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Osteoblasts and bone marrow adipocytes originate from bone marrow mesenchymal stem cells (BMMSCs) and there appears to
be a reciprocal relationship between adipogenesis and osteoblastogenesis. Alterations in the balance between adipogenesis and
osteoblastogenesis in BMMSCs wherein adipogenesis is increased relative to osteoblastogenesis are associated with decreased bone
quality and quantity. Several proteins have been reported to regulate this reciprocal relationship but the exact nature of the signals
regulating the balance between osteoblast and adipocyte formation within the bone marrow space remains to be determined. In
this review, we focus on the role of Transducin-Like Enhancer of Split 3 (TLE3), which was recently reported to regulate the balance
between osteoblast and adipocyte formation from BMMSCs.We also discuss evidence implicating canonicalWnt signalling, which
plays important roles in both adipogenesis and osteoblastogenesis, in regulating TLE3 expression. Currently, there is demand
for new effective therapies that target the stimulation of osteoblast differentiation to enhance bone formation. We speculate that
reducing TLE3 expression or activity in BMMSCs could be a useful approach towards increasing osteoblast numbers and reducing
adipogenesis in the bone marrow environment.

1. Introduction

In 2010, more than 10 million Americans over the age of
50 had osteoporosis with another 43 million Americans at
risk for the disease [1]. It is estimated that greater than 1.5
million fragility fractures occur each year, with an annual
health care cost of at least 14 billion US dollars [2]. By
2025, the health care expenditures for osteoporotic fractures
will approach 25.3 billion US dollars [3]. Bone is constantly
remodeled through the processes of bone formation by
osteoblasts and bone resorption by osteoclasts. Osteoclasts
are derived from hematopoietic stem cell precursors of the
monocyte/macrophage lineage located in the blood and bone
marrow [4]; conversely, osteoblast-lineage cells (osteoblasts

and osteocytes) originate from bone marrow mesenchymal
stem cells (BMMSCs) [5]. BMMSCs are a multipotent cell
type that can give rise not only to osteoblast-lineage cells but
also to a range of other cell types, including adipocytes [6]
(Figure 1). In some pathological conditions, including senile
osteoporosis, the balance between adipocyte and osteoblast
differentiation is disrupted in this cell population such that
adipocyte differentiation is increased relative to osteoblast
differentiation and this is associated with reduced bone
mass, increased bone fragility, and increased susceptibility to
fracture [7]. Therefore, understanding the molecular mech-
anism(s) responsible for controlling the balance between
osteoblastogenesis and adipogenesis in the adult bone envi-
ronment is of great significance.
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Table 1: The proteins regulate adipogenesis and osteoblastogenesis.

Number Protein(s) Function Assay Reference(s)
1 Msx2 Adipogenesis↓; osteoblastogenesis↑ In vitro [66]
2 Dlk1/Pref-1 Adipogenesis↓; osteoblastogenesis↑ In vitro [67]
3 TAZ Adipogenesis↓; osteoblastogenesis↑ Zebrafish; in vitro [68]
4 Wnt10b Adipogenesis↓; osteoblastogenesis↑ Knockout mice; transgenic mice [69]
5 LIP Adipogenesis↓; osteoblastogenesis↑ In vitro [70]
6 Dec1 Adipogenesis↓; osteoblastogenesis↑ In vitro [71]
7 Hemooxygenase-1 Adipogenesis↓; osteoblastogenesis↑ In vitro [72]
8 ID4 Adipogenesis↓; osteoblastogenesis↑ Knockout mice [73]
9 Maf Adipogenesis↓; osteoblastogenesis↑ Knockout mice [74]
10 Pkd1 Adipogenesis↓; osteoblastogenesis↑ Knockout mice [75]
11 sFRP-1 Adipogenesis↑; osteoblastogenesis↓ In vitro [76]
12 ZFP467 Adipogenesis↑; osteoblastogenesis↓ In vivo injection [77]
13 GIT2 Adipogenesis↓; osteoblastogenesis↑ Knockout mice [78]
14 Wnt6 Adipogenesis↓; osteoblastogenesis↑ In vitro [79]
15 Wnt10a Adipogenesis↓; osteoblastogenesis↑ In vitro [79]
16 VEGF Adipogenesis↓; osteoblastogenesis↑ Knockout mice [80]
17 Semaphorin 3A Adipogenesis↓; osteoblastogenesis↑ Knockout mice [81]
18 TLE3 Adipogenesis↑; osteoblastogenesis↓ In vitro [19]
19 S100a16 Adipogenesis↑; osteoblastogenesis↓ In vitro [82]
20 mTORC2 Adipogenesis↓; osteoblastogenesis↑ In vitro [83]
21 Adiponectin Adipogenesis↓; osteoblastogenesis↑ Knockout mice [84]
22 Cysteine dioxygenase type 1 Adipogenesis↑; osteoblastogenesis↓ In vitro [85, 86]
23 MYSM1 Adipogenesis↓; osteoblastogenesis↑ Knockout mice [87]

BMMSCs

ADs

OBs

Figure 1: Bone marrow mesenchymal stem cells differentiate into
both adipocytes and osteoblasts. Osteoblast and marrow adipocytes
are derived from common progenitors, the bonemarrowmesenchy-
mal stem cells. BMMSCs: bone marrow mesenchymal stem cells;
OBs: osteoblasts; ADs: adipocytes.

In this review, we will summarize the processes of
osteoblast and adipocyte differentiation from BMMSCs,
focusing on the role of Transducin-Like Enhancer of Split 3
(TLE3), which was recently reported to regulate osteoblas-
togenesis and adipogenesis. We also discuss the prospect of
bone regenerative therapy by using stem cells.

2. Relationship between Adipogenesis and
Osteoblastogenesis

Adipogenesis is driven by a complex and well-orchestrated
signalling cascade composed of several key transcription fac-
tors, most notably proliferator-activated receptor- (PPAR-)
𝛾 and several members of the CCAAT/enhancer-binding
family of proteins (C/EBPs) [8]. PPAR-𝛾 is commonly
referred to as the master regulator of adipogenesis because
no factor has yet been identified that can induce normal
adipogenesis in its absence [9].

BMP-SMAD signalling plays an important role in
osteoblastogenesis by inducing expression of several critical
transcription factors such as RUNX2, Osterix, DLX2, and
DLX5 [10–12]. RUNX2 is essential for the commitment
of mesenchymal stem cells to the osteoblast lineage and
homozygous deletion of Runx2 in mice results in a complete
lack of osteoblasts [13, 14]. It appears that adequate RUNX2
is also dosage-dependent since haploinsufficiency of Runx2
in mice or RUNX2 in humans causes hypoplastic clavicles
and delayed closure of the fontanelles, defects that are
characteristic of cleidocranial dysplasia in humans [15, 16].
RUNX2 controls osteoblast-related genes such as Osterix,
collagen I, and osteocalcin [17] and autoregulates the Runx2
gene itself [18].

Several proteins have been reported to regulate both
adipogenesis and osteoblastogenesis (Table 1) and, in general,
adipogenesis is reciprocally related to osteoblastogenesis in
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BMMSCs. However, the exact nature of the signals regulating
the balance between osteoblast and adipocyte formation
within the bone marrow space remains to be determined. In
the sections below, we seek to bring attention to TLE3, which
is a relatively understudied regulator of osteoblastogenesis
and adipogenesis that is a member of the Groucho/TLE
family of transcription factors [19].

3. Groucho/TLE Family Member

Groucho (Gro)/Transducin-Like Enhancer of Split (TLE)
family members are transcriptional cofactors in metazoans
that play critical roles during development and cell fate
determination, including differentiation into fat and bone
cells. The names “Gro” and “TLE” are used interchangeably
in the literature and in sequence databases [20] and the
Drosophila genome encodes a singleGrowhile themouse and
human genomes encode four members of each family [21].

Groucho/TLE proteins consist of a five-domain structure
[22]: a highly conserved Q domain, which is a glutamine-
rich region predicted to form two coiled-coil motifs that
facilitates oligomerization ofGro/TLEmolecules in vitro [23–
25]; a glycine/proline rich (GP) domain, which is essen-
tial for interaction of Groucho/TLE proteins with histone
deacetylases (HDACs) [23, 24, 26, 27]; a CcN domain, which
contains a nuclear localization sequence and putative cdc2
and casein kinase II (protein kinase CK2) phosphorylation
sites; a serine/proline rich (SP) domain, which is a region rich
in serine/proline residues [22, 28–30]; and a highly conserved
WD40 domain, which contains multiple tryptophan and
aspartic acid tandem repeats, has been shown by X-ray
crystallography to form a 𝛽-propeller, and binds many kinds
of transcriptional factors [20, 31].

Groucho/TLE proteins do not bind DNA directly but
are instead recruited by other transcription factors and are
largely considered transcriptional corepressors since they
often reduce the activity of a target transcriptional fac-
tor. However, the Groucho/TLE family member TLE3 was
recently reported to induce the transcriptional activity of
PPAR-𝛾, which is a master transcriptional regulator of adi-
pogenesis [32], suggesting that the Groucho/TLE family may
act as corepressors or coactivators in a context-dependent
manner.

4. Distribution of TLE3 during Development

During development, TLE3 is expressed in the placenta [33]
and homozygous nullTle3mutantmice are smaller than their
heterozygous and wild type littermates. Most homozygous
null Tle3 mutant embryos demonstrate severe placental
defects and die in utero [34]. TLE3 is also expressed in the
developing nervous system where as the neural tube closes,
its distribution shifts from the entire width of the neural plate
to the dorsal region and ventricular zone; expression in the
roof of themesencephalon andmetencephalon remains most
pronounced at this stage. TLE3 is also expressed in the dorsal
root ganglia and its expression in the newly formed somites

becomes restricted to a dorsal, bracket-shaped group of cells
corresponding to the dermamyotome [35].

In oldermouse embryos expression of TLE3 in the central
nervous system (CNS) is observed along the entire length of
the brain and spinal cord in the ventricular zone, with the
strongest expression in the layer of cells immediately lining
the lumen. In the developing eye, TLE3 is located in the
lens and the neural layer of the retina. Somatic expression of
TLE3 continues in the dermamyotome and in the condensing
sclerotome, forming the vertebrae and bones. Faint staining
for TLE3 is also observed in the metanephros (embryonic
kidney); tissues derived from the pharynx, including Rathke’s
pouch and the thymic primordial; the lining of the gut and
tissues derived from the gut endoderm such as the epithelial
walls of the bronchi of the lungs and the liver; and derivatives
of the branchial arches such as the dorsum and intrinsic
muscles of the tongue and the dental laminae of the tooth
primordial [35].

In later stages of mouse development (16.5 days after
conception), TLE3 expression is more restricted than at
midgestation. For instance, Tle3 mRNA is detected in the
ventricular zone and the cortical plate of the cerebral cor-
tex; the colliculus; the cerebellum; the olfactory lobe; nasal
epithelia; whisker follicles primordia; epithelial cells of the
salivary glands; basal layer of skin and hair follicles; and
derivatives of the pharyngeal pouches including the lining
of the cochlea, eustachian tube, esophagus, larynx, epiglottis,
and the thymus [35]. TLE3 is also expressed by cells of the
bone marrow [19] and brown and white adipose tissue [32],
with the expression level of TLE3 increasing with adipocyte
differentiation [19, 32].

5. TLE3 Enhances Adipocyte Differentiation
and Suppresses Osteoblastogenesis

Adipocytes are classically classified into two kinds: white
adipocytes and brown adipocytes. White adipocytes are
optimized to store energy as triglycerides in large, unilocular
lipid droplets. When metabolic needs arise, white adipocytes
mobilize energy through hydrolysis of triglycerides and
release of free fatty acids into the circulation [36]. White
adipocytes express a battery of genes involved in lipid
handing, triglyceride biosynthesis, triglyceride mobilization,
and endocrine signalling [37–39].

Brown adipocytes derive their color from their high
mitochondrial content. Unlike white adipocytes, brown
adipocytes store energy primarily to provide an intracellular
fuel source for thermogenesis [40]. During cold exposure,
brown adipose tissue (BAT) executes a transcriptional pro-
gram that promotes energy expenditure and thermogenesis.
Induction of the gene encoding Mitochondrial Uncoupling
Protein-1 (UCP1) is critical for brown fat thermogenesis [41,
42]. It has been thought that Ucp1 expression is restricted to
BAT; however, recent studies have demonstrated that Ucp-
1-positive cells can be detected even in white adipose tissue
under certain circumstances. These cells are called “beige
adipocytes” [43] and have characteristics of both white and
brown adipose cells: during basal state, beige adipocytes
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display unilocular morphology similar to white adipocytes,
but upon cold stimulation, these cells acquire features of
intermediate morphology ultimately resulting in expression
of proteins typical for BAT and transformation of stored fat
into the small lipid droplets typical for brown adipocytes [44–
46].

While the transcriptional determinants of the white and
brown adipocyte gene programs are incompletely under-
stood, it is known that PPAR𝛾 is the master transcriptional
regulator of both white and brown fat differentiation. In
support of this, mice deficient in PPAR𝛾 lack both types of
adipose tissue [9, 47–49]. Villanueva et al. [32] identified
TLE3 as a cofactor for PPAR𝛾 and it was later confirmed that
TLE3 enhances transcriptional activity of PPAR𝛾, thereby
inducing adipocyte differentiation of BMMSCs [19, 21].
Additionally, TLE3 disrupts the physical interaction between
transcriptional cofactor PRDM16, which was identified as
a key factor driving brown adipocyte linage development
[43, 50], and PPAR𝛾, thereby suppressing brown-fat-specific
genes and inducing white-fat-specific genes; the net result
of these effects is impaired fatty acid oxidation and thermo-
genesis [51]. We predict that TLE3 has some influence on
beige adipocyte formation, but further studies are needed to
examine this possibility.

Described above, osteoblast-lineage cells and marrow
adipocytes are derived from a common progenitor, the
BMMSCs. RUNX2 controls osteoblast-related genes and is
essential for commitment to the osteoblast lineage [13, 14, 52].
RUNX2 interacts with Groucho/TLE family members, which
act as corepressors of RUNX2 activity [53, 54]. For instance,
TLE1 and TLE2 repress RUNX2-dependent activation of
osteocalcin gene transcription [55]. And TLE3 suppresses
BMP2-induced osteoblast differentiation of BMMSCs via
recruiting HDAC and repressing RUNX2 transcriptional
activity [19].

6. Expression of TLE3 Is Regulated by
Canonical Wnt Signalling

The Wnt family of nineteen secreted glycoproteins has a
critical role in regulating embryonic development, cell differ-
entiation, and cell fate determination [56]. Wnts transduce
two types of intracellular signalling referred to as canonical
and noncanonical pathways. Canonical Wnt signalling, that
is, signalling mediated by the effector 𝛽-catenin, has a key
role in adult skeletal homeostasis and bone remodeling [57]
by promoting differentiation and maturation of osteoblasts
and, thereby, increasing bone formation [58]. In contrast,
canonicalWnt signalling suppresses adipocyte differentiation
[59].

Groucho/TLE family members, including TLE3, act as
transcriptional corepressors of canonical Wnt signalling via
binding to the downstream effectors TCF/LEF and inhibiting
Wnt target gene transcription [20, 60–62]. According to
Daniels and Weis [62], 𝛽-catenin that enters the nucleus
upon activation of the Wnt pathway directly competes with
Groucho/TLE proteins for TCF/LEF binding to accomplish
gene regulation.

RUNX2

TLE3

HDAC

Canonical
Wnt signaling

BMMSCs

ADs

OBs

PPAR-𝛾

Figure 2: Model for the role of TLE3 in the bone marrow microen-
vironment. TLE3 directly induces adipogenesis and suppresses
osteoblastogenesis of BMMSCs by acting on PPAR-𝛾 and RUNX2,
respectively. TLE3 also indirectly induces adipogenesis and sup-
presses osteoblastogenesis by repressing canonical Wnt signalling,
which is capable of inducing osteoblastogenesis and inhibiting
adipogenesis. In addition, canonical Wnt signalling induces TLE3
expression, suggesting that the induction of TLE3 byWnt signalling
may be part of a negative feedback loop during osteoblastogenesis
and/or a positive feedback loop during adipogenesis in the adult
bone marrow microenvironment. BMMSCs: bone marrow mes-
enchymal stem cells; OBs: osteoblasts; ADs: adipocytes.

Recently, Wnt responsive elements in the TLE3 promoter
region were identified through comparative genomic analysis
and functional analyses confirmed that expression of TLE3
is increased by Wnt signalling [21]. Given the opposing roles
of TLE3 and Wnt signalling in BMMSCs differentiation, this
finding suggests that induction of TLE3 by Wnt signalling
is part of a negative feedback loop active during osteoblast
differentiation and/or a part of a positive feedback loop
during adipogenesis, suggesting that TLE3 regulates the
cell fate of BMMSCs between osteoblasts and adipocytes
(Figure 2).

7. Prospects for Therapy

Osteoporosis, which is one of the most abundant bone-
related diseases, is characterized by low bone mass and
microarchitectural deterioration of bone tissue that results in
increased bone fragility and susceptibility to fracture [7].The
most commonly prescribed therapeutics are antiresorptives,
such as calcitonin, estrogen, and bisphosphonates, that block
osteoclast activity as a means to stabilize bone architecture.
While efficacious in halting further bone loss, little or no new
bone mass is added to the skeleton while on antiresorptive
therapy. Recent data on the importance of continuous bone
remodeling suggest that overuse of antiresorptives could lead
to BRONJ (bisphosphonate-related osteonecrosis of the jaw)
[63] and fracture in some patients [64].Thus, development of
new, effective therapies that target enhancing bone formation
by stimulating osteoblast differentiation is required.
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8. Conclusion

In this review we summarized the cell fate determination and
the differentiation of BMMSCs and especially focus on the
role of TLE3, which represses osteoblast differentiation and
enhances adipocyte formation from BMMSCs. Therefore,
we speculate that reducing TLE3 expression or activity in
BMMSCs could be a useful approach towards increasing
osteoblast numbers and reducing adipogenesis in the bone
marrow environment. Recently, a delivery system involving
dioleoyl trimethylammonium propane- (DOTAP-) based
cationic liposomes attached to six repetitive sequences of
aspartate, serine, and serine ((AspSerSer)

6
) was utilized to

deliver siRNAs specifically to bone formation surfaces [65].
Delivery of siRNAs against Tle3 with this delivery system
might be useful for reducing mRNA levels of TLE3 in
bone without affecting other organs and/or tissues. Thus,
developing effective methods of reducing TLE3 expression
or activity in bone locally may shed light on novel bone
formation therapies.
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