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Thiamine status in inherited degenerative ataxias

O L Pedraza, M I Botez

Abstract

Blood thiamine levels in ataxia patients
were studied. No significant differences
were found between 30 patients with
Friedreich’s ataxia and 29 patients with
olivopontocerebellar atrophy (OPCA)
compared with control subjects. Both
OPCA and Friedreich’s ataxia patients
presented significantly lower cerebro-
spinal fluid thiamine levels than their
controls (p < 0:001 and p < 004 respec-
tively). These results, discussed in terms
of the high degree of cerebellar atrophy
on CT scans in OPCA v Friedreich’s
ataxia patients, seem to correlate with
cerebellar thiamine turnover and con-
tent.

Despite extensive experimental data reported
in the literature, there are few studies on the
thiamine content of human cerebrospinal fluid
(CSF).'2 Low blood thiamine levels have been
found in some Friedreich’s ataxia patients,’
whereas in 10 subjects with four forms of
ataxias of degenerative origin, thiamine and
thiamine monophosphate were significantly
reduced in cerebrospinal fluid (CSF) but not in
plasma.* We report on blood and CSF thiamine
levels in patients with olivopontocerebellar
atrophy (OPCA) and Friedreich’s ataxia and
normal controls.

Patients and methods

We studied 30 patients with Friedreich’s ataxia
and 29 with OPCA who were hospitalised.
Their blood and CSF thiamine levels were
compared with two respective groups of nor-
mal subjects (see table). There were therefore
two control groups matched for age with the
patient groups. All patients and controls
underwent dietary assessment before inclusion
in the study. The exclusion criteria were
diabetes; alcoholism; dietary deficiency; and
vitamin supplement intake in the four months
before the study. The patients with
Friedreich’s ataxia fulfilled all the clinical and
genetic criteria of Harding’; patients with
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known cardiomyopathy were excluded because
they had also served in an amantadine clinical
trial. Amantadine has to be avoided in cardio-
myopathies. For this reason only two of these
30 patients had cardiomyopathies diagnosed
during hospitalisation; 23 were confined to a
wheelchair whereas seven moved with a walker.
The OPCA patients (14 men and 15 women)
were diagnosed and classified according to the
clinical and genetic criteria of Huang and
Plaitakis.® Three of them had a dominant form
of Menzel type OPCA, 11 had a dominant form
with slow saccade eye movements, seven had a
recessive form, whereas the remaining eight
had sporadic forms. Six out of these 29 patients
were confined to a wheelchair.

The control groups underwent spinal taps
for myelograms carried out exclusively for
lumbar disc herniations; the same exclusion
criteria applied as for the patient groups.
Before the spinal taps, all patients and controls
signed an informed consent form as required
by the ethics committee of the hospital. CT
scans assessed the degree and severity of brain
atrophy with special attention to cerebellar
atrophy.”® Samples of CSF were collected by
lumbar puncture between 8.30 and 9.30 am
after 4-5 days of hospital diet; blood samples
were taken before the lumbar puncture. Whole
blood and CSF thiamine were always assayed
in duplicate by a previously described
microbiological method, with Lactobacillus fer-
menti.’ Lumbar punctures were not repeated in
the same patients. Because of some variability
in the results, the Mann-Whitney U test was
used for group comparisons.

Results

Cerebellar atrophy was absent in eight, mild in
sixteen and moderate in six of the 30 Friedrei-
ch’s ataxia patients; in contrast, all 29 OPCA
patients had different degrees of cerebellar
atrophy: mild eight, moderate eleven, and
severe ten. Blood thiamine levels were not
significantly different between the two patient
groups compared with their respective controls
but CSF thiamine values were low in OPCA

Friedreich’s

ataxia patients Controls

OPCA patients Controls

Variable (14W, 16M) v (IOW,8M) Z p Value* (15W, 14M) v (I3W,I19M) Z p Value
Mean (SD) age (years) 29-1 (6°5) 31-3(6:8) -1-13 ns 47-6 (13-3) 43-9 (15-2) —143 ns
Mean (SD) duration of disease (years) 18-1 (6:3) 13-7(7-4)

Mean (SD) blood thiamine (ng/ml) 49-3 (17-7) 533 (18:7) -1-30 ns 46-3 (13-6) 51:5(17-1) —1-82 ns
Mean (SD) CSF thiamine (ng/ml) 30-6 (12-3) 37-3(14-4) —-2:09 0-04 239 (10-9) 354 (12-3) —4-02 0-001

*Mann-Whitney U test.
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and Friedreich’s ataxia patients (table). In an
additional group of three patients with
Charlevoix-Saguenay spastic recessive ataxia,'®
CSF thiamine values were very low (mean
(SD) 14-6 (4-2) ng/ml) despite normal blood
thiamine levels.

Discussion
The observed discrepancy between normal
blood thiamine values and low CSF thiamine
levels agrees with our previous findings in
epileptic patients with cerebellar atrophies
compared with those with normal CT scans’ as
well as with Poloni and Patrini’s data* on a
small number of ataxic patients. The normal
CSF values in the present study are higher than
those in untreated epileptic patients reported in
a previous investigation. This difference may
be due to cerebellar atrophy being encountered
in about 15% of cases of untreated epilepsy®'';
however, atrophy is more common and more
severe in chronically treated epileptics. In our
earlier study of 35 untreated epileptics, seven
displayed mild or moderate cerebellar atrophy,
and this could account for the difference
because untreated epileptics should not be
considered as normal controls; their CSF
thiamine values were considered to be similar
to control values only for the other epileptic
groups. The low CSF thiamine values in our
patients could not be explained by a deficient
diet because all patients and controls had
normal dietary assessments. The cerebellum,
medulla, and pons in rats have the highest
thiamine turnover rate in the CNS,!? the most
obvious thiamine depletion occurring after
deprivation,'? and these are the first regions to
develop lesions."*'* The olivary nucleus, pon-
tine nuclei, decussation of the superior
cerebellar peduncles, and dentate nucleus are
highly sensitive to thiamine deficiency in mon-
keys.'®

Thiamine is transported across the blood-
brain barrier by two separate mechanisms: one
saturable (probably carrier-mediated), which
accounts for 91% (cerebral cortex) to 96%
(cerebellum) of the total transport of labelled
thiamine at physiological plasma levels, and the
other non-saturable (4-9).°'7 If anything
interferes with the carrier-mediated com-
ponent of thiamine transport across the blood-
brain barrier, the supply of the vitamin in the
brain will become inadequate.'” ®

We propose two mechanisms to explain the
low CSF thiamine levels in our patients in the
absence of a blood thiamine deficiency. A
primary mechanism located in the cerebellum
itself—that is, cerebellar atrophy—may induce
a lowering of brain and CSF thiamine because
the cerebellum has the highest content and
turnover of the vitamin among all other
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nervous structures'?; the severe cerebellar atro-
phy encountered in OPCA patients could
explain their low CSF thiamine levels whereas
in Friedreich’s ataxia patients in whom
cerebellar atrophy is less pronounced, CSF
thiamine levels are relatively higher; the low
CSF thiamine values recorded in patients with
Charlevoix-Saguenay spastic recessive ataxia
may be attributed to their massive vermal
atrophy.’® A secondary mechanism—that is,
cerebellar and brainstem atrophy—may
decrease the vascular surface, diminishing
saturable transfer of the vitamin across the
blood-brain barrier and reducing CSF
thiamine levels.
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