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Abstract

Inflammatory cytokines are key regulators of immune responses. Persistent and excessive 
production of inflammatory cytokines underscores the development of autoimmune diseases. 
Therefore, neutralizing inflammatory cytokines or antagonizing their receptor function is considered 
as a useful therapeutic strategy to treat autoimmune diseases. To achieve the success of such 
a strategy, understanding of the complex actions of these cytokines and cytokine networks is 
required. In this review we focus on four inflammatory cytokines—tumor necrosis factor α (TNFα), 
interleukin-6 (IL-6), IL-23 and IL-17—and dissect how the dysregulation of these cytokines regulates 
autoimmune diseases. On the basis of pre-clinical and clinical data, we specifically discuss the 
therapeutic rationale for targeting these cytokines and describe the potential adverse effects.
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Introduction

Since interferon (IFN) was discovered in 1957 (1, 2), more than 
90 inflammatory cytokines and their corresponding receptors 
have been identified (3, 4). These cytokines are produced by 
various cell types, and regulate immune responses, wound 
healing, angiogenesis, hematopoiesis and tissue remodeling. 
An appropriate inflammatory response is vital to host defense, 
whereas excessive or persistent production of inflammatory 
cytokines results in immunopathology such as inflammatory 
or autoimmune diseases.

Although inflammatory cytokines exert variable effects at 
different stages of different autoimmune diseases, not all of 
them are effective or promising targets for the treatment of 
these diseases. Here we outline some of the most effective 
treatments for autoimmunity including those targeting tumor 
necrosis factor α (TNFα), interleukin-6 (IL-6), IL-23 and IL-17, 
and discuss the underlying biological mechanisms. We also 
discuss the future challenges in the development of cytokine-
targeted drugs on the basis of pre-clinical and clinical data.

Cytokines in autoimmune diseases

Upon infection or injury, keratinocytes, macrophages, den-
dritic cells (DCs) and other cells are activated to produce 
inflammatory cytokines (5–9). These inflammatory cytokines 
in turn act back on macrophages and DCs to induce more 
inflammatory cytokines, chemokines and other antimicrobial 
mediators (10–12). Subsequently, chemokines recruit myeloid 

DCs, neutrophils and T cells to the site of infection or injury 
to further amplify inflammatory responses to protect hosts 
from microbial infections or to repair tissue damage (13, 14). 
However, under certain circumstances, possibly due to the 
presence of autoreactive T cells in the case of autoimmunity, 
there is uncontrolled production of inflammatory cytokines. 
Work for the past 10 years has revealed a vital role of T helper 
17 (Th17) cells in autoimmune diseases.

For example, in psoriasis, IL-6, together with TGFβ, induces 
naive CD4+ T cells to differentiate into IL-17-producing T cells 
(15–17), and the persistent production of TNFα and other 
inflammatory cytokines activates macrophages and keratino-
cytes to constantly produce chemokines such as CCL20 and 
CCL27 to recruit immune cells including myeloid DCs, neutro-
phils and Th17 cells to lesional skin of patients with psoriasis 
(18–22). Among these immune cells, DCs are further activated 
by TNFα to produce IL-23 (23, 24). IL-23, on one hand, directly 
activates a subset of IL-23-receptor-expressing macrophages 
and DCs, resulting in the production of inflammatory cytokines 
such as TNFα and IL-1 (25–27). On the other hand, IL-23 not 
only promotes Th17 cells to become highly pathogenic but also 
activates γδ T cells; both cell types produce IL-17A, IL-17F, 
IL-6 and TNFα (26, 28–30). IL-17 activates epithelial cells (e.g. 
keratinocytes), endothelial cells and fibroblasts to produce a 
variety of inflammatory cytokines (31–33), chemokines (34) 
and antimicrobial peptides/proteins (AMPs) (35–37).
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In addition, IL-17 synergizes with other inflammatory 
cytokines including TNFα and IL-1β to further induce the 
expression of inflammatory cytokines and chemokines (38). 
The inflammatory cytokines induced by IL-17 promote the 
expansion of IL-17-producing γδ T or Th17 cells whereas the 
chemokines recruit more neutrophils or IL-17-producing T 
cells to sites of inflammation in the skin (30, 39, 40); these pro-
cesses result in a feed-forward mechanism to further amplify 
local inflammatory responses to incite cytokine storms, thus 
leading to the inflammatory manifestation of psoriatic skin 
(Fig. 1).

Taken together, the inflammatory circuit of TNFα, IL-6, IL-23 
and IL-17 plays a critical role in host defense and tissue 
repair, whereas the dysregulation of this inflammatory circuit 
leads to the development of autoimmune diseases such as 
psoriasis.

Targeting inflammatory cytokines in autoimmune 
diseases

Given the importance of TNFα, IL-6, IL-23 and IL-17 in the 
development and pathogenesis of inflammatory and/or auto-
immune diseases, lots of efforts have been spent on targeting 
these cytokines to treat these diseases. Accumulating pre-clin-
ical and clinical studies show that blocking TNFα, IL-6, IL-23, 
IL-17 or their corresponding receptors by use of neutralizing 
antibodies is highly effective in the treatment of multiple auto-
immune diseases such as psoriasis, rheumatoid arthritis (RA) 
and inflammatory bowel disease (IBD; Table 1). In particular, 
targeting the IL-23–IL-17 axis has been the most successful 
strategy for the treatment of psoriasis in the past decade.

Tumor necrosis factor α
TNFα is one of most avidly studied and clinically targeted 
cytokines in the treatment of autoimmune diseases. To date, 

TNFα blockers are still the best-selling cytokine-targeting drug 
type on the market. TNFα is expressed by several cell types 
including keratinocytes, macrophages, monocytes, neutro-
phils, and T lymphocytes while its receptors, TNF receptor 
1 (TNFR1; also known as p60) and TNFR2 (also known as 
p75), are ubiquitously expressed. Deregulated production of 
TNFα and its TNFRs is detrimental and has been associated 
with sepsis and several other inflammatory and autoimmune 
diseases including RA, psoriasis and colitis.

In the early 1970s, TNFα was discovered as a potent mus-
cle-wasting (or cachexic) factor with potent anticancer activ-
ity (41, 42). This discovery stimulated great enthusiasm in the 
treatment of cancer. Unexpectedly, the administration of TNFα 
to patients caused hypotension and hepatic damage (43). The 
failure of TNFα in cancer treatment made scientists shift their 
attention to the field of sepsis as macrophage-derived TNFα 
was found to be one of two primary inflammatory cytokines in 
the pathogenesis of septic or endotoxin shock (44). However, 
the inhibition of TNFα with neutralizing antibodies or soluble 
TNFα receptor in patients with sepsis was either ineffective or 
made survival outcomes worse (45, 46).

Although anti-TNFα therapies failed in the treatment of 
cancer and sepsis, the first clinical trial of a TNFα inhibitor 
succeeded in the treatment of RA in 1992 (47). This success 
subsequently led to five approved TNFα-blocking biologicals 
(Table 1)—infliximab, etanercept, adalimumab, certolizumab 
and golimumab (48). Infliximab is an IgG1 mouse–human chi-
meric antibody and was the first TNFα-targeted drug to be 
approved, in 1998 (49). This was followed by the approval 
of the TNFR2–Fc (crystallizable fragment of immunoglobulins) 
IgG1 chimera protein etanercept (50). Adalimumab was the 
first fully human antibody targeting TNFα and was approved 
in 2002 (51). Certolizumab pegol is a new, polyethylene gly-
col-conjugated, humanized FAb (antigen-binding fragment of 
immunoglobulins) of a TNFα-specific monoclonal antibody 

Fig. 1. The inflammatory circuit of TNFα, IL-6, IL-23 and IL-17 in the pathogenesis of psoriasis. The persistent production of TNFα and other 
inflammatory cytokines activates DCs to produce IL-23, and IL-6, together with TGFβ, induces naive CD4+ T cells to differentiate into IL-17-
producing T cells. IL-23 directly activates macrophages (Mϕ) to produce inflammatory cytokines such as TNFα and IL-1; IL-23 also promotes 
Th17 cell differentiation into highly pathogenic Th17 cells and activates γδ T cells, both cell types constantly produce IL-17A, IL-17F, IL-6 and 
TNFα. IL-17 activates epithelial cells (e.g. keratinocytes) and endothelial cells to produce a variety of inflammatory cytokines, chemokines and 
AMPs. The inflammatory cytokines induced by IL-17 promote the expansion of IL-17-producing γδ T or Th17 cells whereas the chemokines 
recruit more neutrophils or IL-17-producing T cells to sites of inflammation in the skin, which produces a positive feed-forward mechanism and 
further amplifies local inflammatory responses to incite cytokine storms in psoriasis.
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(mAb) and was approved in 2008 (52). Golimumab, another 
fully human antibody, was approved in 2009 (53).

It is reasonable to speculate that all these five TNFα-
blocking biologicals would be effective in the treatment of 
autoimmune diseases associated with overproduction of 
TNFα, such as psoriasis, RA, multiple sclerosis (MS) and IBD 
(54, 55). However, not all patients have responded equally to 
each medication. Despite the impressive positive effects of 
blockade of TNFα in psoriasis, psoriatic arthritis and RA (51), 
anti-TNFα agents worsened disease in patients with MS (56) 
and etanercept failed to treat patients with IBD (57).

The basis for these differential effects of TNFα blockade 
might be due to the heterogeneity of RA, MS and IBD. In addi-
tion, all five TNFα-blocking biologicals have been reported 
to be effective in the treatment of RA, but about one-third of 
patients with RA treated with anti-TNFα agents did not respond 
(58). This difference might be dependent on the genetic 
makeup of patients and different mechanisms underlying the 
pathogenesis of RA. Moreover, TNFα is at the upstream of 
the inflammatory cytokine cascade. This early release inflam-
matory cytokine is at key steps of disease development but 
may not be fundamental to the disease pathogenesis in some 
cases as recent detailed studies indicate that both the timing 
and the duration of TNFα expression are important in deter-
mining the pathogenic roles of TNFα (59, 60).

Thus, determining the appropriate stage of disease at 
which to intervene is crucial. Moreover, the systemic block-
ade of soluble TNFα and membrane-bound TNFα by using 
neutralizing antibodies has been indicated to enhance can-
cer risk and susceptibility to infections (61, 62).

Interleukin-6
IL-6, like TNFα, is a key mediator in the immune system and 
produced by various haematopoietic and non-haematopoietic 
cells. Its receptor consists of a membrane-bound IL-6Rα and 
the accessory molecule glycoprotein 130 (gp130; also known 
as IL-6Rβ). The expression of membrane-bound IL-6Rα is 
restricted mainly to cells of the immune system and to hepato-
cytes, whereas gp130 is ubiquitously expressed. IL-6 also has 
a key role in the development of autoimmune models such as 
experimental autoimmune encephalomyelitis (EAE), collagen-
induced arthritis (CIA), RA, IBD and psoriasis. In IL6-deficient 
mice, arthritis development was completely inhibited (63) and 
the severity of IBD was strikingly reduced (64), suggesting that 
targeting IL-6 holds therapeutic potential in the treatment of 
these autoimmune diseases. Therefore, multiple neutralizing 
antibodies targeting IL-6 and its receptor have been developed 
(Table 1). To date, tocilizumab (humanized IL-6R-specific mAb) 
has been approved, in combination with methotrexate, to treat 
RA (65); and siltuximab (chimeric IL-6-specific mAb) has been 
approved for multi-center trials of Castleman’s disease treat-
ment (66). Sirukumab (fully human IL-6-specific mAb), oloki-
zumab (humanized IL-6-specific mAb) and sarilumab (fully 
human IL-6Rα mAb) are under Phase-II or -III study in patients 
with RA (67–69).

Despite the great potential of targeting IL-6 and IL-6R, cau-
tion is warranted given that IL-6 bound to soluble IL-6Rα, a 
form generated by proteolytic cleavage of membrane-bound 
IL-6Rα by the metalloproteinases TNFα-converting enzyme 

or alternatively spliced mRNA, can induce trans-signaling by 
associating with the accessory molecule gp130 in a multitude 
of cell types that do not express membrane-bound IL-6Rα 
(4). Therefore, the antibodies directed against IL-6Rα will tar-
get both membrane-bound and soluble forms of the recep-
tor, which may be outweighed in some cases by adverse 
effects. In such cases, targeting signaling molecules such 
as JAKs downstream of IL-6R might be more effective. Thus, 
tofacitinib, a small-molecule therapeutic targeting JAK1 and 
JAK3, has proved to be significantly effective (70). Moreover, 
IL-6 plays a critical role in host defense against microbial 
infections (71, 72) and plays a protective role during neural 
and liver injury (73, 74). Long-term IL-6 neutralization may 
increase susceptibility to bacterial and viral infections or may 
cause mortality in patients with ischemic neural damage or 
alcoholic cirrhosis.

The IL-23–IL-17 axis
The discovery of the IL-23–IL-17 immune axis has led to 
defining a new lineage of T helper cells—Th17 cells. This new 
T-cell subset plays a key role in the pathogenesis of multiple 
autoimmune diseases as Th17 cells are one of major produc-
ers of IL-17 (75).

Interleukin-23. IL-23 is a heterodimeric cytokine composed 
of the p19 and the p40 subunits, and shares the p40 subunit 
with IL-12, which contains another subunit—p35. Given its 
key role in driving pathogenic Th17 and γδ T cells to produce 
high levels of IL-17 (Fig. 1), neutralizing antibodies have been 
developed that target IL-23. The anti-p40 subunit therapy tar-
geting IL-12 was first evaluated in patients with Crohn’s dis-
ease (CD) in 2000 and provided benefit in this disease (76). 
Subsequent studies demonstrated that, in patients with pso-
riasis, levels of mRNA for the p40 of IL-12 or IL-23 and for the 
p19 of IL-23 were higher in lesions of psoriasis patients than in 
non-lesional and normal skin, whereas mRNA for p35 of IL-12 
was present but decreased in lesional skin (77). Moreover, 
pre-clinical models of psoriasis illustrated that IL-23 exposure 
in murine skin drove the excessive growth and abnormal dif-
ferentiation of keratinocytes, whereas IL-12 did not promote 
the same pathology (77, 78).

The evidence suggests that targeting the p40 of IL-12 
indeed inhibits IL-23 and that inhibiting p40 might be effective 
to treat psoriasis, too. Therefore, two therapeutic mAbs tar-
geting the p40 subunit, Ustekinumab and briakinumab, were 
used in treatment of psoriasis (Table 1). Both Ustekinumab 
and briakinumab were effective in Phase III clinical tri-
als for the treatment of psoriasis and psoriatic arthritis (4). 
Ustekinumab also showed benefits in the treatment of moder-
ate to severe CD when it was administered as maintenance 
therapy (79), but failed to prevent inflammation in patients 
with MS (80).

To date, Ustekinumab has been approved to treat psori-
asis and psoriatic arthritis (81). However, briakinumab was 
withdrawn pending further analysis as major adverse car-
diac events occurred in a higher number of patients receiv-
ing briakinumab compared with those receiving placebo 
in some Phase III trials (81, 82). Besides Ustekinumab and 
briakinumab, several IL-23-specific antibodies antagoniz-
ing the p19 subunit including tildrakizumab, guselkumab, 
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LY2525623, AMG139, BI-655066 and LY3074828 (Table  1) 
have been developed (81). Tildrakizumab and guselkumab 
have completed Phase II trials for psoriasis. LY2525623 was 
terminated in Phase II for complexities in development but 
not safety concerns. AMG139, BI-655066 and LY3074828 are 
in early stages of development (81).

Although IL-23 is redundant in host defense to many 
pathogens, it is important for host responses against 
Mycobacterium and Candida infections as IL-23-dependent 
IL-17A and IL-17F play key roles in protecting hosts from 
these infections (83, 84). Therefore, treatment of autoimmune 
diseases with IL-23 antagonists carries the risk of impaired 
host defense responses to pathogens. Moreover, IL-12 can 
act on both innate and adaptive lymphoid cells such as natu-
ral killer cells and CD8+ cytotoxic T lymphocytes, and these 
cells then produce IFNγ to prevent tumor initiation, growth 
and metastasis (85, 86). In contrast, IL-23 increases tumor 
cell proliferation, survival and invasion by activating signal 
transducer and activator of transcription 3 (STAT3) and the 
overexpression of IL-23 in mice is sufficient to induce rapid 
(3–4 weeks) de novo development of intestinal adenomas (85, 
87, 88). Therefore, the risk of breakdown in tumor surveillance 
by antagonizing the IL-12/IL-23 p40 subunit is of particular 
concern. To achieve both efficacy and safety in the treatment 
of autoimmune diseases by targeting IL-23, the intricate cel-
lular and molecular mechanisms of those diseases warrant 
further investigation. Meanwhile, clinical testing is required to 
determine whether a specific disease mechanism also oper-
ates in humans.

Interleukin-17. As a key effector cytokine produced by path-
ogenic Th17 and γδ T cells, IL-17 plays a crucial role in the 
pathogenesis of multiple autoimmune diseases such as pso-
riasis, RA, MS, IBD and myocarditis (89–91) and has been 
thought as one of the best targets in the treatment of auto-
immune diseases (92). Therefore, several monoclonal anti-
bodies targeting IL-17A and IL-17RA have been developed 
(Table 1). The Phase II proof-of-concept studies for secuki-
numab (a fully human IL-17A-specific monoclonal antibody) 
(93), ixekizumab (a humanized IL-17A-specific antibody) (94) 
and brodalumab (a fully human IL-17RA-specific monoclonal 
antibody) (95) showed that each drug was highly effective 
and helped around 80% of treated patients to achieve a 75% 
reduction in the Psoriasis Area and Severity Index (PASI) (96).

To date, secukinumab has been approved for the treatment 
of plaque psoriasis, whereas isekizumab and brodalumab are 
in Phase III trials (92). Beyond psoriasis, secukinumab, iseki-
zumab and brodalumab are currently in pipeline, with trials in 
psoriatic arthritis and RA still ongoing. Other drug candidates 
targeting IL-17A include CNTO6785, SCH-900117 and bime-
kizumab. All these candidates are in either Phase II or Phase 
I clinical trials (97).

Although both IL-17A and IL-17RA are good targets in the 
treatment of autoimmune diseases, a key question remains: 
targeting which one—the cytokine or the receptor—is more 
effective? From a pharmacokinetic point of view it may 
be easier to block the cytokine than the receptor. IL-17 is 
readily available in the circulation, whereas the receptor 
resides in the membrane of many cell types and the cor-
responding neutralizing antibodies need to gain access to 

the relevant tissue before the receptor can be neutralized 
(92). Therefore, it is reasonable to speculate that targeting 
the ligand would be more straightforward than the receptor. 
However, IL-17RA is the most common signaling subunit in 
the IL-17 pathway. It can form heterodimeric receptor com-
plex with most other IL-17 receptors. Therefore, targeting 
IL-17RA might be an effective way to disrupt the pathway if 
multiple IL-17 cytokines are contributing to a disease rather 
than a particular cytokine. Recent positive results for broda-
lumab in Phase III trials in psoriasis have confirmed this 
hypothesis (97).

Similar to targeting IL-23, the rates of adverse events 
including infections need to be considered due to a crucial 
role of IL-17A in the control of extracellular but not intracel-
lular bacterial infections and fungi (98). To avoid the adverse 
effects, blocking Th17 cell responses but not universal IL-17 
cytokine signaling might be safer. Therefore, targeting RORγt, 
a key transcription factor that determines the lineage com-
mitment of Th17 cells, might be an alternative option. Several 
small molecules including digoxin and ursolic acid have been 
developed to antagonize RORγt activity (99, 100). However, 
off-target effects of these small molecules must be under key 
consideration.

Conclusions

Over the past two decades, targeting inflammatory cytokines 
and their receptors has produced multiple highly success-
ful drugs in the treatment of autoimmune diseases such as 
RA, psoriasis and colitis. Although the potential of inflamma-
tory cytokines and their receptors as drug targets is clearly 
established, how to select the key players in specific auto-
immune diseases or pivotal regulators of cytokine circuits 
is still under debate. Therefore understanding the intrinsic 
cellular and molecular mechanisms of each cytokine in 
different disease settings is required to select a specific 
inflammatory target with better efficacy and safety profiles 
in the treatment of each autoimmune disease. Additionally, 
although the general principles in defining good anti-inflam-
matory targets are well established (3), the redundancy in 
the actions of many inflammatory cytokines that will limit 
the efficacy of single neutralizing agents requires us to pay 
careful attention.

We should point out that not all agents work as expected; 
some work better than others in certain diseases. Thus, the 
heterogeneity and complexity of human autoimmune dis-
eases needs to be considered. Since mouse models can-
not exactly resemble all types of human diseases, innovative 
translational studies on human patients are urgently required.

In addition, we need to keep in mind that inflammatory 
cytokines are also critical to maintain effective host defense 
or prevent tumorigenesis. Therefore, blocking cytokines to 
prevent autoimmune diseases might make patients more 
susceptible to infection or risk causing decreased tumor 
surveillance.

Clearly, there is much to be done to dissect the complex 
and highly interactive effects of inflammatory cytokines. With 
most of cytokines unstudied in human diseases, we are opti-
mistic that many new, even better and safer ways of treating 
autoimmune diseases will emerge.
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