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ABSTRACT

The sequential chain of interactions altering the bi-
nary state of a biomolecule represents the ‘infor-
mation flow’ within a cellular network that deter-
mines phenotypic properties. Given the lack of com-
putational tools to dissect context-dependent net-
works and gene activities, we developed NetDecoder,
a network biology platform that models context-
dependent information flows using pairwise pheno-
typic comparative analyses of protein–protein in-
teractions. Using breast cancer, dyslipidemia and
Alzheimer’s disease as case studies, we demonstrate
NetDecoder dissects subnetworks to identify key
players significantly impacting cell behaviour spe-
cific to a given disease context. We further show
genes residing in disease-specific subnetworks are
enriched in disease-related signalling pathways and
information flow profiles, which drive the result-
ing disease phenotypes. We also devise a novel
scoring scheme to quantify key genes––network
routers, which influence many genes, key targets,
which are influenced by many genes, and high im-
pact genes, which experience a significant change
in regulation. We show the robustness of our re-
sults against parameter changes. Our network biol-
ogy platform includes freely available source code
(http://www.NetDecoder.org) for researchers to ex-
plore genome-wide context-dependent information
flow profiles and key genes, given a set of genes
of particular interest and transcriptome data. More
importantly, NetDecoder will enable researchers to
uncover context-dependent drug targets.

INTRODUCTION

Biological context influences the pleiotropic nature of
a gene in shaping diverse biological phenotypes (1,2).
The binary on/off, bound/unbound, active/inactive
states of molecular constituents represent the ‘infor-
mation’ encoded in a biological context. The chain
of interactions––specifically, protein–protein interactions
(PPI) that alter the binary state of a biomolecule––represent
the ‘information flow’ within a cellular network (3) that
determines phenotypic properties. The functionality of
biological processes, such as cell cycle, can be remarkably
distinct under different biological contexts, including
health and disease (4–6). Understanding the context-
specific functionality of biological processes and genes
is critical to determining how information flows among
different biological states can give rise to diverse biological
phenotypes, including various types of diseases.

No computational tool is currently available to dis-
sect context-dependent network and gene activities on a
genome-wide scale. Most current pathway and network
enrichment analyses (7–9) rely on differentially expressed
genes (DEGs) or mutated genes to indicate which biological
processes and interaction network modules are statistically
over-represented. However, current enrichment approaches
do not provide clues on how biological information is con-
veyed within a context-dependent interaction network. As
such, these tools lack the ability to assess the overall func-
tionality of a biological system, which relies upon the se-
quence of information relays from upstream to downstream
signals via a myriad of molecular interactions involving
genes that are not necessarily differentially expressed or mu-
tated (10). Given no such method exists to allow researchers
to systematically characterize context-specific networks and
the respective key genes, it is necessary to develop a quan-
titative computational approach that can approximate the
activity of information relays, dissect subnetworks that are
actively engaged in context-dependent activities and quan-
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tify the contribution of key genes that are important in ‘re-
routing’ context-dependent information flows. The broad
biological impact of such an approach is evident: improved
understanding of disease aetiology, pathological properties
and drug design based on biological contexts.

To address this challenge, we developed NetDecoder, a
network biology platform that is capable of reconstructing
context-specific network profiles and determining context-
dependent information flow profiles using pairwise pheno-
typic comparative analyses. Our method is inspired by the
fact that interactions between proteins are well conserved
(11,12), the architecture of the PPI network is modular-
ized by similar or related biological functions under evo-
lutionary pressure (13), and that any two interacting pro-
teins might cooperate in related biological processes. Based
on these principles, we designed a process-guided flow algo-
rithm to identify molecular interaction paths that connect
a source gene (where information flow begins) to a target
gene (also called sink, where information flow ends) with
shared biological processes. In so doing, we provide the ap-
proximate context-specific information flows of a biological
network.

In order to illustrate the utility of NetDecoder in dis-
secting context-specific subnetworks and key genes that re-
capitulate biological properties in distinct phenotypes, we
obtained transcriptome data associated with breast cancer
(ER-positive and ER-negative), dyslipidemia (homozygote
and heterozygote) and Alzheimer’s disease (incipient, mod-
erate and severe states) as case studies. These three major
disease classes represent distinct pathological phenotypes:
uncontrolled cell proliferation and malignancy (breast can-
cer), metabolic syndrome (dyslipidemia) and neurodegener-
ative disorders (Alzheimer’s disease).

Since DEGs directly impact disease phenotype and tran-
scriptional regulators affect gene expression, these genes are
used as sources and target genes, respectively. We aim to
uncover key ‘intermediary genes’ that modulate context-
specific information flows between source and target genes.
Although many of these intermediary genes are not differ-
entially expressed, they play important roles in ‘connecting
the dots’ (10) and can determine information flow profiles
by re-routing information flow paths that give rise to dis-
tinct biological phenotypes.

We demonstrate NetDecoder is capable of dissecting sub-
networks and the corresponding key players that are specific
to a given disease context. We further show that genes resid-
ing in disease-specific subnetworks are enriched in disease-
related signalling pathways and information flow profiles,
which drive the resulting disease phenotypes. We also de-
vise a novel scoring scheme to quantify key genes whose in-
formation flow profiles greatly impact disease phenotypes.
Lastly, we show the robustness of our results against pa-
rameter changes. Thus, we offer NetDecoder as a network
biology platform for researchers to explore genome-wide
context-dependent information flow profiles and key genes
for any set of genes of interest. For the first time, researchers
will be able to query context-dependent functionalities of
networks and genes, starting from a set of genes of partic-
ular interest and transcriptome data. Furthermore, NetDe-
coder also allows researchers to prioritize drug targets for
genes that affect pathological contexts. NetDecoder source

code and other materials are available at the website portal
http://www.NetDecoder.org.

MATERIALS AND METHODS

Gene expression datasets

Publicly available microarray gene expression profiles for
breast cancer, dyslipidemia and Alzheimer’s disease were
downloaded from the GEO database under the accession
numbers GSE42568, GSE6054 and GSE28146, respectively.
Raw expression profiles were background corrected and
summarized into probeset values. Probesets mapping to the
same gene were averaged and each array was normalized by
dividing each expression value by the total expression value
in the respective array as described in our previous work
(14).

Protein interaction database

We downloaded the iRefIndex version 14.0 and constructed
an interaction network using all interactions available in-
cluding direct interaction, physical association, colocaliza-
tion, association, covalent binding, methylation reaction,
phosphorylation reaction, cleavage reaction, genetic inter-
action, dephosphorylation reaction, ubiquitination reac-
tion, hydroxylation reaction, self-interaction, protein cleav-
age, acetylation reaction, deubiquitination reaction, ADP
ribosylation reaction, deacetylation reaction, enzymatic
reaction, palmitoylation reaction, sumoylation reaction,
disulfide bond, RNA cleavage, DNA strand elongation, ox-
idoreductase activity electron, transfer reaction gtpase, re-
action, neddylation reaction, transglutamination reaction,
demethylation reaction, isomerase reaction, proline isomer-
ization reaction and phosphotransfer reaction. We removed
self-loops and multiple edges creating a final iRefIndex in-
dex network containing 15 608 proteins and 180 044 interac-
tions. Our network is available for download as an .R object
from our website.

Context-specific weighted interactome

We created a context-specific interactome by integrating a
PPI network with a co-expression network generated from
context-specific transcriptome data. Briefly, we computed
Pearson correlation coefficients (PCC) across samples of the
same context (or phenotype such as control and disease) for
each interaction pair available in the PPI network. The ab-
solute value of the PCC was used to weight each interaction
in the PPI network. These weights were used to define the
capacity and cost associated with each interactome edge, as
described in the next sections.

The process-guided flow algorithm

In the process-guided flow algorithm, flow of information
via physical PPI goes from source nodes to target nodes
through the graph edges with defined capacity and cost that
determine the maximum amount of flow an edge is able
to carry. By default, genes involved in transcriptional reg-
ulation are defined as targets (sinks). Sources may be de-
fined as DEGs, mutated genes, drug targets or any other
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gene of interest. This flow is analogous to a current flow
finding the path with lowest resistance in an electrical cir-
cuit. Therefore, the process-guided flow algorithm is formu-
lated as a minimum-cost flow optimization problem where
the edge capacities are defined as the absolute value of the
PCC and the cost as -log(PCC). We used the PCC to capture
phenotype-specific information as co-expression is a good
indicator of genes cooperating in the same or related path-
ways.

The process-guided flow algorithm takes a weighted in-
teractome G(V, E) as input, a list of proteins P ⊂ V to
be used as sources, a list of proteins to be used as targets
T ⊂ V and applies the following modifications to solve the
minimum-cost optimization problem for an arbitrary num-
ber of sources and targets:

1. V′ = V ∪ {s, t}, where s and t are auxiliary nodes used
to transform a single-source single-sink problem into a
multiple-source multiple-sink problem.

2. E′ = E ∪ (s, i )∀i∈P ∪ (t, i )∀i∈T, connecting sources and
sinks to the auxiliary nodes s and t.

Each edge is defined by a capacity and cost. Flow is not
allowed to be negative or higher than the capacity and each
node has to satisfy the local equilibrium condition, which
means that the inflow must be equal to the outflow at every
node, except at the source and sink. Formally, we define fi j
as the flow from node i to node j subject to the following
constraints:

∑

j∈V′
fi j −

∑

j∈V′
f j i = 0∀i ∈ V′ − {s, t}

where i is the node in the PPI network and V is the set of
nodes within the PPI network.

∑

i∈P

fsi −
∑

i∈T

fit = 0

0 ≤ fi j ≤ ci j∀ (i, j ) ∈ E′

where ci j denotes capacity from node i to node j .
The solution is a sparse subnetwork, connecting sources

to targets through the interactome edges. Although the so-
lution of the minimum-cost optimization problem is a di-
rected subnetwork, such directionality does not represent
causality but only reflects that way the algorithm finds paths
connecting sources to sinks. Typically, NetDecoder pro-
vides as one of its outputs two sparse subnetworks connect-
ing the input gene set to the transcription-related sinks for
any two phenotypes under consideration.

The process-guided flow algorithm uses only one
parameter––the size of the functional neighbourhood
(SFN) associated with a particular gene––to find paths be-
tween sources and targets/sinks. We define a functional
neighbourhood as the biological processes (in GO term) as-
sociated with the interacting partners of a gene whose edge
capacities (i.e. flow capacities that pass through interacting
protein pairs) are higher than a threshold (SFN = 0.95 in
all calculations presented here). By increasing SFN value,
the parameter becomes more stringent, thus always decreas-
ing the number of paths. This is because SFN controls the
number of first-neighbours (directly interacting partners)

of a gene. The functional neighbourhood is defined using
the GO terms of the first-neighbours of a given protein, in-
cluding the GO terms for the gene under consideration. In
this study, SFN = 0.95 is used as a default parameter to
allow users to select the most highly correlated interacting
partners for a gene under consideration without being too
stringent and potentially losing biologically relevant inter-
acting paths. For examples, at higher SFN values such as
SFN = 0.99, fewer paths are included and many biologically
meaningful paths are excluded. However, users can reduce
the SFN values below default value (SFN = 0.95) in order
to retrieve more paths that they think might be biologically
relevant. The optimal value for SFN is therefore dependent
on the user’s study goals, although we recommend the de-
fault value (SFN = 0.95) is sufficient to include biologically
relevant paths in most scenarios.

If there is a shared GO term between two interacting
proteins, say protein 1 and protein 2, the shared GO term
will be included in the flow paths. If there is no shared GO
term, GO terms of their highly correlated interacting part-
ners (with high edge capacities) will be used. Supplementary
Figure S17 illustrates how the algorithm decides which path
will maximize the flow. The algorithm takes into account
the overlap between the functional neighbourhoods of pro-
tein 1 and protein 2, considering such overlap as part of the
protein 1 functional neighbourhood (GO1, GO2 and GO7).
Then, if the functional neighbourhood of protein P1 shares
any biological process with the functional neighbourhood
of protein 2 (GO1, GO3, GO4 and GO7), protein 2 will be
included in the path. When protein 4 is considered as a can-
didate protein, there is no biological process being shared
with the functional neighbourhood of protein 1, therefore
no path will go through protein 4 from protein 1.

Identification of gene signatures (sources)

We used a template-matching approach (15) to identify
genes preferentially expressed in disease as compared to
control samples. We selected the top 0.5% of genes with the
highest template-matching scores, obtaining gene lists with
101 genes for all disease studied in the present work. These
gene lists were then defined as sources and used as input for
NetDecoder.

Targets (sinks)

In network flow terminology, targets (sinks) refer to the
nodes where flows end. In current study, by default we
defined targets as genes involved in transcriptional regu-
lation from GO annotations. We used genes defined un-
der the following three GO terms to establish the targets:
GO:0003676 (nucleic acid binding), GO:0006355 (regula-
tion of transcription, DNA-templated) and GO:0008134
(transcription factor binding). However, our algorithm is
flexible allowing users to define their own targets (sinks),
including genes involved in cell cycle, apoptosis and known
drug targets, depending on the their research questions.

Prioritization of protein interaction pairs

ER-negative breast cancer is used as an illustrative example
of how NetDecoder prioritizes protein interaction pairs. To
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find interactions that might be important in ER-negative
breast cancer, we first require that protein interaction pairs
(edges) in the ER-negative subnetwork have a flow higher
than 0.5 (parameter 1). Then, we computed the ratio of the
edge flow values between ER-negative and control subnet-
works and require that this ratio is higher than 5 (parame-
ter 2). Next, we performed Principal Component Analysis
(PCA) to find the edges that better distinguish the control
and ER-negative subnetworks by selecting the top 10 edges
with the highest or the top 10 edges with the lowest load-
ings from each principal component (parameter 3). Same
parameter settings were used for all disease cases in this
study.

Jaccard index

To assess overall similarity between phenotype 1 and phe-
notype 2, edge-centred subnetworks (Figure 2C and Sup-
plementary Figures S2C–S7C), we computed the Jaccard
index for the genes shared between both subnetworks. The
Jaccard index is defined as the proportion of shared nodes
between A and B relative to the total number of nodes con-
nected to A or B.

JAB = |N (A) ∩ N (B) |
|N (A) ∪ N (B) |

We used this metric to define B = A to assess, for example,
if gene A in the phenotype 1 subnetwork has the same in-
teracting partners in phenotype 2 subnetwork or has estab-
lished new interactions as a function of the different tran-
scriptomes associated with phenotypes 1 and 2.

Network routers

We define network routers as intermediary proteins that
have influence over many genes and show high flow dif-
ferences between two phenotypes. To find network routers,
we computed the difference in total flow (the in and out
flows) of each gene between phenotype 2 and phenotype
1 subnetworks. As our interactomes are context-specific, it
might happen that some genes, edges and paths are unique
to a given phenotype. When a gene is present only in one
context-specific subnetwork, we define its total flow in the
other network as zero to compute the flow differences.

Key targets

We define key targets as the target/sink nodes (genes re-
lated to transcriptional regulation) with high flow differ-
ences. The procedure to compute flow differences is simi-
lar to the one used to compute network routers with the
only difference being that the network router is located at an
intermediary location (i.e. between source and target/sink)
and the key target is located where flow ends.

High impact genes

We defined high impact genes as genes that experience a sig-
nificant change in regulation between control and disease
conditions including flow differences, establishment of new

inflows and change of directionality of gene expression cor-
relations (i.e. from positive correlation to negative correla-
tion or vice versa) between two phenotypes. Thus, unlike
network routers and key targets where their locations within
the flow path are definite, a high impact gene can be located
either at an intermediary or at an ending path location. We
developed a novel scoring scheme, termed impact score (IP),
to rank and assess genes based on their importance in me-
diating differences in information flow profiles between two
given phenotypes. The impact score for gene gi is defined as

IPgi = (
TFgiphenotype2 − TFgiphenotype1

) ∗ NIE ∗ NCD

where TFgiphenotype2 is the total flow on gi in the phenotype
2 subnetwork, TFgiphenotype1 is the total flow of gi in pheno-
type 1 subnetwork and NIE is the number of new inflow in-
teractions established by gi in the phenotype 2 subnetwork
normalized by the sum of the total number of interactions
established by gi in phenotype 1 and phenotype 2 subnet-
works. NCD is the number of gene expression correlations
that changed directionality (i.e. from positive correlation to
negative correlation or vice versa) between phenotype 1 and
phenotype 2, which is independent of the magnitude of gene
expression correlations with the same directionality. We de-
fine genes with high IP scores as high impact genes. Impor-
tantly, the IP score is defined only for genes that occur in
both subnetworks of phenotype 1 (control) and phenotype
2 (disease). In some instances, high impact genes could also
be network routers or key targets.

Computational complexity

To assess computational complexity, we used the Ford–
Fulkerson algorithm (16) to find the maximum flow
through the flow network. In a maximum-flow problem (no
optimization to find low cost paths), the Ford–Fulkerson
implementation based on a breadth-first search has a per-
formance of O(V*E2). To find the lowest cost paths, we used
the PRIM’s algorithm (17) whose performance when imple-
mented using a binary heap is O((V+E)*logV). Here, V is
the number of vertices and E is the number of edges in the
network, respectively.

Pathway enrichment analysis

We used NIH DAVID to perform enrichment analysis of
genes contained in context-specific subnetworks for canon-
ical pathways in KEGG database that are significantly en-
riched (Benjamini-corrected P-value < 0.05).

SOURCE CODE

The source code of NetDecoder is freely available at Bit-
bucket and www.NetDecoder.org. An online website portal
(www.NetDecoder.org) was built to include the comprehen-
sive step-by-step tutorial to guide the users to download,
install the source code, run the software locally and better
use the software to interpret NetDecoder results. An online
forum group is also available under Google Groups (https:
//groups.google.com/forum/#!forum/netdecoder) to report
bugs, troubleshot problems or discuss the software online.

http://www.NetDecoder.org
http://www.NetDecoder.org
https://groups.google.com/forum/#!forum/netdecoder
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Figure 1. Schematic overview of process-guided flow algorithm in NetDecoder platform. (A) Using the global transcriptome for phenotype 1 (control)
and phenotype 2 (disease), we computed the PCC for each protein interaction pair (edge) reported in the protein interaction network to devise a gene
co-expression network for each phenotype (context). The PCC matrix, illustrated as a heatmap, is then used to derive an edge-weighted interactome for
each phenotype (i.e. each edge is weighted based on the PCC value of a given phenotype), which is used as input for NetDecoder. (B) A gene list, such
as differentially expressed or mutated genes, drug targets or any other gene list of interest is also required as input to NetDecoder. These genes are called
sources. Both sources (diamonds) and sinks or target nodes (squares) can be defined based on user’s study goal. By default, genes involved in transcriptional
regulation are targets. The process-guided flow algorithm is then used to select paths along the phenotype-specific edge-weighted PPI networks. These paths
start at the source nodes (diamonds) and end at the target nodes (squares), passing through intermediary nodes (circles). By using the same genes as sources
but with a phenotype-specific interactome, NetDecoder can find different phenotype-specific paths. Red nodes are genes with high flow difference between
phenotype 2 and phenotype 1 and vice versa for blue nodes. Red edges are protein interaction pairs positively correlated while blue edges are negatively
correlated. (C) Next, edges that show distinct edge flow across protein pairs (edges) in two phenotypic states are identified. Then, the following key genes
within the phenotype-specific subnetworks are identified: (i) network routers, (ii) key targets and (iii) high impact genes. Network routers are intermediary
proteins that show high flow differences (in- and outflows) between two phenotypes, key targets are target (or sink) nodes that show high flow differences
between two phenotypes, and high impact genes are genes that show extensive alterations in flows between two phenotypes, including flow differences,
establishment of new inflows and directionality changes in gene expression correlations. The overall similarity between subnetworks is evaluated with the
Jaccard index and prioritized subnetworks are generated by comparisons between phenotype 1 and phenotype 2 subnetworks.

RESULTS

Acquiring context-specific subnetworks and key genes via
process-guided flow algorithm

NetDecoder is designed to perform any pairwise pheno-
typic comparison that interests a researcher. For a phe-
notypic pair, such as phenotype 1 and phenotype 2 (Fig-
ure 1A), we always obtained two subnetworks, one corre-
sponding to phenotype 1 versus phenotype 2 and the other
one corresponding to phenotype 2 versus phenotype 1 (Fig-
ure 1B). Both subnetworks capture different phenotypic as-
pects, depending on a user’s research interest. In the current
study, we compare health (control) phenotype and disease
phenotype and obtain two subnetworks, one corresponding
to disease versus health and the other health versus disease.
As will be seen in key gene motifs discussed below, com-
paring flow properties of health and disease subnetworks
illuminates insight into disease aetiology and sheds light on

how to design context-specific therapeutics to ‘reverse’ a dis-
ease phenotype.

We sought to find network paths (i.e. a sequence of pro-
tein interaction pairs from source to target nodes) that are
enriched with highly correlated PPI for a given disease con-
text (Figure 1B). In our study, source nodes are genes whose
differential expression is observed in a specific phenotype
and target nodes are genes whose functions are related to
transcriptional regulation. We developed a process-guided
flow algorithm to model information flows from source to
target nodes through a protein interaction pair (edge). We
first computed PCC and defined the weights (i.e. capacity)
associated with each edge as the absolute value of PCC (Fig-
ure 1A). The extent of information flow at each edge is thus
correlated to PCC values (both positive and negative cor-
relation coefficients) and flows are allowed when interact-
ing protein pairs share biological processes. Thus, given a
set of source genes, NetDecoder is able to generate context-
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Figure 2. Properties of ER-negative breast cancer-specific edge-centred subnetwork. (A) Heatmap of DEGs across control and ER-negative breast cancer.
Z-score transformation was applied for visualization purposes. DEGs are used as source nodes to identify disease-specific subnetworks (red: positive z-
score; blue: negative z-score). (B) Total edge flow profiles in control and ER-negative breast cancer for edges with higher flows in disease than in control
subnetworks. (C) Jaccard index to evaluate the similarity between control-specific and ER-negative breast cancer-specific subnetworks and Venn diagrams
showing the overlap across genes, edges and paths. Pathway enrichment analysis for (i) gene signatures (DEGs) (red), (ii) key edge-centred subnetworks in
control (blue) and (iii) disease (green). Pathway enrichment analysis for genes that compose disease-specific, edge-centred subnetworks captures signalling
pathways that are relevant to disease aetiology. (D) Heatmap showing node flow differences across control and ER-negative breast cancer for top 20 network
routers and key target genes showing high node flow difference (red) and low node flow difference (blue) in ER-negative breast cancer.

specific subnetworks corresponding to any pairwise pheno-
typic comparison (Figure 1B).

Further characterization of context-specific subnetworks
reveals that there are three distinct types of network prop-
erties from a signal flow perspective: (i) flow differences at
intermediary locations (network routers), (ii) flow differ-
ences at ending locations (key targets) and (iii) alteration of
flow paths and directionality of gene expression correlations
(high impact genes) (Figure 1C). Here, network routers are
intermediary genes with high flow differences when com-
paring two context-specific subnetworks. Key targets are
sinks (genes related to transcriptional regulation) where
flows end with high flow difference between two phenotypes
under comparison. High impact genes are genes whose flow
profiles show profound changes between two phenotypes
that include establishment of new flow paths and gene ex-
pression correlation changes of directionality from positive
to negative or vice versa. Both network routers and key tar-
gets capture flow differences between two phenotypes, with

network routers emphasize on in- and outflow differences
at intermediary locations and key targets on total incoming
flows where flows end. Network routers exhibiting high flow
differences indicate their influence over specific flow paths in
a given biological context. Key targets exhibiting high flow
difference act as key regulators to modulate downstream re-
sponses that help to maintain a given phenotype. High im-
pact genes capturing the establishment of new flow paths
and directionality changes of gene expression correlations
are critical to understand rewiring events that lead to dif-
ferential signal flows between two phenotypes. The network
properties of network routers, key targets and high impact
genes are illustrated in Figure 1C.

Characteristics of ER-negative-specific edge-centred subnet-
work

To demonstrate how NetDecoder illuminates the paths be-
tween DEGs (source) and transcriptional regulators (sink)
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that drive disease pathogenesis, we examined ER-negative
breast cancer as an illustrative example. With ER-negative
breast cancer DEGs as sources (Figure 2A) and transcrip-
tional regulators as targets, networks specific to correspond-
ing health (control) cases and ER-negative breast cancer
were obtained. We performed a PCA to identify protein
interaction pairs (edges) that show distinct edge flow in
ER-negative breast cancer (Figure 2B). The resulting ER-
negative breast cancer-specific edge-centred subnetworks or
subnetworks enriched with protein interaction edges of high
edge flows (Supplementary Figure S1) captures (i) total flow
difference of each gene in the disease state as compared to
the control state; (ii) co-expression correlation of each in-
teraction pair and (iii) total edge flow of each interaction
pair. The function of two proteins is deemed to be highly
coordinated when an interacting protein pair shows positive
gene co-expression correlation with high flow difference.
Analysing coordinated or uncoordinated functions for key
genes (network routers, key targets and high impact genes)
in edge-centred subnetworks can illuminate how these genes
drive a disease phenotype.

Analyzing edges in an ER-negative breast cancer-specific,
edge-centred subnetwork indeed reveals a number of genes
such as CDC20, CDK1 and E2F1, which are known to
be involved in tumourigenesis. Interestingly, ER-negative-
specific edges also captured genes relevant to cancer prog-
nosis. SMARCA4 (18), RUNX1 (19) and FOXM1 (20) have
been reported to contribute to poor prognosis in breast
cancer patients. We not only detect FOXM1 in our ER-
negative-specific, edge-centred subnetwork but also we fur-
ther identify an edge that supports FOXM1 and CDK1 in-
teraction in disease (Figure 2B). The role of these two genes
in cell cycle regulation is well documented in the literature.

NetDecoder further captures two types of key genes in
terms of flow differences: network routers and key targets.
Figure 2D illustrates the top 10 network routers and key
targets with the most positive and negative flow differences
between ER-negative breast cancer and control cases, re-
spectively. Network routers are located at intermediary flow
path locations (i.e. between sources and targets/sinks) and
key targets are located where flow ends. High positive flows
in network routers indicate more ‘intensive’ information
flows being mediated by these genes; in disease states, net-
work routers mediate ‘re-routed’ preferential information
flows. In contrast, negative flows through network routers
indicate low information flow suggesting ‘unfavourable’ in-
formation flow through these genes in the disease state. The
same scenario also applied for key targets except that in-
stead of re-routing information flows as for the network
router, key targets are genes where information converged,
with high positive flows indicating the higher importance of
modulating transcriptional events in the disease state.

In addition, NetDecoder also identified FOXM1 as a top
scored gene using two different scoring metrics: FOXM1
is both a key target (Figure 2D) and a high impact gene
(Figure 3A) further suggesting the importance of FOXM1
in ER-negative breast cancer pathogenesis. NetDecoder
thus captures two additional known prognostic markers,
SMARCA4 and RUNX1, that were not reported by the
original study that aimed to uncover prognostic markers us-
ing the same gene expression dataset (20).

To show that subnetworks generated by NetDecoder are
indeed context-specific, we examined the similarity of the
corresponding control and ER-negative breast cancer edge-
centred subnetworks using the Jaccard index (21), which
measures the extent of interacting partners shared by the
same gene in these two subnetworks. The resulting heatmap
globally shows that although some genes have the same or
similar interacting partners, the majority show distinct in-
teractions (Figure 2C). Venn diagrams for ER-negative and
control edge-centred subnetworks show that although these
subnetworks have some common genes, edges and paths,
there are substantial differences between both subnetworks
(Figure 2C). We therefore demonstrate that NetDecoder
can generate context-specific subnetworks given the same
set of source and target genes.

We next performed pathway enrichment analyses using
both gene signature (DEGs) and genes residing in control
and ER-negative breast cancer edge-centred subnetworks
to determine whether the profiles of these genes capture
biological signalling pathways that signify disease proper-
ties. Our analyses revealed a number of enriched canoni-
cal signalling pathways such as cell cycle, TGF� signalling
and focal adhesion, which when dysfunctional are cancer
hallmarks (22) (Figure 2C). Cell cycle appears as the most
enriched process that is also captured by gene signature.
However, other disease-relevant pathways are not enriched
using gene signature (DEGs) alone indicating gene signa-
ture is not sensitive enough to capture disease-relevant sig-
nalling pathways. Interestingly, a number of these disease-
associated signalling pathways are not enriched by genes
obtained from control-specific edge-centred subnetworks.
The exception is cell cycle pathways enriched in both con-
trol cases and disease cases that exhibit remarkably distinct
functional behaviour, as discussed in Supplementary Dis-
cussion. Our results indicate edge-centred subnetworks de-
rived from ER-negative breast cancer recapitulate pathways
that contribute to the malignant and proliferative charac-
teristics of breast cancer that are distinct from controls. Re-
sults of similar analyses for other diseases are also provided
in Supplementary Figures S2–S7.

Further examination of ER-negative breast cancer-
specific edge-centred subnetworks indeed reveals genes and
paths capturing major processes that can explain disease
behaviour (Supplementary Figure S1). The path NRAS-
BRAF-MAP2K2-MAPK1 from the canonical MAPK cas-
cade, which is important in tumourigenesis, is captured in
the ER-negative breast cancer-specific edge-centred sub-
network. In addition, this subnetwork also captures key
transcriptional regulators in tumourigenesis such as RB1,
E2F1, FOXM1 and HDAC1. Interestingly, the cyclin-
dependent kinase CDK1 shows low values of flow differ-
ence between disease and control cases but exhibits positive
correlations and large edge flows with genes acting as cell
cycle regulators, indicating its information flow is more di-
rected towards these cell cycle regulators in promoting cell
proliferation in the disease context.
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Figure 3. High impact genes. Heatmaps for top 40 genes with high impact scores in (A) breast cancer, (B) dyslipidemia and (C) Alzheimer’s disease. The
impact score (IP) ranks genes based on node flow differences between control and disease-subnetworks, the proportion of newly established interactions
in the disease subnetwork, and also the number of edges whose expression correlation changed directionality (for example, an interaction that is negatively
correlated in control becomes positively correlated in the disease subnetwork). The more extreme the IP score (positive or negative) the more likely it is a
gene that contributes to disease aetiology.

Information flow-mediated by key genes in disease-specific
subnetworks reveals disease aetiology

Representative motifs of disease-specific key genes are
shown in Figure 4. We captured tumour suppressor gene
TP53, which helps to maintain the integrity of a genome
(23), as a key target in ER-negative breast cancer (Fig-
ures 2D and 4A) and a high impact gene in dyslipi-
demia homozygote (Figure 3B). Interestingly, TP53 shows
much reduced overall edge flow in ER-negative breast
cancer (bar chart in Figure 4A). In general, there are
uncoordinated functions (negative co-expression correla-
tions) between TP53 and DNA damage response gene
BRCA2, cyclin-dependent kinase 1 (CDK1), scaffold pro-
tein DCAF7, oncogene ERBB4, chromatin remodeller
SMARCA4, transcriptional regulator SOX4 and DNA
topoisomerase TOP2A in ER-negative breast cancer (Fig-
ure 4A). It is also interesting to note that there is coor-
dinated function (positive co-expression correlation) be-
tween cyclin-dependent kinase inhibitor 1A (CDKN1A)
with TP53. Our results suggest ‘uncoupled’ functional cor-
relation between TP53 and positive cell cycle regulators and
DNA damage response genes (Figure 4A), leading to un-
controlled cell proliferation in ER-negative breast cancer.

In contrast, the edge flow profile of TP53 in dyslipidemia
homozygote is quite different from ER-negative breast can-
cer (Figure 4B). In the control case, TP53 shows func-
tional coordination with its negative regulator MDM2 and
metabolic regulator glycogen synthase kinase GSK3B, in-
dicating regulated TP53 activity and metabolism. In dys-
lipidemia homozygote, cell adhesion modulator clathrin
CLTB, DNA damage response proteins GADD45A and
AXIN1 show coordinated roles with TP53, indicating in-
volvement of DNA damage and altered cellular morphol-
ogy in the pathogenesis of dyslipidemia. However, unlike
cancer, the function of proteins involved in DNA damage
response, such as BRCA2 and TOP2A, does not show un-
coordinated functions.

Interestingly, tumour suppressor gene RB1 (retinoblas-
toma 1) is a high impact gene in ER-negative breast cancer

(Figure 3A) and Alzheimer’s disease (AD) severe (Figure
3C). We sought to characterize how RB1 can provide clues
to understanding the pathological properties of these two
diseases that seem to show distinct behaviours (with highly
proliferative properties in cancer and degenerative proper-
ties in AD). In general, RB1 shows uncoordinated function
with positive cell cycle regulators such as CCNA1, CCNE1,
CDK1, CDK2, DNA polymerase POLA1 and chromatin
remodeller SMARCA4 in ER-negative breast cancer, but
shows functional coordination with MDM2 (a negative reg-
ulator of TP53) in ER-negative breast cancer (Figure 4D).
As with TP53, the overall edge flow for RB1 also decreased
in cancer (bar chart in Figure 4D), suggesting loss of tu-
mour suppressing activities of RB1 leading to uncontrolled
cell proliferation in cancer.

However, RB1 shows much higher overall edge flow in the
AD severe case, which is quite different from ER-negative
breast cancer (bar chart of Figure 4E). Instead of direct-
ing flows with cell cycle regulators as in the case of breast
cancer, there are in general uncoordinated functions be-
tween RB1 with transcriptional regulators LMO2 and PML
and RFC1 that regulate DNA replication. On the other
hand, genes such as retinoblastoma-like RBL1 and tran-
scriptional regulators SNW1 and GTF3C2 show functional
coordination with RB1 where their pathological basis in
AD remains to be elucidated.

Given extensive extracellular �-amyloid (A�) plaques
and intracellular neurofibrillary tangles are hallmarks of
AD patient brains (24,25), we sought to investigate the role
of the heat shock protein HSP90AA1 and amyloid precur-
sor protein (APP) in severe AD. We found HSP90AA1,
which acts as a molecular chaperone to promote protein
folding, is a network router in our model of an AD severe
case (Supplementary Figure S7D). As shown in Figure 4C
(bar chart), the overall edge flow in HSP90AA1 decreases
markedly in the AD severe case, consistent with clinical ob-
servations that misfolded protein aggregates are abundant
in the brain of AD patients. Intriguingly, APP, which is
known to go awry in AD, is among the top, high impact
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Figure 4. Context-specific profiles of disease key gene motifs. (A) TP53 is a key target gene for ER negative breast cancer. (B) TP53 is a high impact gene
in dyslipidemia homozygote. (C) HSP90AA1 is a network router in AD severe. (D) RB1 is a high impact gene for ER negative breast cancer and (E) AD
severe. (F) APP, a high impact gene in AD severe. Each gene node is coloured according to the node flow differences across control and disease as displayed
by the gradient bar at the top left. Edge thickness represents the amount of edge flow. The edge flow direction is determined by the definition of source
and target nodes with a path starting at the source and ending at target nodes. Red edges indicate a positive gene expression correlation between a pair of
protein interactions, while blue edges represent a negative correlation. The edge flow distribution for each gene is shown in the bar chart at the right.

genes in severe AD (Figure 3C). In addition, the prion pro-
tein (PRNP) shows positive correlation with APP in the AD
severe case (Figure 4F), thus highlighting preferential func-
tional coordination of these two proteins in AD pathogen-
esis.

Prioritized subnetworks provide clues for biological processes
that establish context-specific disease states

To further dissect paths that are relevant in disease phe-
notypes, we selected paths enriched with at least two types
of key genes and termed these paths as prioritized subnet-
works (Figure 5). Our results indicate a prioritized subnet-
work for ER-negative breast cancer captures paths enriched
with cell cycle regulators such as CDK1, CDC20, CDC25A,
PCNA and CCND1 (Figure 5A). Key transcriptional regu-
lators that had been implicated in breast cancer pathogene-
sis such as RB1, FOXM1 and E2F1 are key targets within
our model and the high values of flow differences further
highlight their importance in breast cancer.

In contrast, cell cycle regulators (CDC20 and CCND1),
prognostic markers (FOXM1) and tumour suppressors

(RB1) observed in ER-negative breast cancer are not cap-
tured in the prioritized ER-positive breast cancer subnet-
work (Figure 5B). Such findings are consistent with clin-
ical observations (26), indicating that ER-positive breast
cancer is less malignant than ER-negative breast can-
cer. Paths that contained mini-chromosome maintenance
proteins involved in the initiation of genome replica-
tion show large values of flow difference, and positive
correlation-associated edge flows are observed. The pri-
oritized ER-positive breast cancer subnetwork also shows
paths marked by metabolism regulators such as TYMS,
GOT1, GAPDH and PGM1. Genetic variants of TYMS
(thymidylate synthetase) involved in folate-mediated one-
carbon metabolism in DNA synthesis have been recently re-
ported in breast cancers (27). A number of ribosomal pro-
teins also show functional coordination in the prioritized
ER-positive breast cancer subnetwork. Our result indicates
deregulated protein synthesis plays an important role in the
pathogenesis of ER-positive breast cancer.

In contrast to our examination of a cancer subnetworks,
the prioritized subnetwork for the AD severe state cen-
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Figure 5. Prioritized disease-specific subnetworks. For a path to be prioritized within a disease-specific subnetwork, it has to fulfil one of the following
criteria: (i) key targets and network routers are included, or (ii) key targets and high impact genes are included or (iii) network routers and high impact
genes are included. Prioritized disease paths of (A) ER-negative breast cancer, (B) ER-positive breast cancer and (C) AD severe state. Source genes are
indicated as diamonds, intermediary genes as circles and target genes (sinks) as squares and coloured according to the node flow difference (red = high
flow in disease but low flow in control, blue = low flow in disease but high flow in control). Edge thickness represents the amount of flow through an edge.
Additionally, edges are coloured according to the correlation directionality (red for positive correlation and blue for negative correlation).

tres around regulators in cytoskeletal regulation (ALB,
APP), lipid transport (APOC2, APOE), immune-related
responses (MYD88, TRAF1, TRAF6, TNFRSF19) and
protein folding and degradation (CALR, PSMA1, UBC)
(Figure 5C). Immune responses and the accumulation of
unfolded proteins are known to play key roles in the ae-
tiology of AD (28,29). In addition, deregulated activi-
ties of lipid transport proteins such as APOE can modify
the transendothelial blood–brain barrier transport of beta-
amyloid. Our finding showing high edge flows of APOE and
positively correlate to APP expression in AD severe is con-
sistent with the recent finding that there is increased APOE
activity in AD brain capillaries (30).

In general, our results show prioritized disease-specific
subnetworks highlight key PPI paths that are important in
mediating disease-specific information flows via key genes,
thereby illuminating key cellular processes and their poten-
tial roles in driving disease progression.

Assessment of NetDecoder robustness

To evaluate the sensitivity of NetDecoder, we varied the val-
ues of the single NetDecoder parameter, the SFN. We as-
signed distinct values to SFN (SFN = 0.91, 0.93, 0.97 and
0.99) and compared the output under these conditions to
that obtained under default conditions (SFN = 0.95). Here,
an ER-negative breast cancer-specific subnetwork is used as
an example, whereby the SFN parameter can be adjusted
to increase or decrease the number of paths identified by
NetDecoder. Increasing the SFN value (a more stringent
criterion) will reduce the SFN associated with a given gene
and only include its highly correlated interacting partners.
In contrast, decreasing the SFN value (a less stringent cri-
terion) will increase the SFN allowing the identification of
an increased number of paths that connect sources to tar-
gets, as indicated in Supplementary Figure S16. We show
the overlap of paths identified by NetDecoder using SFN
= 0.91, 0.93, 0.97 and 0.99 compared to paths found using
SFN = 0.95 (default) in Supplementary Figure S16A (top
panel). In general, these results suggest that although some
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paths are specific to a defined cutoff, the overlap between
paths is large and most of the phenotype-specific paths are
recovered under these conditions. The number of predicted
paths detected under a certain SFN is shown in the table at
the bottom panel of Supplementary Figure S16A.

We also evaluated how changes in SFN affect high impact
genes, network routers, key targets and key edges. We se-
lected the top 40 key genes (top 20 most positive scores and
top 20 most negative scores) to assess the effects of differ-
ent SFN values. The majority of high impact genes (33/40)
discovered under the default condition (SFN = 0.95) are
properly recovered and the lowest value (28/40) is obtained
when SFN = 0.91 is used (Supplementary Figure S16B). We
evaluated the sensitivity of NetDecoder to recover key tar-
gets and network routers (Supplementary Figure S16C and
D), and found most of the key targets and network routers
are properly recovered with at most seven genes added or re-
moved from the prioritized set of key targets and 13 genes
for the network routers when SFN = 0.99 is used.

In evaluating whether key edges are properly recovered
(Supplementary Figure S16E), we found that, despite the
changes in SFN, the overlap between edges discovered with
SFN = 0.95 and across the cutoffs tested is high, except for
SFN = 0.91 where 17 new edges were found and 14 edges
were removed (Supplementary Figure S16A). These find-
ings illustrate the paths obtained from default SFN = 0.95
are stable and biologically relevant to a given phenotype
and that most of these paths are indeed captured using dif-
ferent parameters (SFNs from 0.91 to 0.99). Taken together,
our analyses suggest that the NetDecoder results are robust.

DISCUSSION

Our proof-of-principle survey of context-dependent biolog-
ical activities, using transcriptome data derived from three
distinct disease classes, is the first of its kind. We devel-
oped a NetDecoder platform that implements a process-
guided flow algorithm to model context-dependent infor-
mation flows in biological systems based on the principles
that the architecture of PPI networks is evolutionarily con-
strained by biological functions a protein can play and in-
formation flows within a cell are mainly mediated via direct
physical interactions. Using DEGs as sources and transcrip-
tional regulators as targets, we are able to dissect subnet-
works specific to corresponding control and disease cases
in this study. Pairwise comparative analyses of these control
and disease subnetworks reveal interaction paths that show
‘extreme’ profiles that are unique to a phenotype (Note: ‘ex-
treme’ refers to the amount of flow at very high and very low
levels, by comparing disease and control subnetworks).

Conventional network analyses include network-based
pathway enrichment (8,9), which conveys only the static
topology of a PPI network. NetDecoder, on the other hand,
captures context-dependent properties of a phenotype-
specific PPI network in terms of information flows. Unlike
the conventional definition of hubs, which refers to network
nodes linking a large number of associated partners com-
prising the topological structure of a network, and driver
genes whose functions can drive disease progression or the
transition of biological states, our definitions for key genes
(network routers, key targets and high impact genes) cap-

ture shared properties of hubs and driver genes from an in-
formation flow perspective. Large flow differences and sig-
nificant changes in flow profiles for our defined key genes in-
deed indicate they are ‘hubs’ (due to large flow difference)
and ‘driver genes’ (due to their importance in influencing
information flows) from an information flow perspective.
Since key targets are nodes where flows end, their flow prop-
erties are highly dependent on ‘upstream’ candidates such
as network routers and high impact genes. Given network
routers are defined as intermediary proteins and key tar-
gets are sinks (where flows end) the identities of network
routers and key targets never overlap. High impact genes,
which capture the establishment of new flow paths and di-
rectionality changes of gene expression correlations, can be
located at intermediary locations or at sinks within the PPI
network; hence, the identity of high impact genes, in princi-
ple, can overlap with both network routers and key targets.
Thus far in our case studies of breast cancers, dyslipidemia
and Alzheimer’s disease, we did not find overlap between
network routers and high impact genes; however, overlap
did exist between high impact genes and key targets.

Pathway enrichment analyses of genes in these context-
specific subnetworks further explain their corresponding
phenotypic properties. Further characterizations of key
gene motifs reveal their distinct flow profiles and thus their
biological properties in different biological contexts. To
demonstrate how the same key genes may play distinct roles
in the aetiology of different diseases, we show the remark-
ably different, context-specific flow profiles of TP53 and
RB1.

In addition, we show how key genes can affect context-
dependent properties of common biological processes, in-
cluding canonical cellular processes (in particular MAPK-
mediated cascades), cell cycle, transcription, chromatin re-
modeling, epigenetic, and genome integrity, unfolded pro-
tein responses, protein synthesis, cell–cell adhesion and in-
tracellular trafficking (Supplementary Discussion). These
common biological processes (including signalling path-
ways that are associated with these processes) are commonly
enriched in many transcriptome analyses; however, the abil-
ity to characterize their context-specific activities has been
lacking. We therefore provide a more detailed discussion of
the context-dependent activities of these common biologi-
cal processes involving selected key genes.

We reason that our results––the identities of key
genes such as network routers, key targets, high impact
genes––cannot be directly extracted from the topology of
a PPI network; however, they can be gleaned from an ex-
amination of information flow within a context-specific PPI
network. To illustrate context-dependency for a given key
gene, we computed the flow paths from sources that lead
to FOXM1. As indicated in Supplementary Figure S18,
FOXM1 is a key gene (high impact gene and key target)
in the ER-negative breast cancer context, but it is not a key
gene in the ER-positive breast cancer context. The key net-
work routers and high impact genes that contribute flows to
FOXM1 in each breast cancer context also differ. FOXM1
is a known prognosis marker in breast cancer, and we show
it is the relative gene activities in the transcriptome of ER-
negative breast cancer that determine its role in breast can-
cer pathogenesis and prognosis. Our results thus highlight



e100 Nucleic Acids Research, 2016, Vol. 44, No. 10 PAGE 12 OF 13

the importance of cellular context in shaping the roles of
key genes in a given phenotype.

Key genes identified by NetDecoder, especially those
such as high impact genes that show extensive alterations of
flow difference and rewiring events, are potential drug tar-
gets; key genes are determined by the transcriptome con-
text and targeting their activities can help to restructure
the properties of information flows in disease networks in
order to achieve therapeutic effects. For instance, HDAC1
is a high impact gene in ER-negative breast cancer (Fig-
ure 3A) and a recent study showed inhibiting HDAC can
sensitize cancer cells to radiotherapy (31). In the AD con-
text, increased acetylation of chromatin histones in the hip-
pocampus is associated with enhanced contextual learn-
ing (32), while reduced acetylation corresponds with im-
paired memory (33). We found HDAC1, which removes
acetyl groups from the acetylated chromatin causing im-
paired memory, is a high impact gene in the AD severe
context (Figure 3C). A recent study showing that inhibit-
ing the activities of HDACs increased histone acetylation
and enhanced hippocampal-dependent memory formation
(34) further support our result that HDAC1 indeed plays a
pathogenesis role in AD and may be a potential therapeutic
target. In addition, prioritized disease networks identified
by NetDecoder capture context-dependent processes that
drive pathogenesis and key components may be potential
drug targets. For instance, a prioritized ER-positive breast
cancer network captures a number of ribosomal proteins
highlighting the importance of protein synthesis in disease
aetiology. Indeed, recent observations show that an ER�
inhibitor induces tumour regression via blocking protein
synthesis in ER-positive breast cancer (35). Importantly,
the network flow properties of network routers, key targets
and high impact genes from an information flow perspec-
tive provide clues to prioritize drug targets. Furthermore,
further inspection of network motifs and prioritized subnet-
work of these key genes allow researchers to prioritize ap-
propriate drug targets by avoiding parallel, compensatory
information flow paths that can pass through two distinct
key genes. As a rule of thumb to prioritize drug targets,
top key genes (network routers, key targets and high im-
pact genes) that show overall high positive scores in disease
phenotypes can be therapeutically targeted to inhibit asso-
ciated flows. In addition to overall score, the paths with high
positive correlation coefficients and high information flows
connecting these top key genes should be the main paths to
be inhibited by drugs in order to revert disease phenotypes.

Taken together, the NetDecoder platform, specifically the
ability to examine the biological impact of different phe-
notypes, has broad research implications. Although in this
study we use DEGs as sources and transcriptional regula-
tors as default sinks (targets), users may define their own
sources and sinks depending on their research interests. For
instance, a researcher can define highly mutated genes as
sources and genes in executing cell cycle as sinks to study
how mutated genes exert their functional impact on cell
cycle. A researcher can also define known drug targets as
sources and genes in executing apoptosis as sinks to study
which drug target would most likely cause cell death in a
given phenotype. The power of the NetDecoder platform
is that it allows researchers to perform comparative analy-

ses on any pair of biological contexts or phenotypes using
either microarray data or RNA-seq data.

Lastly, it is important to note biological networks in-
cluding PPI are highly dynamic and undergo continuous
rewiring events (36). In silico approaches to predict context-
specific network rewiring events are still far from mature
(37). Therefore, the topology of the PPI network used in
this study is rather ‘static’ and does not capture network
rewiring events under different circumstances. Another is-
sue is that a PPI network can be tissue-specific (38) and de-
pendent on alternative splicing events (39) that are not con-
sidered in the current work. In the future, we will integrate
information from other omics layers, especially epigenetics
and proteomics, to enhance the capability of NetDecoder
in discovering phenotype-specific subnetworks and the as-
sociated key genes to better understand phenotypic proper-
ties at multi-omics levels. Although the process poses chal-
lenges, the inferred context-specific networks and key genes
discovered can serve as roadmaps for researchers to design
a systems-based approach to manipulate biological pheno-
types such as via edgetic perturbations (40,41) in the near
future. Insights learned will also enable researchers to ‘en-
gineer’ therapeutic strategies to reverse a disease phenotype
via manipulating the information flows through key genes.

In summary, we present a novel computational network
biology platform that has broad utility and biological im-
pact. The NetDecoder platform allows researchers to ex-
plore context-dependent biological properties using both
microarray and RNA-seq data and, in principle, supports
single-cell RNA-seq data as well. The platform is flexible
allowing researchers to define any set of genes to query
their context-specific roles. We envision NetDecoder will
play a major role in uncovering context-specific roles of
oncogenes in pan-cancer studies, deciphering key genes that
drive pathological progression in other disease classes, and
prioritizing drug targets given specific biological contexts.
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