvent specific blood sampling, storage, and transportation. This technique thus represents a breakthrough in the capacity to bolster field malaria epidemiological studies.
ACKNOWLEDGMENTS
We would like to express our gratitude to the study population and volunteers as well as the MRTC field and laboratory staff. We would also like to acknowledge APPLIED MATHS for use of the BioNumerics software platform.
Footnotes
Financial support: Sample collection in Mali was supported by EDTCP1-WANETAM and WANECAM grants. Sample genotyping was supported by the Parasitology and Mycology Laboratory, La Timone Hospital, Marseilles, France.
Authors' addresses: Cécile Nabet, Coralie L'Ollivier, and Renaud Piarroux, UMR MD3 IP-TPT, Aix Marseille University, Marseille, France, and Parasitology and Mycology Laboratory, Assistance Publique des Hôpitaux de Marseille (APHM), Marseille, France, E-mails: cecilenabet7@gmail.com, coralie.lollivier@ap-hm.fr, and renaud.piarroux@ap-hm.fr. Safiatou Doumbo, Issaka Sagara, Amadou Tapily, Abdoulaye Djimde, and Ogobara K. Doumbo, Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali, E-mails: sdoumbo@icermali.org, isagara@icermali.org, atapily@icermali.org, adjimde@icermali.org, and okd@icermali.org. Fakhri Jeddi, Parasitology and Mycology Laboratory, APHM, Marseille, France, E-mail: fakhri.jeddi@ap-hm.fr. Tommaso Manciulli, UMR MD3 IP-TPT, Aix-Marseille University, Marseille, France, and University of Pavia, Faculty of Medicine and Surgery, Pavia, Italy, E-mail: tommaso.manciulli01@universitadipavia.it.
References
- 1.Anderson TJ, Haubold B, Williams JT, Estrada-Franco JG, Richardson L, Mollinedo R, Bockarie M, Mokili J, Mharakurwa S, French N, Whitworth J, Velez ID, Brockman AH, Nosten F, Ferreira MU, Day KP. Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Mol Biol Evol. 2000;17:1467–1482. doi: 10.1093/oxfordjournals.molbev.a026247. [DOI] [PubMed] [Google Scholar]
- 2.Bogreau H, Renaud F, Bouchiba H, Durand P, Assi SB, Henry MC, Garnotel E, Pradines B, Fusai T, Wade B, Adehossi E, Parola P, Kamil MA, Puijalon O, Rogier C. Genetic diversity and structure of African Plasmodium falciparum populations in urban and rural areas. Am J Trop Med Hyg. 2006;74:953–959. [PubMed] [Google Scholar]
- 3.Mobegi VA, Loua KM, Ahouidi AD, Satoguina J, Nwakanma DC, Amambua-Ngwa A, Conway DJ. Population genetic structure of Plasmodium falciparum across a region of diverse endemicity in west Africa. Malar J. 2012;11:223. doi: 10.1186/1475-2875-11-223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Oyebola MK, Idowu ET, Nyang H, Olukosi YA, Otubanjo OA, Nwakanma DC, Awolola ST, Amambua-Ngwa A. Microsatellite markers reveal low levels of population sub-structuring of Plasmodium falciparum in southwestern Nigeria. Malar J. 2014;13:493. doi: 10.1186/1475-2875-13-493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Khaireh BA, Assefa A, Guessod HH, Basco LK, Khaireh MA, Pascual A, Briolant S, Bouh SM, Farah IH, Ali HM, Abdi AI, Aden MO, Abdillahi Z, Ayeh SN, Darar HY, Koeck JL, Rogier C, Pradines B, Bogreau H. Population genetics analysis during the elimination process of Plasmodium falciparum in Djibouti. Malar J. 2013;12:201. doi: 10.1186/1475-2875-12-201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.World Health Organization . World Malaria Report 2014. WHO Global Malaria Programme; 2014. http://www.who.int/malaria/publications/world_malaria_report_2014/wmr-2014-no-profiles.pdf Available at. Accessed October 21, 2015. [Google Scholar]
- 7.Veron V, Carme B. Short report: recovery and use of Plasmodium DNA from malaria rapid diagnostic tests. Am J Trop Med Hyg. 2006;74:941–943. [PubMed] [Google Scholar]
- 8.Morris U, Aydin-Schmidt B, Shakely D, Mårtensson A, Jörnhagen L, Ali AS, Msellem MI, Petzold M, Gil JP, Ferreira PE, Björkman A. Rapid diagnostic tests for molecular surveillance of Plasmodium falciparum malaria—assessment of DNA extraction methods and field applicability. Malar J. 2013;12:106. doi: 10.1186/1475-2875-12-106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Cnops L, Boderie M, Gillet P, Van Esbroeck M, Jacobs J. Rapid diagnostic tests as a source of DNA for Plasmodium species-specific real-time PCR. Malar J. 2011;10:67. doi: 10.1186/1475-2875-10-67. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Ishengoma DS, Lwitiho S, Madebe RA, Nyagonde N, Persson O, Vestergaard LS, Bygbjerg IC, Lemnge MM, Alifrangis M. Using rapid diagnostic tests as source of malaria parasite DNA for molecular analyses in the era of declining malaria prevalence. Malar J. 2011;10:6. doi: 10.1186/1475-2875-10-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Boom R, Sol CJ, Salimans M, Jansen CL, Wertheim-van Dillen PM, van der Noordaa J. Rapid and simple method for purification of nucleic acids. J Clin Microbiol. 1990;28:495–503. doi: 10.1128/jcm.28.3.495-503.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Rougemont M, Van Saanen M, Sahli R, Hinrikson HP, Bille J, Jaton K. Detection of four Plasmodium species in blood from humans by 18S rRNA gene subunit-based and species-specific real-time PCR assays. J Clin Microbiol. 2004;42:5636–5643. doi: 10.1128/JCM.42.12.5636-5643.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Mercereau-Puijalon O, Barale J-C, Bischoff E. Three multigene families in Plasmodium parasites: facts and questions. Int J Parasitol. 2002;32:1323–1344. doi: 10.1016/s0020-7519(02)00111-x. [DOI] [PubMed] [Google Scholar]
- 14.Iqbal J, Siddique A, Jameel M, Hira PR. Persistent histidine-rich protein 2, parasite lactate dehydrogenase, and panmalarial antigen reactivity after clearance of Plasmodium falciparum monoinfection. J Clin Microbiol. 2004;42:4237–4241. doi: 10.1128/JCM.42.9.4237-4241.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Bousema T, Okell L, Felger I, Drakeley C. Asymptomatic malaria infections: detectability, transmissibility and public health relevance. Nat Rev Microbiol. 2014;12:833–840. doi: 10.1038/nrmicro3364. [DOI] [PubMed] [Google Scholar]