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ABSTRACT

Next generation sequencing of cellular RNA is mak-
ing it possible to characterize genes and alternative
splicing in unprecedented detail. However, design-
ing bioinformatics tools to accurately capture splic-
ing variation has proven difficult. Current programs
can find major isoforms of a gene but miss lower
abundance variants, or are sensitive but imprecise.
CLASS2 is a novel open source tool for accurate
genome-guided transcriptome assembly from RNA-
seq reads based on the model of splice graph. An
extension of our program CLASS, CLASS2 jointly
optimizes read patterns and the number of support-
ing reads to score and prioritize transcripts, imple-
mented in a novel, scalable and efficient dynamic
programming algorithm. When compared against ref-
erence programs, CLASS2 had the best overall accu-
racy and could detect up to twice as many splicing
events with precision similar to the best reference
program. Notably, it was the only tool to produce con-
sistently reliable transcript models for a wide range
of applications and sequencing strategies, including
ribosomal RNA-depleted samples. Lightweight and
multi-threaded, CLASS2 requires <3GB RAM and can
analyze a 350 million read set within hours, and can
be widely applied to transcriptomics studies ranging
from clinical RNA sequencing, to alternative splicing
analyses, and to the annotation of new genomes.

INTRODUCTION

Alternative splicing is an inherent property of eukaryotic
genes, with important roles in increasing functional diver-
sity and in disease (1-3). More than 90% of the human genes
are alternatively spliced (4,5), with similar levels reported in
other eukaryotes. Each gene can produce from one to po-
tentially thousands of splice variants under different cellu-

lar conditions, and gene splice isoforms can have similar,
independent and even antagonistic functions. Identifying
the genes and their transcript variants is therefore a critical
first step in answering a broad range of biological questions.
Over the past five years, next generation sequencing of cellu-
lar RNA (RNA-seq) has enabled the discovery of thousands
of novel non-coding RNAs and has significantly expanded
our catalog of splice variants. However, despite significant
progress, extracting gene expression estimates and identify-
ing splice variants in the vast amounts of short read data
remains challenging, demanding bioinformatics tools that
are fast, accurate and efficient.

The primary goal of a typical RNA-seq analysis is to
comprehensively determine the precise exon—intron bound-
aries on the genome for all transcripts and to estimate their
expression levels in the samples. Before this can be accom-
plished, reads must be mapped to the genome with a fast
spliced alignment program that accounts for introns and
sequencing errors (6). Alignments are then pieced together
to form gene and transcript models. Virtually all genome-
guided transcript assemblers build a graph that represents
a gene and its splice variants, and then traverse it to se-
lect a subset of transcripts that are likely represented in
the sample. Among current programs, Cufflinks (7) con-
nects overlapping reads into overlap graphs, Scripture (8)
and IsoLasso (9) build connectivity graphs, and iReckon
(10), Scripture and SLIDE (11) generate splice or subexon
graphs (12). Although there are some differences among the
exons and introns predicted by each program, these rep-
resentations more or less encode equivalent sets of candi-
date transcripts. Therefore, the strategy for selecting tran-
scripts from among the many encoded possibilities in the
graph is important for the program’s accuracy as well as for
the number of variants identified. Parsimony-based meth-
ods such as Cufflinks’ minimum partition algorithm select
amathematically minimum number of transcripts. They can
usually identify the genes and most major isoforms rela-
tively accurately, but are less apt at identifying low abun-
dance splicing events. ‘Best fit” methods, which include Iso-
Lasso, SLIDE and iReckon, choose a subset of transcripts
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such as to optimize an objective function, using either an
integer programming or an expectation maximization for-
mulation. The main problem with these approaches is over-
fitting, where programs tend to report a large number of
spurious transcripts based on low abundance reads. In yet
another category, programs such as SpliceGrapher (13) sim-
ply omit enumerating transcripts altogether, or otherwise
exhaustively enumerate all splice variants encoded in the
graph (Scripture). While they can generally capture a larger
portion of the true splicing variation, these methods are too
imprecise to allow meaningful downstream analyses. Lastly,
programs differ in their use of known annotations to in-
form their predictions. Annotation-guided methods, such
as iReckon and SLIDE, rely on an existing set of gene an-
notations to build their gene models. For species for which
there is already an extensive set of gene annotations these
methods generally produce more variants, but are also more
prone to reporting spurious isoforms and cannot be used
to identify novel genes. In contrast, de novo programs in-
cluding Cufflinks, Scripture and IsoCEM, build gene and
transcript models from RNA-seq reads alone, without any
prior knowledge of gene structure, and therefore are more
suited to annotate newly sequenced or less studied organ-
isms. Overall, while many tools already exist to determine
the expressed genes and loci in an RNA-seq sample, there
is an unmet need for methods that specifically target alter-
native splicing.

We developed CLASS2 (Constraint-based Local Assem-
bly and Selection of Splice variants), to bridge this gap
and detect low abundance splice variation with high ac-
curacy. At its core is the concept of the splice graph, a
data structure that we have previously employed in splice
variant annotation using both conventional Sanger (EST)
(14) and next generation sequencing (15). A splice graph
compactly represents a gene with its exons as nodes and
introns as edges; splice variants can be read as maximal
paths in the graph. CLASS2 uses a linear programming
method to predict exons, and then connects them into splice
graphs via introns detected from spliced alignments. Since
the splice graph may encode many biologically unfeasi-
ble combinations, CLASS2 uses an efficient dynamic pro-
gramming optimization algorithm to select candidate tran-
scripts. CLASS?2 builds upon its predecessor CLASS (15),
but brings several critical algorithmic and performance im-
provements (Methods and Supplementary Methods SM1),
including a new formulation for transcript scoring and se-
lection as an optimization problem, novel and scalable dy-
namic programming transcript selection algorithms, and a
new model for ‘intronic’ noise due to reads from unspliced
RNA. When compared to reference programs, CLASS2
captured significantly more splicing variation, both fully
reconstructed transcripts and partial splicing events, with
high precision. Most importantly, it was the only program
tested that produced consistently well formed and easy to
interpret annotations for all applications and sequencing
strategies. More specifically, our comparative analyses have
shown that:

1. CLASS?2 offers the best tradeoff between sensitivity and
precision in reconstructing full transcripts. In its default
setting, CLASS2 detects 10-70% more transcripts than
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Cufflinks, which is the most popular and most precise
of these programs, with higher or comparable precision.
In its sensitive settings, CLASS2 detects up to twice as
many transcripts as Cufflinks for a relatively small drop
in precision.

2. It is the best suited to capture local alternative splicing
variation. In particular, it can detect up to twice as many
alternative splicing events as Cufflinks, with high preci-
sion. CLASS?2 finds slightly fewer events than Scripture,
which is the most sensitive of the programs, but its pre-
cision is considerably (70-80%) higher.

3. It employs a combined gene-level and genome-level
model of intronic ‘noise’ that allows more accurate de-
tection of intron retention events.

4. The amount of novel alternative splicing variation de-
tected by CLASS?2 increases with increasingly large data
sets.

5. CLASS2 is multi-threaded and scales well with the
amount of data, requiring <3GB RAM for all of our
tests, and can complete most regular tasks in a few hours.

6. Lastly, since CLASS2 can produce annotations from
RNA-seq data alone, without requiring an existing set
of gene annotations, it is very well suited for the annota-
tion of newly sequenced organisms.

We present the overall strategy below, followed by more
details about the individual algorithms in the corresponding
Methods sections. We then comparatively evaluate CLASS2
and several popular programs, including both de novo and
annotation-dependent transcript assemblers, on both con-
trol and real RNA-seq sets, in the Results section. The soft-
ware is available free of charge for all and under a GNU
GPL license from http://sourceforge.net/projects/Splicebox.

MATERIALS AND METHODS
Overview

CLASS2 determines a set of transcripts in three stages (Fig-
ure 1). First, it infers a set of exons from read coverage lev-
els and splice sites using a linear programming technique.
Then, it connects the exons into a splice graph via introns
extracted from spliced reads. Once the graph is constructed,
CLASS?2 selects a subset of transcripts from among those
encoded in the graph using an efficient splice graph-based
dynamic programming algorithm.

Building the exons. Exons are key to the transcript assem-
bly process, because incorrectly reconstructing exons can
miss important gene variations or can create false ones.
Since current RNA-seq reads are too short to cover many
exons end-to-end, CLASS?2 uses read coverage levels along
the genome and splice junctions from spliced read align-
ments to find exons (Figure 1A and Materials and Meth-
ods). CLASS2 employs a two-step procedure to determine
a set of exons: first, it enumerates all combinations of ex-
ons that can explain the splice site patterns and paired-
end reads. Second, for each such combination it formulates
and solves a linear program expressing several types of con-
straints. Intuitively, the read coverage levels for all alterna-
tive exons over a common interval should cumulatively add
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Figure 1. The CLASS?2 transcript assembly algorithm. Step 1 (A) Exon and introns. Infer exons from the read coverage levels, using linear programming,
and introns from spliced alignments. Step 2 (B) Splice graph. Build a splice graph to represent the gene, connecting exons by introns. Shown is a section
from a splice graph, with a skipped exon event and a 2-intron retention event, encoding two possible paths (transcripts). Step 3 (C) Constraints. Cluster
reads into classes (constraints) by their splicing and interval patterns. Step 4 (D) Transcript selection. Build and solve the bipartite constraint graph and
associated transcript selection problem, shown here for four read pairs cl, c2, ¢3 and c4, and three transcripts t1, t2 and t3.

up to the observed read coverage levels. Additionally, we as-
sume read coverage levels are locally uniform, and therefore
the coverage of adjacent portions of the same exon should
be similar. Each exon combination is scored by the linear
program, and the combination with the minimum objective
function value is chosen in the end.

Modeling intronic ‘noise’. Intronic RNA, produced by un-
spliced pre-mRNA transcripts that are either residual or
part of the experiment, is a common artifact with real RNA-
seq samples. Such intronic ‘noise’ can confound the detec-
tion of mature mRNA resulting from intron retention and
alternative transcription start and termination events (16).
Distinguishing between ‘signal’ and ‘noise’ is therefore crit-
ical for creating a full and accurate set of exons. CLASS2
introduces a new method to identify intronic mRNA, by
modeling intronic read levels across genomic intervals, both
within a gene locus and along the genome. The gene-level
‘noise’ is modeled as a Poisson distribution of the individ-
ual intronic positions, retaining the introns whose average
coverage ranks at the top of the distribution (P-value =
10e—5). For the genome-wide ‘noise’, we consider the cover-
age distribution of intronless regions (‘islands’), modeled as
a normal distribution, and retain only those introns with Z-
score > 6. In the end, only introns that pass both filters are
deemed as likely retained introns or alternative gene ends,
and are then incorporated into the exon finding procedure.

Transcript enumeration and selection. Once a set of exons
is determined, CLASS2 generates a splice graph by con-
necting the exons (nodes) via introns (edges) extracted from
spliced read alignments. Candidate transcripts are encoded

in the graph as maximal paths from a node with no in-
coming edges (source) to a node with no outgoing edges
(sink) (Figure 1B). Since the splice graph generally encodes
amuch larger number of transcripts than is biologically pos-
sible, CLASS2 uses a selection procedure to identify a sub-
set of candidates that can explain all contiguity constraints
from spliced reads and paired-reads. In practical terms, a
constraint is a cluster of reads or read pairs that share the
same set of exons or exon fragments and therefore can be
assembled into the same transcript (Figure 1C).
Conceptually, we model the problem as a graph with
two types of nodes (bipartite), transcripts and constraints,
where each transcript node is connected by edges to the con-
straints it satisfies, and we must select a subset of transcripts
that collectively satisfy all constraints (Figure 1D). In early
work, we implemented a simple greedy SET_COVER ap-
proximation algorithm (15) that aimed to minimize the
number of transcripts that could explain all the read pat-
terns, or constraints, without regard to the number of sup-
porting reads. Here, we report an improved algorithm that
additionally takes into account the read coverage (abun-
dance) information for each transcript and constraint, mod-
eled as a dynamic programming optimization problem (see
Materials and Methods). It selects a subset of candidate
transcripts while simultaneously assigning a set of compat-
ible reads, and it does so efficiently by exploiting the com-
pactness of the splice graph data structure. The algorithm it-
eratively grows a set of transcripts by selecting, at each step,
the transcript that maximizes a scoring function which takes
into account both the number of constraints not covered by
the current set and their abundance. As a new transcript is
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selected, reads are simultaneously assigned to it as deter-
mined by its set of constraints, and the algorithm is reiter-
ated with the updated sets of constraints and transcripts.

Since the algorithm favors abundant isoforms, transcripts
are being selected largely in the order of their abundance,
from the most highly expressed to the least expressed. This
allows the selection procedure to be terminated whenever
the abundance reaches a user-specified cutoff (parameter
-F’), with the most trusted isoforms being reported first.
To further improve the algorithm’s efficiency for genes with
complex structures, rather than enumerating all transcripts
at each step in the algorithm, CLASS2 implements an ef-
ficient splice-graph based dynamic programming transcript
selection procedure, described below. This method consid-
erably reduces both memory and run time, and allows the
program to be run on very large data sets without sacrificing
sensitivity.

Exon reconstruction algorithm

To determine a set of exons, CLASS2 uses a protocol similar
to CLASS (15), modified to exclude intervals that contain
intronic ‘noise’. More specifically, it analyzes regions of the
genome covered by reads, which represent exons or combi-
nations of exons, using splice sites to split each region into
intervals. Each interval can belong to more than one exon;
the portion of an exon corresponding to an interval is called
subexon. To determine the most likely combination of exons
within a region, CLASS2 enumerates all feasible exon sets,
i.e. that are necessary and sufficient to explain all splice sites
and all reads. For each such set it formulates and solves a
linear program (LP), which is used to score the combina-
tion. The combination with the best LP score is chosen as
the representative set of exons. The linear program is for-
malized below, and an example illustrating the algorithm is
included in Supplementary Methods SM2.

The LP-based scoring system for exon combinations. More
formally, consider a region R = r; ... ryn, where N is the
number of intervals. Let Lj = Ir;l be the length of interval
rj,and L = ) ;| n L; the length of the region. Denote S =
{Xj, ... Xm} the set of possible exons, represented as vec-
tors: X; = (xij)j = 1.n € {0,1}N, with xi; = 1 if and only if X;
contains interval rj, and 0 otherwise. Hence, X; will contain
all Os except for a run of 1s, starting at interval b; and ending
atinterval e; Given a candidate set of exons S’ C S, CLASS2
assigns each subexon an (unknown) read coverage level, ¢,
defined as the average number of reads per base of subexon
i,j. Let C; be the (observed) read coverage on interval j. We
write a linear system with the following constraints:

(i) additivity - for each interval rj, j = 1,N, the cumulative
coverage levels of subexons within the interval should
be roughly equal to the observed coverage level:

)E XijCij —Cj’ =

(i1) continuity - for each exon Xj € S’, the coverage of ad-
jacent subexons should be roughly equal:

|cij — cij1| < &ij, foreachj=b;i+1,....¢
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(ii1) comservation - the total coverage of all exons should be
roughly equal to the total coverage of the region:

‘Zi Zj cijLj— Zj Cij‘ <e¢

(iv) nomn-negativity - all (sub)exons of exons should be ex-
pressed:

Cij = 1, iin,j =1; Cij = 0, iin’j =0

The objective function minimizes the total error:
min &+ gj+e
i (Z ! Z i+ e)
j ij

For single-end reads, this value is used explicitly to score
the combination. For paired-end reads, deviations from
the observed fragment length distribution are included as
penalties to more finely differentiate among likely exon sets,
as described in (15). In the end, the exon combination with
the smallest score (‘error’) is chosen.

Once determined, exons are connected into a splice graph
via introns extracted from spliced alignments, and candi-
date transcripts are enumerated as maximal paths in this
graph. The candidate transcript set is typically much larger
than the true set of transcripts. CLASS2 implements several
algorithms to select a subset of transcripts that are the most
likely to be represented in the sample.

Transcript selection algorithms

The goal is to select a subset of the transcripts encoded in
the splice graph that can collectively explain all the reads,
which we formulate as a dynamic programming optimiza-
tion problem. We implement an iterative procedure that si-
multaneously selects the next transcript and assigns reads to
it, thus estimating its abundance in the process. To start, we
mark the boundaries of the exons along the genomes and
divide the gene into intervals, as described above. To reduce
space, we group reads (or read pairs) that cover the same
set of intervals into classes, called constraints. For each con-
straint ¢;, we define its abundance a; as the number of reads
(or read pairs) for that constraint divided by the number
of possible start positions of the reads within the intervals.
Each constraint can be included (satisfied) into one or more
candidate transcripts, ¢; ~ ¢;; conversely, a transcript can be
viewed as the set of constraints it satisfies: #; = {c;, ...,cu }.
We then denote the abundance of a transcript, 4;, as the
minimum abundance of its set of constraints: 4; = min {a;
| ¢;~t;} Let G be a graph with n transcripts 7 = {t;, ...,
t,} and m constraints C = {¢;, ..., ¢, }. We give a basic
enumeration and selection algorithm for relatively simple
graphs, and then an efficient splice-graph based implemen-
tation that can efficiently handle complex graphs, below.

Basic algorithm. For a small graph, it is feasible to enu-
merate and assess all candidate transcripts 7, ..., t, en-
coded in the graph. At each step, the algorithm evaluates
all remaining transcripts and selects the new transcript, ¢;
that maximizes the score function V; =n; /(2-A; /max A),
where n; is the current number of constraints that transcript
t; is compatible with, A4; is the abundance of transcript #;,
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and max A is the maximum abundance over all transcripts
of the gene. Once a transcript #; is selected, its abundance is
subtracted from those of the constraints it satisfies: ¢; - =
A;. If for any constraint the abundance becomes 0, it is re-
moved from the set. The algorithm is reiterated until there
are no non-empty constraints.

An efficient splice graph-based algorithm. For complex
genes that can generate a large number of transcripts, it may
not be efficient or even feasible to enumerate and assess all
transcripts at each step. Instead, we take advantage of the
compactness of the splice graph representation and the lo-
cality of the constraints to design a memory and time effi-
cient dynamic programming algorithm. We start by giving
an algorithm to iteratively find the next transcript ¢; that sat-
isfies the maximum number of constraints n;, by traversing
the graph while calculating an optimal path, and then mod-
ify it to take into account the abundance, or read numbers.

Let L be a subpath (subtranscript) in the splice graph and
L’ the minimum subpath immediately following L such that
the constraints partially compatible with L cannot end after
L’ (‘memory’). We enumerate all the paths L’ and recursively
calculate the maximum number of constraints f{' L) of sub-
transcripts starting with subpath L:

f(L) =max{f(L") +¢(L, L"), if L exists; c(L), if L" does not exist},

where ¢(L,L’) is the number of constraints partially com-
patible with L (start within L) and compatible with the con-
catenated subpath L.L', and ¢(L) is the number of con-
straints covered by subtranscript L. The algorithm starts
with considering every 5’ exon as a subpath. Along with
the maximum number of constraints covered, the algorithm
can also track the corresponding optimal transcript. An ex-
ample illustrating the procedure is given in Supplementary
Method SM3. Note that, while iterating over subpaths of
the splice graph does not change the theoretical exponen-
tial complexity of the algorithm, due to the limited fragment
size the number of possible sub-paths is drastically reduced,
leading to significant savings in both memory and run time
in practice.

To incorporate abundance information into the optimiza-
tion process, we modify the algorithm as follows. When pro-
cessing L and L’, we exclude subpaths that cover constraints
with abundance less than or equal to some fixed value x.
Hence, the algorithm reports the transcript covering the
most constraints among those whose abundance is larger
than x. We call such a transcript an x-abundance transcript.
This variation helps determine, at each step, the transcript
t* with max; V; = max; n; /(2-(A; /max A)). We first cal-
culate the 0-abundance transcript; suppose its abundance
is x;. We then calculate the x;-abundance transcript, and
so on, until we cannot find any x,,-abundance transcript,
where X, = max A, in the (m+1 )-st iteration. Then the fol-
lowing Theorem establishes that transcript #* is among the
transcripts computed.

Theorem: The optimal transcript ¢* is among the 0-
abundance, x;-abundance, ..., Xx,,.;-abundance transcripts.

Proof: Suppose n*, V¥ A* corresponds to the number of
covered constraints, score and abundance for the optimal
transcript t*. Let xo = 0, then the following two properties
hold from the definitions above: (1) 0 =X < X} < ... < Xp;
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and (i) ngp > n; > ... > ny, Then A* is between X and X,
and suppose that x; < A* < X;+1, where 0 < i< m. Denote
the xj-abundance transcript by t;. Then V; < V*, by virtue
of the fact that t* is the optimal transcript. We only need to
prove that V; = V*,

Suppose V; < V*, and we already know that n; > n* be-
cause the dynamic programming always returns the tran-
script covering the most constraints (property (2) above).
According to the definitions of V; and V*, then it is nec-
essary that A;j < A* in order to make V; < V*. But, A;
= X;+1 based on the definition. Therefore, A* > A; = Xj+1,
which contradicts the fact that A* is in the interval (x;, Xj+1].
Hence, the assumption that V;<V*is false and we must have
V; = V* and hence t* = t; (i.e. the xj+;-abundance tran-
script), which concludes the proof.

Materials and sequences

For our analyses on simulated data, we generated RNA-seq
reads with the software FluxSimulator (17), starting from
the GENCODE v.17 gene annotations and choosing the op-
tions ‘RNA fragmentation” and 200 million clusters. In to-
tal, 15 062 genes and 22 544 GENCODE transcripts were
represented by the 200 million 75 bp paired-end reads in the
sample. Directional mRNA and rRNA-depleted sequenc-
ing libraries were prepared from peripheral blood lympho-
cyte (PBL) samples from the same individual, collected as
part of a neuropsychiatric study in twins, and were sub-
jected to paired end sequencing. The sequencing produced
183 million and 317 million 100 bp paired-end reads, re-
spectively (Supplementary Method SM4). Lastly, for our
analyses on very deep sequencing data sets, RNA-seq reads
from long RNAs in whole-cell, cytosol and nucleus (two
biological replicates each) of IMR90 lung fibroblast cells
were downloaded from the ENCODE project’s website at
UCSC (http://genome.ucsc.edu/ENCODE). All reads were
mapped to the human genome hgl9 using the software
Tophat2 (18) using a combined non-redundant set of GEN-
CODE and RefSeq transcripts as reference annotations and
all other default parameters.

Analysis of alternative splicing events

To evaluate the programs for their ability to capture indi-
vidual types of alternative splicing events, we generated a
reference set of events (exon skipping, intron retention and
alternative exon ends) from the simulated data. We used AS-
profile (19) to extract events from the transcripts sampled by
FluxSimulator, and then filtered them to retain only those
actually supported by the reads in the sample. We processed
each program’s GTF output in a similar manner and com-
pared against the reference sets. To characterize the sources
of errors, we searched the set of false positive predictions
from each program against the set of events extracted from
the full GENCODE data set, which determine artifacts due
to paralogs and splice variants present in the annotation.
The remaining false positive events were searched for spuri-
ous introns and for class-specific patterns. For intron reten-
tion, these include mis-classification of 5” and 3’ terminal
exons and of reads from alternative exons overlapping the
intron, whereas for alternative exon ends they include spu-
rious chimeric combinations of exon start and ends.
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Evaluation measures

We used conventional measures, as introduced in (9), to as-
sess program performance at the transcript, exon, intron
and alternative splicing event levels: Recall (sensitivity) =
TP/(TP+FN), Precision = TP/(TP+FP) and F-value =
2*Recall*Precision/(Recall+Precision).

PCR validation of predicted intron retention events

Human Blood (Clonetech CAT#:636592) and human ge-
nomic DNA (Promega Madison, WI CAT#:G1471) were
purchased from the suppliers. One microgram of total RNA
was converted into cDNA using the SuperScript First-
Strand Synthesis kit (Life Technologies CAT#:11904018)
following the manufacturers recommended protocol. Q5
High Fidelity DNA polymerase (NEB Cat#:M0491S) was
used to generate amplicons in gDNA and cDNA. The
primers were ordered from Integrated DNA Technologies
(Corlaville, TA, USA); primer sequences are listed in Sup-
plementary Methods SMS.

Fifty microliters of PCR reactions were performed con-
taining 1x Reaction buffer, 0.5 wM of each primer, 1 unit of
Taq and 200 M of each dNTP. Each PCR reaction also
contained approximately one-tenth of the cDNA synthe-
sis reaction or 75 ng of genomic DNA. Using an anneal-
ing temperature of 65°C, the PCR reactions were amplified
for 35 cycles. The resulting amplicons were cloned into the
Topo 2.1 cloning vector (Life Technologies) and individual
clones were sequenced at the Johns Hopkins Sequencing
and Synthesis Core Facility (see Supplementary Data for
traces).

RESULTS
Comparative evaluation on control data

We evaluated CLASS2 and several state-of-the-art pro-
grams for their ability to reconstruct full transcripts and
to capture partial splice variation. We included in our tests
four de novo assemblers, namely CLASS2 (v. 2.1.2), Cuf-
flinks (v. 2.1.1; (7)), IsoCEM (v. 0.9.1; (9)) and Scripture
(v. beta2; (8)), and two annotation-based methods, SLIDE
(May 7, 2012 download; (11)) and iReckon (v. 1.0.7; (10)).
We ran CLASS?2 in two different modes, stringent (default;
*-F 0.05”) and sensitive (‘-F 0.01°); the latter allows the pro-
gram to report more minor isoforms. For the annotation-
based programs we provided GENCODE v.17 (20) gene an-
notations as guides. To generate test data, we simulated 200
million 75 bp paired end reads using FluxSimulator (17) and
starting from GENCODE v17 gene annotations as mod-
els. Reads were then mapped to the human genome hgl9
using the program Tophat2 (18) and assembled with each
program.

Performance of programs in detecting full-length transcripts.
To evaluate the performance and also to identify potential
limitations and biases of each program we performed two
types of analyses. In the first analysis we compared the tran-
scripts produced by each program against the set of tran-
scripts sampled by FluxSimulator, to obtain an unbiased as-
sessment. We then also compared the predictions against a
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Figure 2. Performance of programs in reconstructing full-length
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tations. Recall = TP/(TP+FN), Precision = TP/(TP+FP) and F =
2*Recall*Precision/(Recall+Precision). (C) Performance ‘inflation’, or
the difference between performance measured on the full GENCODE
set and the subset of GENCODE transcripts actually represented in the
sample. The additional matches are from spurious paralogs and variants
not present in the sample. PCI = (Match. GENCODE/Match_sim) -1,
where Match_sim refers to the subset of transcripts actually present in the
simulated sample.

comprehensive set of non-redundant GENCODE and Ref-
Seq transcript models, to identify biases and artifacts due to
annotated paralogs and splice variants representing alter-
native combinations of the same exons. These classes of ar-
tifacts are impossible to tease apart on real data, where the
ground truth is not known, and will be erroneously counted
as true matches, thus over-estimating the program’s perfor-
mance. When evaluated against the set of true annotations
(Figure 2A and Supplementary Figure S1), most programs
detect a majority (63-78%) of the exons and introns (‘set of
parts’) of the sampled transcripts, with the notable excep-
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tion of iReckon, which only finds roughly 52% of the fea-
tures in each category. SLIDE is the most sensitive among
the programs but has very low precision, and Cufflinks and
CLASS?2 are the most precise. CLASS2 and CLASS2_F0.01
have the best overall performance, detecting a large fraction
of both exons and introns with remarkably high precision,
>90% for exons and >97% for introns. Programs rank simi-
larly for reconstructing full-length transcripts. CLASS2 and
CLASS2_F0.01 again have the best overall performance as
measured by the F-value, a combined measure of sensitivity
and precision (see Materials and Methods), and are able to
reconstruct 9% and 16% more full-length transcripts com-
pared to Cufflinks, the next and close runner up.

In our second analysis, evaluating the programs against
the full set of GENCODE and RefSeq gene annotations re-
vealed several types of biases and errors (Figure 2B,C and
Supplementary Figure S2). All programs now seemingly de-
tect the ‘parts’ equally well (~20% sensitivity and 88—100%
precision), indicating that many of the false predictions in
the earlier comparison come from paralogs of the genes
in the sample. Unsurprisingly, programs also seemingly de-
tect more of the reference transcripts, artificially increasing
programs’ performance. In particular, the two annotation-
based methods show the largest inflation, with SLIDE more
than doubling (120% increase) the number of annotation
matches and iReckon adding 64% more matches, by virtue
of their use of known annotations to scaffold gene models.
When we traced these additional matches, most were vari-
ants of the sampled genes (53-92%), and the rest were par-
alogs (Supplementary Table S3), except for iReckon where
the variants and paralogs each accounted for roughly half of
the false matches. A large portion of the artifacts, between
15% and 67% of the total (with the exception of SLIDE,
which had very few), were single exon transcripts. However,
even when restricting our analysis to multi-exon transcripts
only, SLIDE had very high inflation (128%), followed by
iReckon (25%) and Scripture (22%). CLASS2 (both varia-
tions) and Cufflinks had the lowest inflation by far, between
5-7%. Thus, these two programs are the most trusted to pro-
duce measurable results on real data.

Performance of programs by transcript abundance. We fur-
ther assessed the performance of programs as a function
of the abundance level of transcripts. Simulated transcripts
were divided into high-, medium- and low-abundance
groups based on their relative expression level assigned by
FluxSimulator (FPKM < 5e—7, low; 5e—7 < FPKM <
0.0001, medium, FPKM > 0.0001, high). Because the pro-
grams do not classify their output into classes, true pre-
cision values cannot be computed. However, we calculate
a measure of precision based on the full set of predicted
transcripts. Programs’ performance was more varied across
the three ranges, with SLIDE being the most sensitive and
CLASS?2 a close second for the high and medium abun-
dance transcripts, whereas the precision was 4-fold higher
for CLASS2. The two annotation-based programs iReckon
and SLIDE were best suited for the low-abundance class
(Table 1). All programs, especially de novo assemblers, had
difficulty reconstructing low-abundance transcripts, many
of which did not have sufficient reads to cover their en-
tire length. Overall, CLASS2 exhibited the best overall per-
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formance for the medium- and high-abundance transcripts,
and performance comparable to de novo assemblers for
the low-coverage transcripts. Lastly, while CLASS2 does
not explicitly address the problem of transcript quantifica-
tion, there is a high correlation between the abundance val-
ues of full-length reconstructed transcripts estimated with
CLASS?2 and the FluxSimulator generated expression lev-
els (R> = 0.972), surpassed only by IsoCEM (R? = 0.977)
(Supplementary Figure S4). Overall, CLASS2 can recon-
struct most high and medium expression isoforms of a gene,
where it is the best or comparable overall program, as well
as some of the rare isoforms.

Performance of programs in detecting alternative splicing
events. Even with the best data, predicting full-length
splice variant transcripts from short RNA-seq reads aligned
to the genome is prone to assembly errors. Alternative splic-
ing events, which can be determined from the local structure
of transcripts or reads, can be detected with more accuracy
and are frequently used in studies (21-23). We therefore an-
alyze the ability of the programs to capture primitive classes
of alternative splicing events, including exon skipping, in-
tron retention and alternative exon ends. Since most pro-
grams do not specifically predict alternative transcription
start and termination, we did not include them in the anal-
ysis. We compared events detected from transcripts gener-
ated by each of the programs to the set of events represented
in the simulation data.

As Figure 3 indicates, CLASS2_F0.01 and Scripture are
the best overall performers as indicated by their F-values,
albeit the two programs have strikingly different behavior.
Scripture captures the largest number of events in each cat-
egory, but it does so at the expense of reporting a very
large number of false positives, which can severely im-
pact the significance of downstream analyses. CLASS2 and
CLASS2_F0.01 find a large portion of the events in each cat-
egory, balancing sensitivity with high accuracy and achiev-
ing the best tradeoff. More specifically, CLASS2 finds 25—
36% more events in each category compared to Cufflinks,
which is the leading reference annotation tool and is also
the most precise of the programs, at higher or comparable
precision. Moreover, CLASS2_F0.01 finds roughly twice as
many events as Cufflinks in each category with only a rela-
tively small drop in precision (4-17%). Like CLASS2, Cuf-
flinks allows users to vary the stringency of the program. We
therefore separately compared the performance when vary-
ing the parameter range of both CLASS2 and Cufflinks to
control the number of isoforms reported (*-F {°, with f =
0.01, 0.02, 0.03, 0.05, 0.1, 0.1, 0.15). Cufflinks’ performance
dropped sharply from its default settings, whereas CLASS2
showed a consistent performance (Supplementary Figure
S5). CLASS2 extended the sensitivity range and, for the
same sensitivity level, it delivered significantly higher pre-
cision. Therefore, using CLASS?2 in its various settings has
the highest potential for applications that involve studies of
alternative splicing variation.

We next analyzed the errors made by these programs to
evaluate their capacity to capture alternative splicing infor-
mation. Programs detected exon skipping events with vary-
ing degrees of sensitivity (19-79%) and precision (10-94%).
Notably, a majority of the false positives for all programs
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Table 1. Programs performance by transcript abundance class
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High (2402 transcripts)

Medium (13 464 transcripts) Low (6658 transcripts)

Program Transcripts R P R P R P

CLASS2 16 790 0.824 0.118 0.672 0.539 0.048 0.019
CLASS2_F0.01 18946 0.827 0.105 0.704 0.501 0.055 0.019
Cufflinks 16 163 0.788 0.118 0.630 0.527 0.069 0.029
IsoCEM 21 906 0.597 0.066 0.525 0.325 0.017 0.005
Scripture 38484 0.551 0.035 0.553 0.196 0.033 0.006
iReckon 30 180 0.591 0.052 0.611 0.290 0.262 0.061
SLIDE 72867 0.841 0.028 0.787 0.148 0.243 0.023

Simulated transcripts were divided into high-, medium- and low-abundance classes based on their FluxSimulator-generated abundance. R = TP/(TP+FN)

values were calculated within each class, and P = TP/#Transcripts values were based on the full set of transcripts.
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Figure 3. Performance of programs in capturing alternative splicing events: exon skipping (SKIP), intron retention (IR) and alternative exon ends (AE).

(67-86%,; except for SLIDE, 23%) were matches to gene
paralogs (Table 2), and only a small fraction were due to
other alignment artifacts. This is most clearly illustrated by
iReckon and IsoCEM, which predicted large numbers of
splicing events, the majority of which were false positives.
In contrast, most of the errors for SLIDE were due to spu-
rious introns. The performance of all programs was signifi-
cantly lower for intron retention events, with 10-52% sensi-
tivity and only 2-29% precision. In most cases, false intron
retention predictions resulted from mis-classification of 5’
and 3’ alternative gene starts and ends, as well as from cases
in which a splice variant contained an exon that overlapped
an intron in the corresponding gene (53-82% of false pos-
itives, except for Scripture, 23%). Lastly, programs in gen-
eral were slightly less accurate in capturing alternative exon
ends compared to exon skipping, finding 15-76% of the
true variations with 9-80% precision. The errors here were
more evenly split between paralogs and variants present in
the annotation but not sampled by the data (53-69%; ex-
cept for iReckon 33%) and from spurious combinations of
exon ends. CLASS2 had both a very low number and a

very small percentage of false positives, matched only by
Cufflinks, while detecting 30% more features (>90% more
when CLASS2_F0.01 is used). These analyses also suggest
that a simple way in which performance of most programs
can be improved is by better distinguishing between true
matches and paralogs, and that further improvements can
come from better distinguishing between intron retention
and other types of variation. Note that the simulated data
does not model intronic reads resulted from unprocessed
transcripts; the following sections provide a more realistic,
albeit empirical, assessment on real data sets.

Comparative evaluation on real data for different sequencing
strategies

To assess the performance of programs on real data, we
applied them to two large RNA-seq data sets. A lympho-
cyte sample from an individual free of neuropsychiatric dis-
ease was sequenced using two different library preparation
strategies, as part of a twin study. In the first method, polyA-
selected RINA was sequenced on an Illumina HiSeq2000 in-
strument to produce roughly 183 million 100 bp paired-end
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Table 2. Programs’ performance in capturing alternative splicing events
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Program Predicted Correct Recall Precision F-value Artifacts

Variants+
Exon skipping (SKIP) Paralogs Spurious intron(s)
CLASS2 586 537 0.405 0.916 0.561 33 6
CLASS2_F0.01 897 783 0.590 0.873 0.704 92 9
Cufflinks 432 406 0.306 0.940 0.462 20 2
Cufflinks_F0.01 1142 782 0.589 0.685 0.634 311 32
IsoCEM 940 496 0.374 0.528 0.438 380 33
Scripture 1724 1045 0.787 0.606 0.685 558 74
iReckon 1186 251 0.189 0.212 0.200 781 49
SLIDE 3022 311 0.234 0.103 0.143 618 2083
Intron retention (IR) Variants+ Spurious Mis-classified

Paralogs intron(s)
CLASS2 176 51 0.276 0.290 0.283 17 12 52+41
CLASS2_F0.01 331 80 0.432 0.242 0.310 44 57 83+63
Cufflinks 150 38 0.205 0.253 0.227 19 13 43+50
Cufflinks_F0.01 319 68 0.368 0.213 0.270 50 41 89+61
IsoCEM 205 18 0.097 0.088 0.092 25 61 48+51
Scripture 388 97 0.524 0.250 0.339 104 119 49+18
iReckon 818 18 0.097 0.022 0.036 116 56 392+204
SLIDE 0 0 0 0 0 0 0 0
Alternative exon ends (AE) Variants+ Spurious Spurious combin.

Paralogs intron(s)
CLASS2 496 369 0.363 0.744 0.488 62 4 61
CLASS2_F0.01 831 551 0.542 0.663 0.597 169 11 100
Cufflinks 367 293 0.288 0.798 0.424 39 5 30
Cufflinks_F0.01 977 488 0.480 0.499 0.490 326 35 123
IsoCEM 761 223 0.219 0.293 0.251 372 40 126
Scripture 3196 767 0.755 0.240 0.364 1656 197 576
iReckon 1721 150 0.148 0.087 0.110 512 50 1009
SLIDE 0 0 0 0 0 0 0 0

Programs were evaluated for their ability to detect 1327 exon skipping (SKIP), 185 intron retention (IR) and 1016 alternative exon end (AE) events present in the simulated data. Incorrect predictions were
analyzed to determine classes of artifacts. Artifacts due to paralogs and splice variants of the genes and transcripts in the sample were determined by comparison against events extracted from the full set
of GENCODE annotations. The remaining events were searched for spurious introns and for class-specific error patterns, due to mis-classification of alternative first and terminal exons, or of reads from
overlapping exons within the same or a different gene (IR), and to spurious combinations of exon start and exon end (AE).

reads. This data set provides a good illustration of a typical
RNA-seq analysis experiment, for which most programs are
currently optimized. The second library was generated from
the same lymphocyte sample by rRNA-depleting the total
RNA, and sequenced to generate 317 million paired-end
reads. Mapping all reads to the genome with Tophat2 pro-
duced roughly 170 million and 240 million read alignments,
respectively, but comparatively a larger fraction (46% versus
7%) in the latter sample was in intronic reads.

Comparison on the polyA-selected data set. Because the
current human genome annotation is inherently incom-
plete, while also including genes and isoforms not expressed
in the sample, it is not possible to determine the true sensi-
tivity and precision of any analysis tool on real data. Nev-
ertheless, we deem consistency with the reference annota-
tion, in particular for sensitivity, as a good indicator of
a program’s performance. Using a non-redundant set of
GENCODE and RefSeq transcript models as reference, we
compare the output of the six programs against the refer-
ence annotations. Filtering out single exon assemblies, most
of which are biological or computational artifacts, signif-
icantly increased the precision of Cufflinks and IsoCEM,
whereas there was very little effect on the other programs
(Supplementary Table S6).

Programs detected between 25-38% of the reference ex-
ons and 25-42% of the reference introns, but could only
fully reconstruct a small fraction (4-9%; 7000-16 000) of the
annotated transcripts (Supplementary Figure S7). This is
not unexpected, since only a subset of the reference annota-
tions will be present in any given sample, but the small num-
bers make it difficult to differentiate among programs and

determine the significance. To better assess the relative per-
formance, we designate one method as reference and deter-
mine for each of the others the relative change in the number
of transcripts found (Figure 4A, top). We chose Cufflinks as
reference, because in our earlier testing on simulated data it
was the most accurate among the reference programs.

With the exception of isoCEM, programs find 21—
48% more transcripts than Cufflinks, with iReckon and
CLASS2_F0.01 reconstructing the largest numbers of refer-
ence transcripts. Cufflinks has the best precision again, fol-
lowed very closely by iReckon and CLASS2. (Note that true
‘precision’ is impossible to assess, as ‘false positives’ could
in fact represent true splice isoforms, not found in the ref-
erence annotation.) Overall, CLASS2 and CLASS2_F0.01
perform the best among de novo assemblers and offer the
best tradeoff between sensitivity and precision, as mea-
sured by the F-value. When all programs are considered,
iReckon appears to perform the best; however, its perfor-
mance is likely biased by the fact that it used as input the
very set of gene annotations we now use for evaluation.
When adjusting for paralog and spurious splice variant in-
flation (Supplementary Figure S7, last panel), CLASS2 and
CLASS2_F0.01 are the only two programs to exhibit pos-
itive cumulative gains in combined sensitivity and "preci-
sion’ (26% and 41%, respectively, more reference transcripts
found compared to Cufflinks, at comparable or slightly
lower precision). In conclusion, while Cufflinks appears to
be the most precise of the programs for this type of data,
CLASS?2 is just as precise while more sensitive, and both
CLASS2 and CLASS2_F0.01 offer more accuracy in com-
bined sensitivity and precision.
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Figure 4. Relative performance of programs on real data. All values are relative to Cufflinks. (A) Performance on two real RNA-seq data sets from lym-
phocytes from the same individual: a polyA-selected data set (top), and an rRNA-depleted data set (bottom). (B) Performance with very deep sequencing
data sets: the ENCODE IMR90 cell line, cytosol sample (top); same cell line, nucleus sample. For a program P, the relative performance improvement for
recall is Delta_recall(P) = [TP(P) — TP( Cufflinks) ]/ TP( Cufflinks) ], and similarly for precision. The value for Cufflinks (reference) is 0.

Comparison on the rRNA-depleted data set. 'We repeated
the analysis on the rRNA-depleted RNA sample. Surpris-
ingly, both Cufflinks and IsoCEM performed very poorly,
finding only a small subset of reference features; we suspect
the reason is that both employ a local intronic ‘noise’ filter
at the individual intron level, whereas other programs char-
acterize ‘noise’ at gene (iReckon, CLASS2) and/or genome
level (Scripture, CLASS2). Rankings for other programs
were similar to those for the polyA+ data (Figure 4A, bot-
tom; Supplementary Figure S8). Although this data set does
not fit the characteristics of the simulated data, which was
modeled after the polyA-selected RNA sample prepara-
tion, we again conjecture that a large portion of iReckon’s
performance is in fact due to over-counting of paralogs
and alternative exon combinations toward the true matches.
CLASS2 and CLASS2_F0.01 are robust with the intronic
noise levels and produce reliable gene models, having the
best accuracy among de novo assemblers. In particular, they
can reconstruct 2.5 times as many transcripts as Cufflinks.
An example illustrating the programs’ performance at the
UBR4-CAPZB locus is shown in Supplementary Figure S9.

Validation of predicted intron retention events. Intron re-
tention has recently been shown to play a part as a reg-
ulatory mechanism in cellular differentiation and tumor-
suppressor inactivation (24,25). Yet, intron retention events
are difficult to identify from RNA-seq data and are likely
under-represented in the gene annotation databases. To il-
lustrate the ability of CLASS?2 to identify novel alternative
splicing events, we performed PCR validation on two in-
tron retention events detected from the PBL RNA-seq data
by CLASS2 and were not found by any of the other pro-

grams: the 304 bp chrl12:1 908 861-1 909 166 intron at the
CACNA2D4 (Calcium channel voltage-dependent Alpha
2/Delta subunit 4) gene locus, and the 888 bp chr12:9 985
010-9 985 899 intron within the KLRF1 (Killer cell lectin-
Like receptor subfamily F, member 1) gene. Human blood
c¢cDNA and genomic DNA were amplified with primer sets
targeting intron retention events in the two genes (Figure
5). The primers were designed to span a nearby exon—intron
junction to demonstrate the intron retention event occurred
in a spliced mRNA transcript. Strong PCR products of
the expected size were observed in cDNA but not genomic
DNA. The cDNA PCR product was then cloned and se-
quenced to demonstrate the retention of the intron. Inte-
gration with other data sets in the UCSC Genome Browser
shows supporting evidence from one mRNA (accession:
BX537436) for CACNA2D4, but no evidence was previ-
ously available for KLRF1, therefore demonstrating the
power of the approach.

Performance of programs on very deep sequencing data sets

The fast and cost-effective RNA-seq technology has led to
a steady increase in the data size and depth of sequenc-
ing, enabling detailed alternative splicing studies. To tackle
very large data sets, some programs focus on determining
the major isoforms and therefore provide a limited view
of the splicing repertoire in a sample, whereas others sim-
ply cannot handle the combinatorial explosion. To assess
the potential for discovering splicing variation from deep
sequencing data sets, we applied all programs to two very
large data sets produced by the ENCODE project (26,27).
The IMR90 lung fibroblast cell line was sequenced at great
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Figure 5. PCR validation of CLASS?2 output. (A) PCR validation strategy: blue squares represent annotated exons, the red rectangle represents the iden-
tified intron retention event, and the blue lines with arrowheads represent introns. Green arrows denote the location of the PCR primers. Human blood
cDNA and genomic DNA were amplified with primer sets targeting intron retention events in (B) CACNA2D4 and (D) KLRFI genes. For each primer set,
a strong PCR product of the expected size was observed in cDNA but not genomic DNA. The sequences of the PCR reactions for (C) CACNA2D4 and
(E) KLRFI, labeled “YourSeq’ in the figure, were aligned against the human genome using the UCSC Genome Browser.

depth in three separate surveys, of the whole cell, the cy-
tosolic and the nuclear fractions. Two replicates were run
for each fraction, which can be used in our evaluation to
assess the accuracy of the predicted features by testing their
reproducibility in multiple samples. To reduce the run time,
below we restricted our accuracy analyses to chromosome
1. Even so, SLIDE was prohibitively slow and was excluded
from the analysis. Summary results of programs are listed
separately (Supplementary Table S10).

With >300 million reads, the ENCODE IMR90 data sets
are among the most deeply sequenced to date and are ex-
pected to sample RNA biotypes not found in the reference
annotations. Therefore, true accuracy (especially precision)
is not possible to assess since novel splice variants will be
counted as false positives. Nevertheless, we again judge con-
cordance with annotated features (introns and full tran-
scripts) as indicative of sensitivity and leverage the repro-
ducibility of features across the six samples to better esti-
mate the programs’ performance.

When considering the goal of reconstructing full tran-
scripts, iReckon has seemingly the best performance, as it
identified the largest number of transcripts present in the
existing annotations (Figure 4B and Supplementary Fig-

ure S11). Again, however, these results should be consid-
ered with caution given the large inflation from variants and
paralogs observed with simulated data. Excluding iReckon,
both CLASS2 and CLASS2_F0.01 reconstruct the largest
number of annotated transcripts in both the cytosol and
the nucleus samples, 60-90% (77-103% nucleus) more than
Cufflinks and 15-43% (30-49% nucleus) more than the best
of the programs, while also having higher or comparable
‘precision’.

We separately evaluated the programs’ accuracy in cap-
turing deeper splicing variation, in particular novel varia-
tion, using splice junctions (introns) as surrogates (Table 3).
CLASS2 and CLASS2_F0.01 find by far the most known
introns, 8% and 11% more than the best of the other pro-
grams on the cytosolic sample, and 22% and 37% more on
the nucleus sample. When including in the reference those
novel introns that are reproducible in at least two data sets,
CLASS2_F0.01 remained the most sensitive, followed by
CLASS2 and Scripture, at very high precision (>97% for
cytosol and >95% for nucleus).

Lastly, CLASS2 completed the task in roughly 30 min
for the chromosome 1 of the cytosol sample and was com-
parable in speed with the fastest of the programs (Supple-
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Table 3. Performance of programs on the ENCODE IMR90 data: features (full-transcripts and introns) matching known and/or high-confidence novel
annotations. GENCODE v.17 chromosome 1 annotation contains 15493 transcripts and 33 202 introns. R = (recall) = Match/Annotations, P = (precision)

= Match/Predicted.
Program Transcripts Introns

Predicted Match R P Predicted Match R P
Cytosol
CLASS2 3029 1053 0.068 0.348 12 662 12557 (11 996) 0.378 (0.361) 0.968 (0.947)
CLASS2_F0.01 3836 1183 0.076 0.308 13413 13253 (12327) 0.399 (0.371) 0.988 (0.919)
Cufflinks 2508 621 0.040 0.248 10420 10372 (10 109) 0.312(0.304) 0.995 (0.970)
Cufflinks_F0.01 3458 719 0.046 0.208 11725 11 564 (10 779) 0.348 (0.325) 0.986 (0.919)
IsoCEM 2479 722 0.047 0.291 11483 11297 (10 617) 0.340 (0.320) 0.984 (0.925)
Scripture 14 621 971 0.063 0.066 13820 12751 (11 149) 0.384 (0.336) 0.923 (0.807)
iReckon 4512 1730 0.112 0.383 11724 11477 (10 552) 0.346 (0.318) 0.979 (0.900)
Nucleus
CLASS2 6084 992 0.064 0.163 16 391 15765 (12 862) 0.475 (0.418) 0.962 (0.846)
CLASS2.F0.01 10216 1141 0.074 0.112 18 610 17 699 (14 539) 0.532(0.438) 0.950 (0.781)
Cufflinks 2714 561 0.036 0.207 11255 11079 (10 576) 0.334(0.319) 0.984 (0.940)
Cufflinks_F0.01 6085 789 0.051 0.130 16 884 16 064 (13 568) 0.484 (0.409) 0.951 (0.804)
IsoCEM 2236 277 0.018 0.124 9604 8737 (7576) 0.263 (0.228) 0.910 (0.789)
Scripture 45247 764 0.049 0.017 18 048 13910 (10 188) 0.419 (0.307) 0.771 (0.564)
iReckon 5769 1539 0.099 0.267 10 162 9474 (8232) 0.285 (0.248) 0.932(0.810)

mentary Table S12). As a practical matter, for increased ef-
ficiency CLASS2_F0.01 can be run first to report a com-
prehensive set of transcripts, and the output can be fil-
tered using various ‘-F’ parameters (minimum fraction of
reported isoforms’ abundance from that of the most ex-
pressed isoform) to produce increasingly more precise sub-
sets, at the cost of finding fewer transcripts. Therefore, re-
sults for CLASS2 with multiple settings can be obtained in
roughly the same time as a single run.

De novo annotation of a newly sequenced organism

Next generation sequencing has significantly accelerated
the pace at which new genomes are being produced. An-
notation projects for these genomes are increasingly rely-
ing on fast and low cost RNA-seq resources. The choice of
RNA-seq transcript assembler here is critical; for instance,
since annotation-based programs are not designed to iden-
tify novel genes, de novo methods are the most productive.
To illustrate CLASS2’s ability to annotate new genomes, we
apply it to enhance the annotation of the peach genome.
With its 226.6 MB of sequence assembled in 365 scaffolds,
the Prunus persica (peach) genome is a good model for fu-
ture plant species annotation projects. We use CLASS2 to
analyze four RNA-seq data sets sampled from embryo and
cotyledon, fruit, root and leaf of peach tree (PRINA34817),
totaling 164.1 million 75 bp paired-end reads. Preliminary
gene annotations are also available, and we use them to
identify novel transcript variants that could be used to en-
hance the existing annotation.

Following read mapping and assembly, CLASS2 pro-
duced between 15 000-27 500 transcript fragments (trans-
frags) per sample (Supplementary Table S13). When com-
pared across the four samples, these amounted to roughly
19 500 transfrags corresponding to existing annotations,
but also more than 1000 new loci, each present in at least
two of the samples, and 27 161 novel transcripts of known
genes, representing new splice variants or extensions of
the annotated transcripts (Supplementary Table S14). In
one example at the ppa023343m gene locus (Figure 6A),
transfrags assembled from short reads extended the exist-
ing gene model by 10-11 exons and revealed several novel
splice variations. The extended gene encodes a 1016 aa pro-

Figure 6. Refining the peach gene models. CLASS2 transcript predic-
tions for four peach RNA-seq data sets (BioProject ID: PRINA34817) are
shown in blue, and reference annotations in gold. (A) RNA-seq reads as-
sembled with CLASS2 extend the ppa023342m gene model by 10-11 exons
and suggest additional splice variants. The extended gene model is sup-
ported by data in all of the four samples. (B) An extended gene model
and several novel splice variants at the ppa023750m gene locus. The in-
tron bridging the two existing gene annotations has (18,7,9,8) supporting
reads, respectively, in the four samples, and the last intron is supported
by (8,15,6,9) reads. Further, the 39 bp novel exon at scaffold_1:4613746—
4613784 in the SRR531862 sample is alternatively skipped in the reference
annotation, and there is ample intronic read support for a putative 84 bp
frame-preserving intron retention event at scaffold_1: 4621242-4621327.
(C) CLASS?2 finds novel genes and splice variants in the intergenic region
between annotations ppa026188m and ppa005862m.
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tein that has similarity over its entire length to importin-
11 and importin-11-like proteins in other species (Prunus
mume, Vitis vinifera, Citrus simensis, Fragaria vesca, Theo-
broma cacao and Glycine max). In another example at the
ppa023750 gene locus, transfrags assembled from the four
RNA-seq samples point to additional splice variants, in-
cluding a novel skipping event of a 39 bp exon located at
scaffold_1:4613746-4613784, and a potential retention of
an 84 bp intron (scaffold_1:4621242-4621327; Figure 6B),
manifested only in the embryo and cotyledon sample. The
landscape for this gene is also significantly reconfigured, by
merging two previously adjacent genes and by a further ex-
tension of its 5” end. The gene has extensive and close sim-
ilarity to predicted proteins in apple, Japanese apricot, or-
ange, and cacao. Lastly, a new gene locus, located between
genes ppa026188m and ppa005862m, and several putative
splice variants discovered with CLASS2 can be seen in Fig-
ure 6C. Blast searches of the two novel putative gene se-
quences found distant homologs elsewhere in the genome,
as well as matches to cytochrome C oxidase subunit 6b pro-
tein and to predicted FLX-like proteins in several Rosaceae
species. Both sequences contain long open reading frames
(762 bp out of 1347 bp, and 234 bp out of the 366 bp se-
quences, respectively) and are strong candidates for novel,
not yet annotated genes.

DISCUSSION

A wealth of RNA-seq data, from small individual projects
to very large-scale systematic experiments, is making it pos-
sible for the first time to catalog alternative splicing varia-
tion in detail in different organisms, tissues, at various devel-
opmental stages and stress or disease states, and in individ-
ual cell types. Many computational methods have already
been developed to translate the data into knowledge at the
level of genes and transcripts. However, they are still far
from being able to assemble full transcript models with high
accuracy (28) and have limited ability to capture even local
splicing variation, including canonical alternative splicing
events. Some classes of events are especially difficult to de-
tect due to artifacts that occur during data generation and
mapping (Figure 3 and Supplementary Table S3), and have
not been systematically pursued by current programs.

We developed a novel splice graph-based algorithm and
software tool, CLASS2, with the goal to assemble likely
models of full-length transcripts while capturing local splic-
ing variations with high accuracy, to allow genome and
system-wide alternative splicing analyses. CLASS2 employs
intronic reads and splice junction ‘noise’ models to accu-
rately determine the set of parts, namely exons and introns,
and a novel time and memory efficient dynamic program-
ming algorithm to select a subset of probable transcripts
that retain most of the splicing variation in the sample.

CLASS2 differs technically from existing approaches
while promoting alternative splicing discovery in several
ways: (1) it uses an LP-based system to locally predict exon
variations, such as alternative 5’ and 3’ exon ends; (ii) it in-
corporates a combined gene- and genome-level model of in-
tronic ‘noise’, to distinguish retained introns; (iii) it mod-
els alternative first and last exons, including the cases when
they occur at internal exons; and (iv) it uses an iterative al-
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gorithm and a complex scoring system to select a minimal
subset of transcripts that collectively retain as much splicing
variation as possible while explaining all the reads.

CLASS?2 also implements several memory and time sav-
ing strategies that are critical to its performance and allow
it to run on very deep sequencing data sets without sacrific-
ing accuracy. These include a smaller LP system formulated
on gene regions rather than along the entire gene, which
is both faster and more accurate to solve; clustering reads
into classes (‘constraints’); employing a compact and scal-
able splice graph representation of genes; and, last but not
least, implementing a new dynamic programming transcript
selection algorithm that avoids enumerating transcripts in
complicated graphs, and is memory and space efficient. As
a result, a typical run on an Illumina-generated 200 million
paired-end read set requires less than 3 GB RAM and, when
run with multiple threads, takes only a few hours and there-
fore can be run on most desktop computers.

In our comparative evaluation of CLASS2 and several
state-of-the-art programs, we found CLASS?2 to be signifi-
cantly more sensitive in capturing alternative splicing vari-
ations, at both the level of full transcripts and for local al-
ternative splicing events, at precision higher or comparable
with that of the best program. In particular, it detected al-
most twice as much variation as Cufflinks, the most pre-
cise of the programs, with only a small decrease in pre-
cision. The evaluation also afforded us a unique view of
the strengths and limitations of the different approaches.
For instance, annotation based approaches as employed by
SLIDE and iReckon can detect a larger number of the ref-
erence annotations, but are also prone to reporting par-
alogs and splice variants not actually present in the sam-
ple. This is particularly problematic when interpreting the
programs’ output on real data, where they would be in-
correctly labeled as true matches. The quantity and qual-
ity of data can create significant challenges, while library
sample preparation can further introduce biases and sig-
nificantly alter the characteristics of the data (29). In gen-
eral, we found Cufflinks to be the most precise of the pro-
grams but missing important splice variations, and Scrip-
ture to be the most sensitive but imprecise. However, while
different programs may score best by various criteria and
for different types of applications, CLASS?2 delivered a con-
sistently good performance for a wide variety of applica-
tions and sequencing strategies. These included surveys of
polyA-selected (spliced) RNA, which are the most frequent
among RNA-seq applications, as well as of ribosomal de-
pleted total RNA, and very deep sequencing experiments
to characterize splicing variation, low expression forms, and
novel and cellular fraction-specific RNA biospecies, in great
depth.

While the boundary between true and noisy splice vari-
ation (30) continues to remain undefined, making it ever
more difficult to determine the extent of splicing variation
and number of isoforms for any given gene, some strategies
could help improve the outcome. Better methods are needed
to characterize the various types of artifacts that confound
classes of variations, such as alternative polyadenylation
or alternative promoter usage and retained introns. These
can entail implementing sequence models of binding sites
of regulatory proteins (31,32), or incorporating other types
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of evidence including CAGE tags, DNase-seq or FAIRE-
seq signals, paired-end diTags (PET-seq) (33) and polyA-
seq (34) sequences, where available. Also needed are com-
plete reference data sets on genes or systems that can help
evaluate the performance in an unbiased way, or at the
very least better simulation models. The latter should in-
clude realistic models for sequencing artifacts, including in-
tronic reads from unprocessed pre-mRNA, as well as for the
amount and complexity of splicing variation with increas-
ing sequencing depths, and for different types of RNA-seq
experiments. Even further, accuracy measures are needed
to be able to evaluate programs for their ability to recon-
struct splice variations at both global and local levels, in-
cluding canonical alternative splicing events and local as-
semblies. Current evaluation schemes focus on the recon-
struction of full-transcripts, discounting correct partial re-
constructions. Lastly, new sequencing technologies or con-
tinuous improvements in the existing ones that extend both
read and insert lengths will provide increasing contiguity,
while large and judiciously designed experiments will pro-
vide multiple replicates or concordant data sets that can be
analyzed simultaneously (35,36) to improve both through-
put and accuracy.

AVAILABILITY

CLASS2 is available free of charge for all under the
GNU Public License from http://sourceforge.net/projects/
Splicebox. Peripheral Blood Lymphocyte RNA-seq data
sets used in the analyses were deposited in the GenBank
SRA repository (accession: SRX1550850). Lastly, Tophat
alignments for the data sets can be obtained from our web-
site at http://ccb.jhu.edu/people/florea/research/CLASS2.
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Supplementary Data are available at NAR Online.
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